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ABSTRACT 

The rapid proliferation of Internet of Things (IoT) devices across various industries has 

introduced significant cybersecurity challenges, exposing critical infrastructures, smart 

systems, and personal devices to sophisticated cyber threats. This systematic review 

examines the major cybersecurity vulnerabilities in IoT ecosystems, focusing on device-

level security risks, network-layer threats, application-layer vulnerabilities, and supply 

chain security issues. The study follows the Preferred Reporting Items for Systematic 

Reviews and Meta-Analyses (PRISMA) guidelines, ensuring a structured, transparent, 

and rigorous evaluation of existing literature. A total of 120 peer-reviewed articles were 

analyzed, encompassing empirical research, theoretical studies, and systematic 

reviews published in reputable academic journals and conference proceedings. The 

findings reveal that weak authentication mechanisms, firmware vulnerabilities, insecure 

communication protocols, and supply chain risks remain persistent challenges, making 

IoT devices highly susceptible to botnet recruitment, malware propagation, 

ransomware attacks, and large-scale Distributed Denial-of-Service (DDoS) attacks. 

Additionally, the study identifies the limitations of conventional security solutions, 

emphasizing that resource-constrained IoT devices often lack robust encryption, real-

time intrusion detection, and automated security updates, leaving them vulnerable to 

evolving cyber threats. While AI and machine learning-based intrusion detection 

systems offer promising advancements in threat mitigation and predictive 

cybersecurity, adversarial AI techniques introduce new risks that require continuous 

refinement of security models. The review also highlights regulatory and compliance 

gaps, stressing the urgent need for standardized security frameworks to ensure uniform 

protection across diverse IoT environments. Ultimately, this study underscores the 

necessity for a multi-layered security approach, integrating technological 

advancements, regulatory enforcement, and industry-wide collaboration to enhance 

IoT cybersecurity resilience. The insights provided in this review contribute to the 

growing body of knowledge on IoT security and serve as a foundation for future 

research, policy development, and practical cybersecurity implementations in smart 

and connected systems. 
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INTRODUCTION 

The rapid expansion of the Internet of Things (IoT) has significantly transformed various 

industries, enabling interconnected devices to enhance automation, efficiency, and 

convenience across healthcare, manufacturing, smart cities, and personal consumer 

applications (Abdul-Ghani et al., 2018). IoT devices facilitate seamless communication 

and real-time data exchange through wireless networks, cloud computing, and edge 

computing infrastructures (Mosenia & Jha, 2017). Despite these advantages, the inherent 

complexity and heterogeneity of IoT ecosystems have introduced significant security 

concerns. IoT devices are often embedded in critical infrastructure, making them 

attractive targets for cyber threats, including unauthorized access, data breaches, 

malware, and Distributed Denial of Service (DDoS) attacks (Chettri & Bera, 2020). The 

security vulnerabilities of IoT devices stem from a combination of limited computational 

capabilities, insecure communication protocols, and the widespread adoption of devices 

with minimal built-in security mechanisms (Chettri & Bera, 2020). As cyber threats continue 

to evolve, it is essential to understand the risk vectors and vulnerabilities associated with 

IoT security and assess the 

effectiveness of existing 

mitigation strategies. 

The vulnerabilities in IoT 

communication protocols 

further exacerbate the 

cybersecurity risks associated 

with connected devices. 

Many IoT systems rely on 

lightweight protocols such as 

MQTT (Message Queuing 

Telemetry Transport) and 

CoAP (Constrained 

Application Protocol), which 

often lack robust 

authentication and 

encryption mechanisms 

(Munshi et al., 2020). Attackers 

exploit protocol weaknesses 

to launch attacks such as 

man-in-the-middle (MITM), 

session hijacking, and 

eavesdropping, thereby 

compromising the integrity and confidentiality of transmitted data (Spathoulas & 

Karageorgopoulou, 2019). The dynamic and distributed nature of IoT environments also 

makes them vulnerable to botnet infections, where compromised devices are co-opted 

into large-scale botnets such as Mirai and Mozi, leading to massive DDoS attacks on IoT 

networks (Kolias et al., 2017). Botnets exploit weakly secured IoT devices to launch 

coordinated attacks against critical infrastructure, internet services, and cloud-based 

applications, causing significant operational disruptions and financial losses (Amanullah et 

al., 2020). 

Addressing these security threats requires the implementation of comprehensive 

mitigation strategies that incorporate cryptographic techniques, intrusion detection 

systems, and AI-driven security solutions (Radanliev et al., 2019). Encryption methods such 

as Advanced Encryption Standard (AES), Transport Layer Security (TLS), and blockchain-

based authentication models have been proposed to enhance the security of IoT 

communications and prevent unauthorized access (Neshenko et al., 2019). Additionally, 

machine learning algorithms have been increasingly utilized for anomaly detection and 

intrusion prevention, helping to identify abnormal patterns of behavior in IoT networks 

(Fernandes et al., 2019). However, the effectiveness of these security measures is 

contingent on their scalability and adaptability to resource-constrained IoT devices, which 
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often have limited processing power and memory capacity (Liang et al., 2016). Despite 

advancements in cybersecurity frameworks, securing IoT ecosystems remains a 

multifaceted challenge that requires collaboration between industry stakeholders, 

policymakers, and cybersecurity researchers (Hesselman et al., 2020).This study 

systematically investigates cybersecurity threats in IoT environments by identifying key risk 

vectors, vulnerabilities, and mitigation strategies. It categorizes IoT security risks at the 

device, network, and application levels, examining how various attack methods exploit 

these vulnerabilities. A detailed assessment of cryptographic protocols, intrusion detection 

mechanisms, and AI-driven security solutions is conducted to determine their effectiveness 

in mitigating these threats. The study also highlights security challenges arising from 

inconsistent authentication mechanisms, unpatched firmware, and weak encryption 

protocols. By analyzing existing mitigation strategies, this research offers insights into 

strengthening IoT security frameworks and reducing exposure to cyber threats in 

interconnected environments. 

LITERATURE REVIEW 

The security of Internet of Things (IoT) devices has been a growing concern due to their 

widespread adoption across various industries, including healthcare, smart cities, 

manufacturing, and consumer electronics. As IoT networks expand, so do their attack 

surfaces, making them susceptible to an increasing number of cybersecurity threats. 

Researchers have extensively studied different aspects of IoT security, focusing on risk 

vectors, vulnerabilities, and mitigation strategies. Prior studies have explored device-level 

weaknesses, network-based attacks, and security challenges arising from software and 

communication protocols. Additionally, various cryptographic techniques, intrusion 

detection systems, and AI-powered security solutions have been proposed to enhance 

IoT security. This section synthesizes existing research on IoT cybersecurity, categorizing it 

into specific areas of concern. The discussion follows a structured approach, addressing 

key security risks, attack methodologies, system vulnerabilities, and mitigation frameworks. 

IoT and Security 

The Internet of Things (IoT) comprises a vast network of interconnected devices with 

diverse architectures, communication protocols, and computational capabilities, leading 

to significant security challenges (Elkhodr et al., 2015). Unlike traditional computing 

systems, IoT devices operate under a heterogeneous ecosystem that integrates various 

hardware and software platforms, creating security inconsistencies (Kurunathan et al., 

2019). The lack of uniform security standards across manufacturers results in vulnerabilities 

that cybercriminals exploit to breach systems (Bertino, 2016). Many IoT devices operate on 

different communication protocols such as Zigbee, Bluetooth Low Energy (BLE), and 

Message Queuing Telemetry Transport (MQTT), each with its security limitations (Zhou et al., 

2019). Studies highlight that this heterogeneous nature hinders the deployment of universal 

security measures, making it difficult to implement standardized encryption, 

authentication, and access control mechanisms across all IoT devices (Manimurugan et 

al., 2020). The diversity of IoT devices, ranging from industrial control systems to consumer 

smart home appliances, further complicates security management due to varying 

computational capacities and network configurations (Aman & Snekkenes, 2013). This 

fragmented landscape exposes IoT networks to cyber threats, including data breaches, 

unauthorized access, and large-scale distributed denial-of-service (DDoS) attacks (Rahim 

et al., 2021). 

The limited computational power and energy constraints of IoT devices further hinder the 

implementation of robust security mechanisms (Kolias et al., 2017). Many IoT devices are 

designed for minimal power consumption and low-cost operation, leaving little room for 

advanced encryption and intrusion detection systems (Radanliev et al., 2019). Unlike 

traditional computers, which can accommodate complex cryptographic algorithms, IoT 

devices often lack sufficient memory and processing power to support such security 

measures (Amanullah et al., 2020). As a result, lightweight encryption techniques such as 

Elliptic Curve Cryptography (ECC) and Advanced Encryption Standard (AES) are 

employed to balance security with performance, but they are still prone to vulnerabilities 

due to resource constraints (Amanullah et al., 2020). Additionally, the frequent use of 
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default passwords, weak authentication mechanisms, and firmware vulnerabilities in IoT 

devices increase their susceptibility to brute-force attacks and unauthorized access 

(Neshenko et al., 2019). Researchers emphasize that manufacturers often prioritize cost-

effectiveness and functionality over security, leading to the proliferation of devices with 

inadequate protection mechanisms (Radanliev et al., 2019). The absence of secure boot 

mechanisms and secure key storage further weakens device resilience against firmware 

tampering and unauthorized modifications (Al-Hadhrami & Hussain, 2021). 
Figure 1: Key Security Measures for IoT Networks 

 
The high degree of interconnectivity within IoT networks creates an expanded attack 

surface, as each connected device represents a potential entry point for cyber threats 

(Sohal et al., 2018). IoT ecosystems integrate numerous devices that continuously 

exchange data, making them vulnerable to man-in-the-middle (MITM) attacks, session 

hijacking, and data interception (Munshi et al., 2020). Weak encryption in data 

transmission protocols such as CoAP and MQTT exacerbates these risks, allowing attackers 

to exploit communication channels and gain unauthorized access to sensitive information 

(Elkhodr et al., 2015). Research indicates that IoT botnets, such as the Mirai botnet, 

leverage insecure IoT devices to launch large-scale cyberattacks, including DDoS attacks 

that disrupt critical infrastructure and online services (Bertino, 2016). The interconnected 

nature of IoT also raises concerns regarding lateral movement attacks, where once a 

single device is compromised, an attacker can infiltrate the entire network (Kumar & 

Bhama, 2019). Given the lack of network segmentation in many IoT deployments, 

attackers can easily propagate malware across interconnected devices, leading to 

widespread system failures (Hesselman et al., 2020). Scalability is another critical challenge 

in securing IoT environments, as the rapid growth in connected devices intensifies security 

management complexities (Elkhodr et al., 2015). With billions of devices expected to be 

integrated into global IoT networks, security frameworks must accommodate large-scale 

deployments while maintaining robust access controls and threat detection mechanisms 

(Manimurugan et al., 2020). However, research highlights that existing security models 

struggle to handle the dynamic and decentralized nature of IoT infrastructures (Xhafa et 

al., 2020). Traditional network security mechanisms, such as firewalls and intrusion 

detection systems, are often insufficient in large-scale IoT networks due to high traffic 

volume and diverse device configurations (Rahim et al., 2021). Moreover, the scalability 

challenge extends to secure device provisioning and identity management, where 

assigning and managing cryptographic credentials for millions of IoT devices remains a 

significant obstacle (Cao et al., 2019). Researchers propose blockchain-based 

authentication and decentralized identity management solutions to address these issues, 

yet their adoption is limited due to computational overhead and energy consumption 

concerns (Zhou et al., 2019). 
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Standardized Security Frameworks 

The absence of universal security regulations for IoT has created a fragmented and 

vulnerable ecosystem where security implementations vary significantly across industries 

and geographical regions (Manimurugan et al., 2020). Unlike traditional IT systems, which 

adhere to well-established security frameworks such as ISO 27001 or NIST cybersecurity 

guidelines, IoT security remains largely unregulated (Sun et al., 2017). Several studies 

highlight that the lack of a universal IoT security framework has resulted in significant 

disparities in security practices, leaving many devices exposed to cyber threats (Narang 

et al., 2018). Regulatory bodies have attempted to introduce guidelines such as the 

European Union’s General Data Protection Regulation (GDPR) and the United States’ IoT 

Cybersecurity Improvement Act, yet these policies focus primarily on data privacy rather 

than comprehensive security measures for IoT infrastructure (Aman & Snekkenes, 2013). 

The absence of mandatory compliance measures across all sectors allows manufacturers 

to prioritize cost efficiency over security, leading to the production of insecure devices 

(Frustaci et al., 2018). Additionally, inconsistent international policies result in fragmented 

security approaches, making it difficult to develop a cohesive global response to IoT 

cybersecurity threats (Amanullah et al., 2020). 

Figure 2: IoT Security Model 

 
The lack of standardized security frameworks has resulted in inconsistent security 

implementations across vendors, further complicating IoT security management 

(Radanliev et al., 2019). Vendors develop IoT devices with proprietary security 

architectures, often failing to adhere to common security standards due to market 

competition and rapid production cycles (Neshenko et al., 2019). Studies reveal that IoT 

manufacturers frequently overlook essential security components such as secure boot 

mechanisms, hardware-based encryption, and end-to-end authentication in favor of 

minimizing production costs (Neshenko et al., 2019). This variation in security protocols 

across vendors introduces interoperability challenges, making it difficult for devices from 

different manufacturers to communicate securely (Liang et al., 2016). Furthermore, many 

vendors do not provide regular firmware updates, leaving devices vulnerable to known 

exploits and emerging threats (Kumar & Bhama, 2019). Even when security patches are 

available, they often require manual installation, which many users neglect, further 

exacerbating the risks associated with insecure IoT deployments (Hesselman et al., 2020). 

The compatibility issues between legacy and modern IoT systems present another 

significant challenge in developing a standardized security framework (Bertino, 2016). 

Many industrial and critical infrastructure IoT systems rely on outdated hardware and 

software that lack modern security features, making them particularly vulnerable to 

cyberattacks (Aman & Snekkenes, 2013). Research indicates that legacy IoT systems, such 

as those used in energy grids, transportation networks, and manufacturing facilities, were 

not designed with cybersecurity in mind (Srivastava et al., 2020). These systems often use 

outdated communication protocols and weak encryption mechanisms, making them 

easy targets for cybercriminals (Das et al., 2018). The integration of modern IoT solutions 

into legacy environments without proper security upgrades creates additional attack 

surfaces, as newer devices may inherit vulnerabilities from insecure legacy systems (Zayas 

& Merino, 2017). The challenge of securing legacy IoT deployments is further compounded 
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by the reluctance of organizations to replace outdated systems due to high costs and 

operational disruptions (Mahmoud et al., 2015). 

Security inconsistencies across IoT devices and networks also contribute to significant risks 

in cloud-based and edge computing environments, where IoT systems store and process 

large volumes of sensitive data (Stočes et al., 2016). Many cloud service providers adopt 

their own security models, leading to variations in access control mechanisms, data 

encryption standards, and authentication protocols (Lee, 2020). This lack of uniformity 

makes it difficult for organizations to enforce consistent security policies across hybrid IoT 

deployments (Lee, 2020). Moreover, decentralized edge computing solutions introduce 

further security challenges due to their reliance on resource-constrained IoT devices that 

may lack robust encryption capabilities (Gubbi et al., 2013). In many cases, IoT devices 

offload data processing tasks to cloud or edge servers without implementing secure data 

transmission protocols, exposing sensitive information to interception and manipulation 

(Gubbi et al., 2013). Research suggests that standardized IoT security frameworks could 

address these inconsistencies by enforcing unified security policies across all layers of the 

IoT ecosystem (Lee & Lee, 2015). In the absence of universally recognized security 

frameworks, industry-specific security guidelines have emerged to address sectoral IoT 

vulnerabilities, yet their effectiveness remains limited due to inconsistent adoption (Lee, 

2019). For instance, the healthcare sector follows HIPAA (Health Insurance Portability and 

Accountability Act) regulations for securing medical IoT devices, while industrial IoT systems 

may adhere to ISA/IEC 62443 standards for operational technology security (Ammar et al., 

2018). However, these sector-specific frameworks often lack interoperability, creating 

security gaps when IoT systems operate across multiple industries (Jayashankar et al., 

2018). Research highlights that while security best practices such as regular firmware 

updates, strong authentication mechanisms, and secure software development lifecycles 

can mitigate risks, their inconsistent implementation across different industries reduces their 

overall effectiveness (Gubbi et al., 2013). The absence of a universally enforced IoT security 

standard continues to pose a significant challenge, allowing attackers to exploit 

inconsistencies across different regulatory frameworks (Lee, 2019). 

Device-Level Security Risks 

The reliance on weak authentication mechanisms and default credentials in IoT devices 

exposes them to significant security risks. Many IoT manufacturers preconfigure devices 

with default usernames and passwords, which are often left unchanged by users, creating 

vulnerabilities that cybercriminals can exploit (Bharati, 2019; Gubbi et al., 2013). Studies 

indicate that attackers leverage automated brute-force techniques to exploit weak 

authentication, allowing them to gain unauthorized access to IoT networks (O'Neill, 2016). 

The Mirai botnet, for example, exploited default credentials in IoT devices to create a 

massive botnet used in large-scale Distributed Denial-of-Service (DDoS) attacks (Sridhar & 

Smys, 2017). Weak authentication mechanisms, such as the absence of multi-factor 

authentication (MFA) or biometric authentication, further exacerbate these risks (Celia & 

Cungang, 2018). While some security frameworks recommend the enforcement of 

stronger authentication protocols, many IoT devices, particularly those with resource 

constraints, do not support such measures (Dash, 2020). As a result, unauthorized access 

remains a prevalent threat, allowing attackers to manipulate IoT systems, intercept 

sensitive data, and launch coordinated cyberattacks (Al Hayajneh et al., 2020). 

Firmware vulnerabilities and unpatched software exploits represent another major security 

challenge for IoT devices. Many IoT manufacturers prioritize cost-efficiency and rapid 

deployment over security, leading to the development of devices with outdated or 

insecure firmware (O'Neill, 2016). Research has shown that many IoT devices lack 

mechanisms for automatic firmware updates, leaving them vulnerable to known exploits 

(Lee & Lee, 2015). Attackers often exploit firmware vulnerabilities to gain persistent access 

to devices, modify system functions, and introduce malware (Lee, 2019). The Stuxnet 

attack, for example, demonstrated how firmware exploits could be used to manipulate 

industrial IoT systems, leading to operational disruptions (Lee & Lee, 2015). Additionally, 

many IoT devices lack secure boot mechanisms, allowing attackers to replace legitimate 

firmware with malicious versions (Gubbi et al., 2013). Studies emphasize that secure 
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firmware updates, code signing, and periodic security patches are critical to mitigating 

these risks (Gubbi et al., 2013; Lee, 2019; Zafeiriou, 2020). However, the absence of 

standardized update mechanisms across IoT manufacturers complicates security 

implementation (Lee & Lee, 2015). 
Figure 3: Overview Security Threats in loT 

 
Unauthorized physical access to IoT devices poses a significant threat, particularly for 

devices deployed in uncontrolled environments. Unlike traditional computing systems, 

which are often protected by physical security measures, many IoT devices are installed 

in public or easily accessible locations, making them susceptible to tampering (Gubbi et 

al., 2013). Attackers can exploit physical access to manipulate hardware, extract sensitive 

information, or install rogue firmware (Lee & Lee, 2015). Research indicates that attackers 

frequently use JTAG (Joint Test Action Group) debugging interfaces or serial ports to 

bypass authentication mechanisms and gain control over IoT devices (Ding et al., 2020). 

Side-channel attacks, such as electromagnetic analysis and power consumption 

monitoring, further enable attackers to extract cryptographic keys and other sensitive 

data from IoT devices (Kandasamy et al., 2020). Industrial IoT systems, smart meters, and 

medical IoT devices are particularly vulnerable to these types of attacks due to their 

widespread deployment in open environments (Bendavid et al., 2018). Strengthening 

physical security through tamper-resistant hardware, secure enclosures, and encrypted 

storage is essential to reducing the risks associated with unauthorized access (Ahemd et 

al., 2017; Xiao et al., 2018). 

Side-channel attacks exploit unintended information leakage from IoT devices to extract 

cryptographic keys, infer system states, or manipulate device operations. Unlike traditional 

hacking techniques that rely on software-based vulnerabilities, side-channel attacks 

leverage indirect information such as power consumption patterns, electromagnetic 

emissions, or acoustic signals to compromise security (Burhan et al., 2018). Studies have 

demonstrated that even minimal variations in power consumption during cryptographic 

operations can be analyzed to extract private keys, allowing attackers to decrypt sensitive 

communications (Burhan et al., 2018; Ding et al., 2020). IoT devices deployed in critical 

infrastructure, such as smart grids and industrial automation systems, are particularly 

vulnerable to such attacks (Kandasamy et al., 2020). Attackers can also use differential 

power analysis (DPA) and electromagnetic interference (EMI) analysis to gain insights into 

a device’s internal operations, enabling them to modify firmware or extract sensitive data 

(Zafeiriou, 2020). While hardware security enhancements such as power randomization 

and shielded enclosures can help mitigate side-channel attacks, their implementation 

remains limited due to cost and design constraints (Jayashankar et al., 2018; Yassine et al., 

2019). 
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The growing interconnectivity of IoT devices further amplifies device-level security risks by 

enabling attackers to exploit vulnerabilities in one device to compromise an entire 

network. Research highlights that once an attacker gains access to a poorly secured IoT 

device, they can move laterally across connected systems, exfiltrating sensitive data and 

deploying malware (Xiao et al., 2018). Many IoT networks lack proper segmentation, 

allowing attackers to use compromised devices as entry points to infiltrate broader 

infrastructures (Ahemd et al., 2017). This issue is particularly concerning in industrial and 

healthcare IoT deployments, where compromised medical devices or industrial controllers 

can disrupt critical operations (Pal et al., 2018). Secure boot mechanisms, strong 

authentication, and encrypted communication channels are necessary to prevent 

attackers from leveraging one device’s vulnerability to exploit entire networks 

(Meneghello et al., 2019). However, studies suggest that many IoT deployments lack these 

protections, leaving them susceptible to cascading security failures (Ahemd et al., 2017). 

Network-Level Threats 

Man-in-the-middle (MITM) attacks and packet sniffing pose significant security risks in IoT 

environments, allowing attackers to intercept and manipulate communication between 

devices (Ganapathi & Shanmugapriya, 2009). IoT networks often rely on lightweight 

protocols such as Message Queuing Telemetry Transport (MQTT) and Constrained 

Application Protocol (CoAP), which lack built-in encryption and authentication 

mechanisms, making them susceptible to MITM attacks (Benzarti et al., 2017). Attackers 

exploit these vulnerabilities by positioning themselves between IoT devices and their 

intended communication endpoints to eavesdrop, modify, or inject malicious data (Alimi 

et al., 2020). Research highlights that insecure Wi-Fi connections and improperly 

configured public networks significantly increase the risk of MITM attacks in smart home 

and industrial IoT deployments (Hodo et al., 2016). Packet sniffing, a technique used to 

capture network traffic, is another major concern, as it allows attackers to analyze 

transmitted data and extract sensitive information, such as authentication credentials and 

encryption keys (Pacheco & Hariri, 2016). The lack of transport layer security (TLS) in many 

IoT devices further exacerbates these risks, exposing unencrypted traffic to adversaries 

who can manipulate real-time data flows (Doshi et al., 2021). 

Denial-of-service (DoS) and Distributed Denial-of-Service (DDoS) attacks exploit IoT 

devices’ resource constraints, overwhelming them with excessive requests to render them 

inoperable (Turcotte et al., 2017). Research indicates that IoT devices, due to their limited 

processing power and lack of security hardening, are prime targets for attackers seeking 

to disrupt network availability (Pajouh et al., 2019). Large-scale DDoS attacks, such as those 

conducted by the Mirai botnet, have demonstrated the devastating impact of IoT-based 

attacks on critical infrastructure and internet services (Turcotte et al., 2017). Attackers 

hijack poorly secured IoT devices, such as smart cameras and routers, integrating them 

into massive botnets to launch high-volume traffic floods against targeted servers (Yu et 

al., 2019). Studies show that the lack of rate-limiting mechanisms and anomaly detection 

systems in many IoT networks enables attackers to sustain prolonged DoS attacks, leading 

to widespread service disruptions (Muhuri et al., 2020; Yu et al., 2019). Moreover, attackers 

can leverage amplification techniques, such as DNS and NTP reflection, to intensify the 

impact of these attacks while masking their true source (Vasserman & Hopper, 2013). 

Spoofing attacks, replay attacks, and session hijacking compromise the integrity and 

confidentiality of IoT communications by exploiting authentication weaknesses and 

protocol vulnerabilities (Nagrath & Gupta, 2011). Spoofing attacks occur when an 

adversary forges a device’s identity to gain unauthorized access to a network, often by 

impersonating a legitimate IoT device (Yu et al., 2019). Studies highlight that many IoT 

authentication mechanisms rely solely on weak, pre-shared keys or static credentials, 

making them highly vulnerable to identity spoofing (Vasserman & Hopper, 2013). Replay 

attacks involve intercepting and retransmitting legitimate authentication packets, 

allowing attackers to bypass security measures and gain unauthorized access to IoT 

systems (Anirudh et al., 2017). These attacks are particularly effective against IoT protocols 

that lack cryptographic nonce implementation, which prevents the reuse of 

authentication tokens (Turcotte et al., 2017). Session hijacking further exploits weak 
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authentication mechanisms by allowing an attacker to take control of an active session, 

potentially manipulating IoT device settings or extracting confidential data (Nagrath & 

Gupta, 2011). Research underscores the need for secure session management 

techniques, such as time-based expiration tokens and multi-factor authentication, to 

mitigate these threats (Pajouh et al., 2019). 

The widespread use of insecure network architectures in IoT deployments exacerbates the 

risks associated with network-level threats. Many IoT devices operate on flat, unsegmented 

networks where all devices share the same communication space, increasing the risk of 

lateral movement attacks (Agah & Das, 2007). Once an attacker gains access to a single 

IoT device, they can traverse the network, targeting other connected systems and 

escalating privileges (Li et al., 2017). Research 

indicates that industrial IoT environments, such 

as smart grids and automated manufacturing 

plants, are particularly susceptible to these 

attacks due to their reliance on legacy 

network protocols with minimal security 

enforcement (Obaidat et al., 2020). 

Furthermore, IoT gateways and edge 

computing nodes, which act as 

intermediaries between IoT devices and 

cloud services, are often targeted by 

attackers seeking to intercept data streams or 

inject malicious payloads (Hsu et al., 2020). 

Network segmentation, firewall enforcement, 

and zero-trust security models have been 

proposed as effective mitigation strategies; 

however, their adoption remains inconsistent 

across IoT deployments due to performance 

concerns and lack of standardized security 

policies (Hayajneh et al., 2019). 

Research also highlights that the lack of end-to-end encryption in IoT communications 

contributes to the persistence of network-level threats (Chen et al., 2021). Many IoT 

protocols prioritize low power consumption and minimal processing overhead, leading to 

the omission of robust encryption schemes such as TLS or IPsec (Choraś et al., 2011). As a 

result, attackers can easily intercept and manipulate unencrypted traffic, leading to data 

exfiltration, unauthorized command injection, and malicious firmware updates (Garg et 

al., 2019). Studies emphasize that cryptographic solutions, such as lightweight AES 

encryption and elliptic curve cryptography (ECC), can significantly enhance IoT network 

security without introducing excessive computational overhead (Ganapathi & 

Shanmugapriya, 2009). However, the fragmented nature of IoT ecosystems, with different 

manufacturers implementing proprietary security models, complicates the widespread 

deployment of standardized encryption protocols (Kayes et al., 2020). The integration of 

AI-driven intrusion detection systems and blockchain-based authentication frameworks 

has been explored as potential solutions, yet their effectiveness depends on device 

compatibility and implementation consistency (Vishwakarma & Jain, 2019). 

Application-Layer Vulnerabilities 

Insecure application programming interfaces (APIs) and improper data access controls 

expose IoT applications to significant security risks. Many IoT applications rely on APIs to 

facilitate communication between devices, cloud platforms, and third-party services, but 

these APIs often lack proper authentication, encryption, and access control mechanisms 

(Hodo et al., 2016). Research indicates that improperly secured APIs allow attackers to 

intercept and manipulate data transmissions, leading to unauthorized access and control 

over IoT systems (Puthal et al., 2016). Weak API authentication mechanisms, such as 

hardcoded credentials and tokens stored in plaintext, further exacerbate these risks, 

making IoT applications vulnerable to credential theft and replay attacks (Hodo et al., 

2016). Additionally, improper data access controls in IoT ecosystems enable attackers to 

Figure 4: Key Security Measures for IoT 

Networks 
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bypass authorization policies, exposing sensitive user data and critical system 

configurations to cyber threats (Alimi et al., 2020). Studies emphasize that enforcing robust 

API security measures, such as OAuth-based authentication, token expiration policies, and 

encrypted API communications, is essential for mitigating application-layer vulnerabilities 

(Benzarti et al., 2017). However, many IoT vendors prioritize functionality over security, 

leading to widespread deployment of poorly secured APIs in consumer and industrial IoT 

applications (Hodo et al., 2016). 
Figure 5: Application-Layer Security Risks in IoT Systems 

 
Malware propagation and ransomware threats in IoT applications have become 

increasingly prevalent, targeting devices with weak security configurations and outdated 

software (Benzarti et al., 2017). IoT devices frequently operate with minimal antivirus 

protection and lack traditional security defenses found in conventional computing 

environments, making them attractive targets for malware infections (Alimi et al., 2020). 

Studies highlight that botnets such as Mirai and Mozi exploit unpatched vulnerabilities in 

IoT applications to compromise devices, integrating them into large-scale botnet networks 

used for distributed denial-of-service (DDoS) attacks (Hodo et al., 2016). Ransomware 

attacks on IoT applications have also escalated, with cybercriminals encrypting critical 

system files and demanding payments for decryption keys (Chen et al., 2021). Smart home 

devices, industrial control systems, and healthcare IoT applications are particularly 

vulnerable to such attacks, as their disruption can lead to severe operational 

consequences (Khare et al., 2020). Research suggests that the lack of security patches 

and automated update mechanisms in many IoT applications further facilitates malware 

propagation, as attackers exploit known vulnerabilities that remain unpatched for 

extended periods (Bhattasali et al., 2012). Implementing secure software development 

lifecycles, continuous vulnerability monitoring, and endpoint security solutions are critical 

to preventing malware and ransomware threats in IoT (Pathak et al., 2020). 

Privacy concerns related to data collection and storage in IoT applications have raised 

significant ethical and security issues, as many IoT devices continuously gather and 

transmit sensitive user information without robust privacy protections (Agah & Das, 2007). 

IoT applications in healthcare, smart homes, and wearable technology collect personal 

and biometric data, often storing it on centralized cloud platforms that are susceptible to 

breaches and unauthorized access (Moridi et al., 2018). Studies show that many IoT 

applications lack proper data anonymization techniques, allowing attackers to correlate 

stored information with specific individuals, leading to identity theft and unauthorized 

profiling (Agah & Das, 2007). Additionally, weak encryption protocols in data transmission 

channels expose collected information to eavesdropping and MITM attacks, further 

amplifying privacy risks (Moridi et al., 2018). Research highlights that many IoT applications 

fail to provide users with adequate transparency and control over their data, often sharing 

information with third-party advertisers and analytics companies without explicit consent 

(Hayajneh et al., 2019). Strengthening data encryption mechanisms, enforcing strict 
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access controls, and adopting privacy-by-design principles are necessary to enhance 

privacy protections in IoT ecosystems (Yu et al., 2018). 

The lack of standardized security frameworks in IoT application development exacerbates 

application-layer vulnerabilities, leading to inconsistencies in security implementations 

across different platforms and vendors (Obaidat et al., 2020)). Many IoT applications are 

developed without formal security testing, allowing insecure coding practices to persist 

across production environments (Moridi et al., 2018). Studies indicate that buffer overflow 

vulnerabilities, race conditions, and input validation flaws frequently appear in IoT 

software, enabling attackers to execute arbitrary code and gain control over applications 

(Hsu et al., 2020; Moridi et al., 2018). Additionally, the use of open-source libraries and third-

party dependencies without proper security vetting introduces additional risks, as 

vulnerabilities in these components can compromise the entire IoT application ecosystem 

(Georgescu et al., 2019). Research suggests that adopting secure coding practices, 

implementing static and dynamic code analysis tools, and conducting penetration testing 

during software development can help mitigate these threats (Khouzani & Sarkar, 2011). 

However, the rapid pace of IoT innovation often prioritizes product deployment over 

security compliance, resulting in widespread application-layer security gaps (Lee et al., 

2014). 

Analysis of Common Cybersecurity Threats in IoT 

The Mirai botnet is one of the most well-documented cyber threats that demonstrated the 

vulnerabilities of IoT devices at a global scale. Mirai exploited weak authentication 

mechanisms in IoT devices by using a database of default credentials to gain 

unauthorized access (Agah & Das, 2007; Ahmed et al., 2022; Aklima et al., 2022). Once 

compromised, the infected devices were recruited into a botnet that launched massive 

Distributed Denial-of-Service (DDoS) attacks against online services, websites, and critical 

infrastructure (Ahmed et al., 2022; Aklima et al., 2022; Mahfuj et al., 2022; Saad et al., 2011; 

Sohel et al., 2022; Tonoy, 2022). The attack on Dyn, a major DNS service provider, in 

October 2016, resulted in widespread internet outages, impacting platforms such as 

Twitter, Netflix, and Reddit (Hsu et al., 2020). Studies have shown that the Mirai botnet 

primarily targeted unsecured IoT devices, such as network cameras and routers, taking 

advantage of their weak security configurations and lack of user intervention in security 

updates (Hayajneh et al., 2019). The large-scale impact of Mirai highlighted the risks posed 

by unprotected IoT devices and underscored the urgent need for better authentication 

and security patch management in IoT ecosystems (Li et al., 2017). 

The evolution of botnets in IoT ecosystems has further amplified cybersecurity threats, as 

attackers continue to develop more sophisticated attack techniques. Following Mirai, 

several botnet variants, including Mozi and Hajime, emerged, leveraging advanced 

evasion techniques such as peer-to-peer communication to avoid detection (Obaidat et 

al., 2020). Unlike traditional botnets that rely on centralized command-and-control servers, 

newer botnets employ decentralized architectures, making them harder to dismantle 

(Hayajneh et al., 2019). Research highlights that botnets have evolved beyond DDoS 

attacks to support a wide range of cyber threats, including data exfiltration, crypto-

mining, and ransomware deployment in IoT networks (Benzarti et al., 2017). Industrial IoT 

(IIoT) systems have been particularly affected, as botnet infections can disrupt 

manufacturing processes, energy grids, and smart transportation systems (Puthal et al., 

2016). The increasing adoption of AI-driven botnets further complicates security efforts, as 

these botnets can autonomously adapt to network defenses and exploit newly discovered 

vulnerabilities (Turcotte et al., 2017). Researchers emphasize that mitigating botnet threats 

requires a combination of proactive security measures, including real-time anomaly 

detection, device authentication, and network segmentation (Nagrath & Gupta, 2011). 
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Exploitation of Weak Communication Protocols 

The reliance on lightweight 

communication protocols, such as 

Message Queuing Telemetry 

Transport (MQTT) and Constrained 

Application Protocol (CoAP), 

introduces significant security 

weaknesses in IoT networks. MQTT is 

widely used for real-time 

communication between IoT 

devices due to its low overhead and 

efficient messaging capabilities 

(Dinculeană & Cheng, 2019). 

However, research indicates that 

MQTT lacks built-in security features, 

such as encryption and 

authentication, making it 

susceptible to attacks such as man-

in-the-middle (MITM), session 

hijacking, and unauthorized data 

access (Perrone et al., 2017). 

Attackers can intercept 

unencrypted MQTT messages, 

manipulate device commands, and 

disrupt IoT operations by injecting 

malicious payloads (Xiao et al., 

2018). CoAP, another widely used IoT 

protocol, is also vulnerable to 

security threats due to its reliance on 

the User Datagram Protocol (UDP), 

which lacks inherent mechanisms for 

ensuring data integrity and 

confidentiality (Burhan et al., 2018). 

Studies show that CoAP is frequently 

exploited in amplification attacks, 

where attackers use the protocol to 

generate high-volume DDoS traffic 

by leveraging IoT devices as attack 

sources (Ahemd et al., 2017). The 

lack of authentication and 

encryption in both MQTT and CoAP 

makes IoT devices an easy target for 

cybercriminals who exploit 

communication weaknesses to 

infiltrate networks and exfiltrate 

sensitive data (Khan & Salah, 2018). 

The absence of end-to-end 

encryption in lightweight IoT protocols exacerbates security risks, allowing attackers to 

intercept and manipulate data exchanges between devices and cloud services. Many 

IoT devices transmit sensitive information, such as health records, industrial sensor data, 

and smart home activity logs, without adequate encryption mechanisms (Ding et al., 

2020). Studies highlight that even when encryption is implemented, it is often limited to 

transport layer security (TLS), which does not provide full protection for all data transmitted 

across the network (Burhan et al., 2018; Ding et al., 2020). Attackers exploit weak 

encryption implementations to launch replay attacks, eavesdrop on communication 

Figure 6: Security Threats and Mitigation Strategies in IoT 

Communication Protocols 
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channels, and modify command instructions sent to IoT devices (Xiao et al., 2018). The lack 

of robust key management further compounds these vulnerabilities, as IoT devices often 

store encryption keys in plaintext or share them across multiple devices, making them 

susceptible to theft (Ahemd et al., 2017). Research suggests that implementing lightweight 

cryptographic solutions, such as elliptic curve cryptography (ECC) and quantum-resistant 

encryption, can enhance the security of IoT communication protocols while maintaining 

computational efficiency (Xiao et al., 2018). 

The fragmentation of security implementations across IoT manufacturers has resulted in 

inconsistent security measures, further increasing the risk of protocol exploitation. Many IoT 

vendors prioritize performance and cost reduction over security, leading to the 

widespread deployment of devices with minimal cryptographic protection (Burhan et al., 

2018). Studies indicate that some IoT devices completely disable encryption or rely on 

outdated cryptographic algorithms that are vulnerable to modern cryptanalysis 

techniques (Bendavid et al., 2018). Additionally, many IoT 

applications lack mechanisms for secure key exchange, 

making it easy for attackers to compromise 

authentication credentials and decrypt sensitive data 

(Ali et al., 2018). The security gaps in IoT communication 

protocols have also enabled large-scale attacks 

targeting industrial control systems, healthcare networks, 

and financial transactions conducted through IoT-

enabled point-of-sale systems (Zheng et al., 2018). To 

mitigate these risks, researchers emphasize the need for 

standardized security frameworks that enforce strong 

encryption, secure key management, and mutual 

authentication for all IoT communications (Kulseng et al., 

2010). 

AI-Powered Cyber Threats 

Deepfake-based attacks and adversarial AI techniques 

have emerged as significant threats in modern 

cybersecurity landscapes, particularly in IoT 

environments. Deepfake technology, which leverages 

deep learning models to generate highly realistic 

synthetic media, has been increasingly exploited for 

identity fraud, misinformation campaigns, and social 

engineering attacks (Kim et al., 2020). Studies have 

shown that cybercriminals use deepfake-generated 

voice and video content to impersonate executives, 

conduct fraudulent transactions, and manipulate 

authentication mechanisms in IoT applications (Suciu et 

al., 2017). Additionally, adversarial AI techniques exploit 

vulnerabilities in machine learning models by injecting 

manipulated inputs to deceive AI-driven security systems 

(Li et al., 2019). Research indicates that attackers can 

craft adversarial samples that force AI-based intrusion 

detection systems to misclassify malicious activity as 

benign, thereby bypassing security measures 

(Mahmood, 2020). The increasing reliance on AI-

powered authentication methods, such as facial 

recognition and voice verification, further amplifies the 

risks posed by adversarial AI attacks, as attackers can 

generate synthetic biometric data to gain unauthorized 

access to IoT networks (Velliangiri et al., 2020). The 

proliferation of deepfake and adversarial AI attacks 

highlights the limitations of traditional cybersecurity 

Figure 7: AI-Powered Cyber 

Threats in IoT 
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approaches in detecting and mitigating AI-driven threats (Suciu et al., 2017). 

AI-driven malware has introduced a new dimension of cyber threats by enabling malware 

to autonomously adapt to evolving security defenses. Unlike conventional malware, AI-

enhanced malware utilizes reinforcement learning and generative adversarial networks 

(GANs) to evade detection, dynamically alter its attack patterns, and exploit IoT 

vulnerabilities in real time (Sun et al., 2017). Research has shown that AI-powered malware 

can autonomously assess an IoT system’s security posture, identify weaknesses, and modify 

its code to bypass firewalls and antivirus software (Du et al., 2009). This level of adaptability 

makes AI-driven malware particularly effective in IoT environments, where traditional 

signature-based detection methods struggle to identify novel attack vectors (Suciu et al., 

2017). Additionally, AI-powered ransomware attacks have increased, with attackers 

leveraging machine learning to optimize encryption techniques, predict the most 

valuable files to target, and customize ransom demands based on an organization’s 

financial data (Anand et al., 2020). The use of AI in malware development signifies a shift 

toward more autonomous and sophisticated cyberattacks that require advanced 

behavioral analytics and AI-driven security measures to counteract (Du et al., 2009). 

The autonomous exploitation of IoT vulnerabilities using AI has enabled cybercriminals to 

conduct large-scale, automated attacks with minimal human intervention. AI-driven 

attack frameworks can scan vast IoT networks, identify security weaknesses, and deploy 

tailored exploits without requiring predefined rule sets (Du et al., 2009; Velliangiri et al., 

2020). Research indicates that AI-powered penetration testing tools can mimic ethical 

hacking techniques to uncover vulnerabilities, but similar technologies have been 

weaponized by attackers to infiltrate IoT infrastructures (Kim et al., 2020; Mahmood, 2020). 

These autonomous systems can launch MITM (man-in-the-middle) attacks, modify IoT 

firmware, and exploit unpatched software vulnerabilities at unprecedented speeds (Suciu 

et al., 2017). Studies have demonstrated that AI can enhance polymorphic malware, 

enabling it to rewrite its own code to avoid detection while propagating through IoT 

networks (Velliangiri et al., 2020). The self-learning capabilities of AI-driven exploits make 

them highly resilient to conventional cybersecurity defenses, as they continuously evolve 

to evade detection and maximize attack success rates (Wu et al., 2020). 

One of the most concerning aspects of AI-powered cyber threats is the potential for fully 

autonomous cyberattacks that require minimal human oversight. Recent advancements 

in AI have enabled attackers to develop intelligent attack frameworks capable of 

launching sophisticated multi-vector attacks against IoT infrastructures (Carlini & Wagner, 

2017). These frameworks can analyze network traffic, detect security gaps, and generate 

tailored attack strategies in real time (Sun et al., 2017). Studies suggest that AI can optimize 

distributed botnet attacks by dynamically coordinating compromised IoT devices to 

launch synchronized DDoS attacks against high-value targets (Velliangiri et al., 2020). 

Furthermore, AI-driven cyberattacks can leverage predictive analytics to anticipate an 

organization’s security responses and adjust attack methodologies accordingly (Anand et 

al., 2020; Wu et al., 2020). The ability of AI to autonomously identify and exploit IoT 

vulnerabilities has raised concerns regarding the increasing asymmetry between attackers 

and defenders, as traditional security models struggle to keep pace with AI-enhanced 

threats (Bendavid et al., 2018). 

The integration of AI into cyberattacks has also facilitated the emergence of advanced 

persistent threats (APTs) that remain undetected within IoT ecosystems for extended 

periods. AI-powered APTs utilize stealth tactics such as data exfiltration through encrypted 

traffic, behavioral cloaking to evade anomaly detection, and adaptive malware 

deployment to blend into legitimate network activity (Burhan et al., 2018). Studies have 

revealed that AI-enhanced malware can mimic normal IoT device behavior to evade 

security controls while gradually extracting sensitive data (Ding et al., 2020). Additionally, 

AI-driven cyber espionage campaigns have been observed targeting industrial control 

systems, healthcare IoT networks, and critical infrastructure, highlighting the growing 

sophistication of AI-enhanced cyber threats (Yassine et al., 2019). The ability of AI to 

autonomously infiltrate, learn from, and manipulate IoT environments presents an 

unprecedented challenge for cybersecurity professionals, requiring the development of 
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AI-driven defensive systems capable of countering adaptive threats in real time (Zafeiriou, 

2020). 

Supply Chain Security Risks in IoT Device Manufacturing 

The presence of hardware-level backdoors in IoT devices poses a significant security 

threat, as these vulnerabilities can be exploited for espionage, unauthorized access, and 

large-scale cyberattacks. Hardware backdoors are intentionally or unintentionally 

embedded within IoT devices during the manufacturing process, allowing malicious actors 

to gain persistent access to systems (Makhdoom et al., 2019). Studies highlight that 

compromised hardware components can be activated remotely to manipulate device 

functionality, extract sensitive data, or disrupt operations (Yang et al., 2015). Research 

indicates that many backdoors are introduced during the supply chain process, where 

different components are sourced from multiple vendors, increasing the risk of tampering 

(Makhdoom et al., 2019). Attackers often exploit weak security controls in manufacturing 

facilities to insert malicious microcode or alter firmware before devices reach consumers 

(Muthavhine & Sumbwanyambe, 2018). Once activated, hardware backdoors can 

bypass encryption mechanisms, intercept communication channels, and allow attackers 

to install undetectable malware (Kim et al., 2020). These vulnerabilities are particularly 

concerning in critical infrastructure sectors, such as energy, healthcare, and military 

applications, where compromised IoT devices can lead to severe operational 

consequences (Khan & Herrmann, 2017). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supply chain tampering remains a growing concern in IoT device security, as the 

globalized production process makes it difficult to verify the integrity of hardware and 

firmware components (Mukaddam et al., 2014). Many IoT manufacturers rely on third-party 

suppliers to source chips, sensors, and microcontrollers, creating opportunities for malicious 

modifications to be introduced at various stages of production (Vasques & Gondim, 2019). 

Studies indicate that attackers exploit this fragmented supply chain to implant rogue 

firmware, counterfeit chips, and logic bombs that activate after deployment (Muthavhine 

& Sumbwanyambe, 2018). In some cases, supply chain attacks involve inserting malicious 

modifications into firmware updates, allowing attackers to compromise IoT devices post-

manufacture (Khan & Herrmann, 2017). Research highlights that supply chain tampering 

incidents, such as the alleged Supermicro motherboard attack, have demonstrated the 

feasibility of hardware-level infiltration, raising concerns about the security of IoT 

manufacturing practices (Vasques & Gondim, 2019). Due to the complexity of supply 

chains, manufacturers often struggle to conduct comprehensive security audits, 

Figure 8: IoT Security Threat Landscape: Exploits, Malware, and User 

Vulnerabilities 
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increasing the risk of undetected vulnerabilities in widely deployed IoT devices (Nirmal et 

al., 2020). 

Third-party vendors play a critical role in IoT device manufacturing, but their involvement 

introduces significant security risks due to inconsistent security policies, lack of oversight, 

and vulnerabilities in outsourced components (Mukaddam et al., 2014). Many IoT 

manufacturers outsource hardware design, software development, and cloud 

infrastructure to external suppliers, leading to security blind spots that attackers can exploit 

(Ma et al., 2019). Studies show that third-party vendors often prioritize cost efficiency and 

production speed over security, resulting in devices with weak encryption, default 

credentials, and outdated firmware (Khan & Herrmann, 2017; Ma et al., 2019). Additionally, 

supply chain attacks targeting third-party vendors have been responsible for some of the 

largest cybersecurity breaches, as compromised suppliers inadvertently introduce 

malware and vulnerabilities into widely used IoT products (Makhdoom et al., 2019). The 

interconnected nature of IoT ecosystems further amplifies these risks, as security 

weaknesses in a single component can be leveraged to exploit entire networks (Froytlog 

& Cenkeramaddi, 2018). Researchers emphasize the need for strict vendor security 

assessments, continuous monitoring, and secure software supply chain practices to 

mitigate risks associated with third-party dependencies (Saraeian & Golchi, 2020). 

The use of open-source software and third-party libraries in IoT firmware development 

introduces additional security concerns, as vulnerabilities in shared codebases can be 

exploited across multiple devices. Many IoT manufacturers integrate third-party libraries 

without conducting thorough security reviews, allowing attackers to exploit unpatched 

vulnerabilities in widely deployed software components (Iqbal et al., 2020). Studies 

indicate that dependency confusion attacks, in which attackers inject malicious code into 

open-source repositories, have been increasingly used to compromise IoT applications 

(Baybutt, 2002; Iqbal et al., 2020; Zavrak & Iskefiyeli, 2020). Additionally, outdated libraries 

and improperly validated updates create persistent security risks, as many IoT devices lack 

automated patching mechanisms to mitigate newly discovered vulnerabilities (Asplund & 

Nadjm-Tehrani, 2016). Research highlights that supply chain attacks leveraging third-party 

software vulnerabilities can lead to large-scale data breaches, ransomware infections, 

and IoT botnet recruitment (Ferrag et al., 2017). To address these risks, security experts 

recommend implementing software bill-of-materials (SBOM) tracking, code integrity 

verification, and vendor security certifications to enhance the transparency and security 

of third-party software used in IoT devices (Asplund & Nadjm-Tehrani, 2016). The lack of 

standardized security policies across IoT supply chains further complicates efforts to 

mitigate third-party risks. Many IoT manufacturers operate in regions with varying 

cybersecurity regulations, leading to inconsistent security implementations across different 

suppliers (Ferrag et al., 2017). Studies indicate that geopolitical tensions have also 

contributed to concerns about supply chain security, as governments and corporations 

scrutinize foreign-made IoT components for potential backdoors and espionage risks 

(Moura et al., 2014). The growing reliance on Chinese, Taiwanese, and Southeast Asian 

manufacturers for IoT hardware production has led to increased scrutiny over potential 

security vulnerabilities embedded in mass-produced chips and circuit boards (Sicari et al., 

2015). Research suggests that supply chain security can be improved by enforcing stricter 

compliance measures, conducting regular security audits, and developing resilient 

manufacturing standards that prioritize security alongside cost and performance 

considerations (Catania et al., 2012). However, the decentralized nature of IoT supply 

chains continues to pose significant challenges in ensuring end-to-end security across the 

entire production lifecycle (Moura et al., 2014). 

Research Gaps in IoT Security 

The computational and energy constraints of IoT devices pose a significant barrier to 

implementing robust security mechanisms. Unlike traditional computing systems, IoT 

devices often operate with limited processing power and memory, making it difficult to 

support advanced encryption algorithms and complex security protocols (Khosravi-

Farmad & Ghaemi-Bafghi, 2020). Studies highlight that conventional cryptographic 

solutions, such as AES and RSA, require substantial computational resources, which can 
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lead to increased latency and energy consumption in resource-constrained IoT 

environments (Hildebrandt, 2013). Research indicates that manufacturers often prioritize 

device efficiency over security, resulting in the deployment of weak encryption schemes 

or, in some cases, the complete omission of security measures (Khosravi-Farmad & 

Ghaemi-Bafghi, 2020; Lafta et al., 2021). The trade-off between security and 

computational efficiency remains a critical challenge, as implementing stronger security 

mechanisms can degrade device performance and battery life (Moura et al., 2014). 

Studies suggest that lightweight encryption techniques, such as Elliptic Curve 

Cryptography (ECC) and post-quantum cryptography, can provide an alternative, but 

their adoption remains limited due to interoperability issues and inconsistent 

implementation across different IoT platforms (Lafta et al., 2021). 

 

The limited processing power of IoT devices also impacts their ability to support real-time 

intrusion detection and response mechanisms. Traditional intrusion detection systems (IDS) 

rely on deep packet inspection and behavior-based anomaly detection, both of which 

require significant computational capabilities that most IoT devices (Banerjee et al., 2018). 

Studies highlight that resource constraints in IoT devices force manufacturers to use 

simplified security models that rely on static rule-based defenses, making them ineffective 

against adaptive cyber threats (Lafta et al., 2021). Additionally, the absence of AI-driven 

security monitoring in many IoT networks increases vulnerability to sophisticated attacks 

such as zero-day exploits and AI-generated malware (Banerjee et al., 2018). Research 

suggests that offloading security operations to cloud-based or edge computing 

environments could alleviate the computational burden on IoT devices, but this approach 

introduces new concerns regarding data privacy, latency, and dependency on external 

infrastructure (Shafer & Srivastava, 1990). 

The difficulty in maintaining security updates for millions of IoT devices is another critical 

research gap that has contributed to large-scale cyber threats. Many IoT devices are 

deployed with outdated firmware and lack secure over-the-air (OTA) update 

mechanisms, leaving them vulnerable to known exploits (Catania et al., 2012). Studies 

have shown that IoT manufacturers frequently fail to provide timely security patches, either 

due to lack of incentives or logistical challenges in distributing updates to a globally 

dispersed network of devices (Minoli & Occhiogrosso, 2018). Additionally, the fragmented 

nature of IoT ecosystems, where different vendors use proprietary software and firmware 

architectures, complicates the process of standardizing security updates (Rea-Guaman 

et al., 2020). Researchers have emphasized the need for automated patch management 

systems that can deploy security updates with minimal user intervention, but adoption 

Figure 9: Research Gaps in IoT Security 
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remains low due to the lack of universal firmware update protocols across IoT 

manufacturers (Khosravi-Farmad & Ghaemi-Bafghi, 2020). 

Even when security updates are available, many IoT devices lack the capability to install 

patches automatically, increasing the risk of prolonged exposure to cyber threats. Studies 

indicate that a significant number of IoT devices require manual firmware updates, which 

many users neglect due to lack of awareness or technical knowledge (Lafta et al., 2021). 

This problem is particularly evident in consumer IoT devices, such as smart home 

appliances, where users rarely interact with device firmware updates, leaving security 

vulnerabilities unpatched for extended periods (Catania et al., 2012). Additionally, 

industrial IoT (IIoT) environments face unique challenges in implementing security updates, 

as downtime required for patching can disrupt critical operations, making organizations 

reluctant to apply updates (Lafta et al., 2021). Research suggests that implementing 

blockchain-based firmware verification and automated OTA updates could enhance IoT 

security, but such solutions require widespread adoption and standardization across the 

industry (Bijalwan et al., 2016). The challenge of ensuring long-term security maintenance 

for IoT devices remains unresolved, as many devices are designed with short life cycles 

and limited manufacturer support. Research highlights that many low-cost IoT devices are 

abandoned by manufacturers after a few years, leaving them vulnerable to security 

exploits without the possibility of receiving patches (Samaila et al., 2018). Studies suggest 

that security maintenance must be embedded into the design phase of IoT product 

development, enforcing lifecycle security policies that mandate long-term support for 

devices even after they are discontinued (Safar et al., 2020). However, enforcing such 

policies remains difficult due to the lack of regulatory mandates requiring manufacturers 

to provide long-term security support (Saraeian & Golchi, 2020). Additionally, the growing 

presence of legacy IoT devices in critical infrastructure environments, such as healthcare 

and smart grids, further complicates security maintenance, as these devices often 

operate on outdated hardware that cannot support modern security updates (Baybutt, 

2002). Researchers emphasize the importance of designing IoT systems with built-in 

resilience and adaptive security frameworks to mitigate risks associated with long-term 

maintenance challenges (Dinker & Sharma, 2016). 

METHOD 

This study followed the Preferred Reporting Items for Systematic Reviews and Meta-

Analyses (PRISMA) guidelines to ensure a systematic, transparent, and rigorous review 

process. The methodology was structured into the following key steps: 

Step 1: Identification of Inclusion and Exclusion Criteria 

The study established specific inclusion and exclusion criteria to ensure the selection of 

high-quality and relevant research: 

Inclusion Criteria:  

Studies were required to be peer-reviewed journal articles or conference proceedings, 

focus on cybersecurity threats, vulnerabilities, and mitigation strategies in IoT environments, 

and provide empirical data, systematic reviews, or theoretical contributions. Articles had 

to be written in English and available in full-text format. 

Exclusion Criteria:  

Studies were excluded if they lacked methodological clarity, focused on non-IoT 

cybersecurity threats, were opinion pieces, editorials, book chapters, or unpublished 

manuscripts, or provided insufficient empirical data. A total of 520 studies were initially 

identified across various academic sources before applying the inclusion and exclusion 

criteria. 

Step 2: Systematic Literature Search 

To ensure comprehensive coverage of relevant studies, searches were conducted across 

six major academic databases: 
▪ IEEE Xplore 

▪ ACM Digital Library 

▪ ScienceDirect (Elsevier) 

▪ SpringerLink 

▪ Web of Science 

▪ Scopus 
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Additionally, Google Scholar was used for supplementary searches. The search strategy 

incorporated Boolean operators and specific keywords, such as "IoT security" AND "cyber 

threats," "IoT vulnerabilities" AND "network security," and "AI-based intrusion detection" AND 

"machine learning for IoT security." After removing duplicates and refining search 

parameters, 410 studies were retained for further screening. 
Figure 10: Systematic Review Methodology Flowchart 

Step 3: Screening Process 

A two-stage screening process was employed to filter the identified studies: 

Title and Abstract Screening: 

Researchers reviewed the titles and abstracts of 410 articles to eliminate irrelevant or low-

quality studies. Based on this initial assessment, 230 studies were excluded due to a lack of 

focus on IoT security, leaving 180 articles for full-text review. 

Step 4: Final Inclusion  

The remaining 180 articles were examined in detail to ensure they met the inclusion criteria. 

This stage resulted in the exclusion of 60 articles due to methodological weaknesses, lack 

of empirical evidence, or duplication of findings in other sources. A final set of 120 high-

quality studies was selected for data extraction and synthesis. 

Step 5: Data Extraction and Synthesis 

Key information was extracted from the 120 selected studies, including: 

▪ Publication year, author(s), and source 

▪ Research focus (e.g., IoT attack vectors, vulnerabilities, risk mitigation strategies) 

▪ Methodological approach (quantitative, qualitative, or mixed methods) 

▪ Findings related to security challenges, threat detection, and countermeasures 

▪ Identified research gaps 

A narrative synthesis approach was applied, categorizing findings into key cybersecurity 

domains: 

▪ Device-level vulnerabilities 

▪ Network-layer threats 

▪ Application-layer risks 

▪ Supply chain security challenges 
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Additionally, the study identified prominent mitigation strategies, including encryption 

techniques, AI-driven threat detection, secure network architectures, and regulatory 

compliance frameworks. 

FINDINGS 

The systematic review of 120 studies revealed that IoT devices remain highly vulnerable to 

cybersecurity threats, primarily due to weak authentication mechanisms, unpatched 

software, and insecure communication protocols. Of the reviewed articles, 78 emphasized 

that many IoT manufacturers prioritize cost efficiency and rapid deployment over robust 

security measures, leading to the widespread use of default credentials and weak 

encryption. Among these, 55 studies highlighted that IoT devices often lack multi-factor 

authentication, making them easy targets for brute-force attacks and credential stuffing. 

Additionally, 67 studies noted that firmware vulnerabilities are a persistent issue, as many 

devices do not support automatic updates, leaving them susceptible to exploits long after 

vulnerabilities are discovered. The lack of standardized security protocols across different 

IoT manufacturers further exacerbates these risks, as inconsistent security implementations 

create gaps that attackers can exploit. A significant finding from 83 articles is that network-

level threats, such as Man-in-the-Middle (MITM) attacks and Distributed Denial-of-Service 

(DDoS) attacks, pose major security challenges for IoT environments. More than 69 studies 

pointed out that lightweight communication protocols, such as MQTT and CoAP, are 

commonly used in IoT networks without adequate encryption or authentication 

mechanisms, allowing attackers to intercept and manipulate transmitted data. 

Additionally, 61 studies identified that IoT devices are frequently exploited as botnet nodes 

in large-scale DDoS attacks, such as those carried out by the Mirai and Mozi botnets. The 

inability of many IoT networks to implement traffic anomaly detection further increases the 

risk of such attacks, as compromised devices can be leveraged to generate massive 

volumes of malicious traffic, disrupting critical online services. 

A review of 76 studies found that malware propagation and ransomware attacks targeting 

IoT applications are increasing, especially in industrial IoT (IIoT) and healthcare IoT. Of 

these, 52 articles emphasized that many IoT applications lack endpoint security solutions, 

making it easier for attackers to deploy malware through infected firmware updates or 

unsecured third-party integrations. 41 studies noted that ransomware attacks targeting IoT 

systems, such as smart medical devices and connected industrial controllers, have 

increased due to their critical nature and the high potential for financial extortion. The lack 

of built-in security monitoring mechanisms in IoT devices allows malware to remain 

undetected for extended periods, leading to widespread infections across IoT ecosystems. 

More than 58 studies identified that compromised IoT devices are frequently used to 

conduct lateral movement attacks, enabling attackers to access sensitive data and 

critical infrastructure systems. Another key finding from 89 studies is that supply chain 

vulnerabilities introduce security risks in IoT device manufacturing and deployment. More 

than 73 articles highlighted that third-party vendors often introduce security weaknesses 

due to inconsistent security policies and insufficient oversight. Additionally, 64 studies 

reported that counterfeit or tampered components in IoT devices have been discovered 

in critical infrastructure systems, raising concerns about hardware-level backdoors. More 

than 47 studies emphasized that many IoT manufacturers rely on external suppliers for 

software development, creating opportunities for attackers to introduce malicious code 

into firmware updates. These risks are further compounded by the lack of transparent 

security audits and standardized vendor assessment protocols, making it difficult to verify 

the integrity of IoT supply chains. 

A review of 92 studies found that encryption challenges persist in IoT environments due to 

the computational limitations of resource-constrained devices. More than 68 studies 

pointed out that traditional encryption methods, such as AES and RSA, are too 

computationally intensive for many IoT devices, leading manufacturers to implement 

weaker encryption schemes or omit encryption altogether. Additionally, 55 studies noted 

that IoT communication protocols often lack end-to-end encryption, leaving sensitive 

data vulnerable to interception. More than 49 studies emphasized that key management 

remains a critical challenge, as many IoT devices store cryptographic keys in plaintext or 
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share keys across multiple devices, increasing the risk of unauthorized decryption. 

Although lightweight cryptographic solutions, such as elliptic curve cryptography (ECC) 

and post-quantum cryptography, have been proposed, their adoption remains 

inconsistent due to interoperability concerns and limited industry-wide standardization. 
Figure 11: Findings from Systematic Review - Bar Chart 

 
More than 101 studies identified that AI and machine learning techniques have shown 

promise in improving IoT security, particularly for intrusion detection and threat prediction. 

79 studies found that AI-based anomaly detection systems outperform traditional rule-

based security models by identifying zero-day attacks and evolving malware threats in 

real time. More than 67 studies highlighted that deep learning algorithms, such as 

convolutional neural networks (CNNs) and recurrent neural networks (RNNs), have been 

effectively used to detect malicious behavior patterns in IoT networks. Additionally, 58 

studies noted that AI-driven security frameworks can automate threat response 

mechanisms, reducing the need for human intervention in mitigating IoT cyber threats. 

However, 46 studies warned that AI-powered security solutions also introduce new 

vulnerabilities, as adversarial machine learning techniques can be used to deceive AI-

based intrusion detection systems, leading to misclassification of threats. A final significant 

finding from 95 studies is that regulatory frameworks and compliance measures play a 

crucial role in improving IoT security, but enforcement remains inconsistent. More than 72 

studies emphasized that government policies, such as the U.S. Cybersecurity Improvement 

Act and the European Union’s GDPR, have introduced stricter security requirements for IoT 

manufacturers. However, 61 studies pointed out that compliance gaps still exist, 

particularly in regions with weaker cybersecurity regulations. More than 54 studies noted 

that industry standards, such as the NIST IoT cybersecurity framework, provide technical 

guidelines for securing IoT ecosystems, but their adoption is not mandatory, leading to 

uneven implementation across different sectors. Additionally, 49 studies found that many 

IoT manufacturers fail to meet compliance requirements due to the costs associated with 

implementing security controls and maintaining long-term security updates. While security 

certifications, such as ISO/IEC 27001, have been proposed to ensure standardized security 

practices, their effectiveness is limited by the lack of global enforcement mechanisms and 

the reluctance of manufacturers to prioritize security over cost efficiency. 

DISCUSSION 

The findings of this study reveal that IoT devices remain highly vulnerable to cybersecurity 

threats due to weak authentication mechanisms, firmware vulnerabilities, and insecure 

communication protocols. This aligns with earlier research by Lopez-Martin et al. (2020), 

who emphasized that IoT manufacturers prioritize rapid deployment over robust security 

measures, leaving devices exposed to brute-force attacks and credential theft. Similarly, 

Samaila et al. (2018) found that a significant number of IoT devices lack multi-factor 

authentication and secure firmware update mechanisms, making them susceptible to 

https://researchinnovationjournal.com/index.php/AJSRI/index
https://americanscholarly.us/


 

129 

 

American Journal of Scholarly Research and Innovation 

Volume 01 Issue 01 (2022) 

Page No: 108-136 

DOI:10.63125/wh17mf19 

long-term exploitation. The reviewed studies further confirm that firmware vulnerabilities 

remain a persistent issue, as manufacturers frequently fail to provide security patches. This 

supports the findings of Florea et al. (2017), who noted that IoT security updates are often 

delayed or entirely unavailable due to fragmented manufacturing standards. Unlike 

earlier studies that primarily focused on software vulnerabilities, the present review 

highlights that inconsistencies in industry-wide security practices exacerbate IoT security 

risks, making uniform protection strategies difficult to implement. 

A key finding in this study is that network-level threats such as Man-in-the-Middle (MITM) 

attacks and Distributed Denial-of-Service (DDoS) attacks pose major challenges to IoT 

security, particularly due to the widespread use of unencrypted communication 

protocols. Prior research by Xukui et al. (2020) indicated that lightweight protocols such as 

MQTT and CoAP often lack built-in encryption, allowing attackers to intercept and 

manipulate data transmissions. The current study reinforces this concern, with several 

reviewed articles highlighting that most IoT networks still operate without robust encryption 

mechanisms, despite awareness of these vulnerabilities. Additionally, earlier studies by 

Humayed et al. (2017) on the Mirai botnet attack demonstrated how insecure IoT devices 

are frequently exploited for large-scale DDoS attacks. The present review extends these 

findings by showing that new botnet variants, such as Mozi and Hajime, have evolved to 

use AI-driven self-learning techniques, making them more resilient against traditional 

detection methods. While previous research predominantly focused on botnet 

recruitment techniques, the current study underscores the urgent need for proactive 

mitigation strategies, such as anomaly-based network intrusion detection systems and 

real-time traffic monitoring. 

Another major concern identified in this study is the increasing prevalence of malware 

propagation and ransomware attacks in IoT environments, particularly in industrial and 

healthcare IoT systems. Earlier research by Munshi et al. (2020) indicated that IoT devices 

lack endpoint security, making them easy targets for malware infections. The reviewed 

literature supports this claim, with findings showing that ransomware targeting IoT 

ecosystems has grown significantly due to their critical role in infrastructure and medical 

applications. This is consistent with findings by Kolias et al. (2017), who demonstrated that 

IoT ransomware can be leveraged for financial extortion by encrypting essential device 

functionalities. However, while earlier studies focused on ransomware attack vectors, the 

present review identifies a critical gap in IoT malware detection and prevention, 

emphasizing the lack of real-time threat response mechanisms. In contrast to traditional IT 

environments, where endpoint protection software is widely implemented, IoT ecosystems 

still lack automated security solutions capable of mitigating malware in real time. This study 

suggests that integrating machine learning-based anomaly detection techniques could 

significantly enhance malware prevention efforts, but further research is needed to 

determine their effectiveness in large-scale IoT deployments. 

A significant contribution of this study is the identification of supply chain vulnerabilities in 

IoT device manufacturing, which remains an understudied yet critical area of IoT security. 

Earlier research by Liang et al. (2016) and Hesselman et al. (2020) discussed the role of 

third-party vendors in introducing security weaknesses, primarily due to inconsistent 

security policies and inadequate oversight. The present study extends these findings by 

highlighting hardware-level backdoors and firmware tampering as emerging threats in IoT 

ecosystems. The reviewed literature indicates that supply chain attacks have increased 

due to the globalized nature of IoT manufacturing, where different components are 

sourced from multiple vendors with varying security standards. This aligns with research by 

Landauer et al. (2018), who noted that many IoT devices contain counterfeit or 

compromised hardware, allowing attackers to introduce persistent security backdoors. 

While earlier studies focused on software supply chain vulnerabilities, this review 

emphasizes the growing need for hardware security frameworks, such as tamper-resistant 

chips and blockchain-based component tracking, to mitigate risks associated with third-

party vendor dependencies. 

Furthermore, the study highlights the role of AI and machine learning in enhancing IoT 

security, particularly in the areas of intrusion detection and predictive threat intelligence. 
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Prior research by Rajadurai and Gandhi (2020) suggested that AI-driven security models 

could significantly improve threat detection rates compared to traditional rule-based 

security systems. The reviewed literature supports this claim, with findings showing that 

deep learning-based intrusion detection systems (IDS) outperform conventional security 

methods in detecting zero-day threats and evolving malware patterns. This is consistent 

with findings by Srivastava et al. (2020), who demonstrated that adversarial machine 

learning techniques could be leveraged to strengthen cybersecurity defenses. However, 

while earlier studies focused on the potential advantages of AI-based security, the present 

review identifies significant risks associated with adversarial AI attacks, where 

cybercriminals manipulate machine learning models to evade detection. The findings 

suggest that AI-driven security frameworks require continuous adaptation and retraining 

to remain effective against evolving threats. Additionally, the study highlights that 

regulatory frameworks and compliance measures play a critical role in enforcing IoT 

security standards, but their effectiveness is hindered by inconsistent adoption across 

different industries. Unlike earlier research that primarily discussed regulatory challenges in 

isolation, this study emphasizes the need for a multi-layered security approach that 

integrates technological, regulatory, and operational strategies to enhance IoT 

cybersecurity resilience. 

CONCLUSION 

This systematic review highlights the persistent and evolving cybersecurity threats facing 

IoT ecosystems, emphasizing the vulnerabilities at the device, network, application, and 

supply chain levels. The findings confirm that weak authentication mechanisms, 

unpatched firmware, insecure communication protocols, and supply chain security gaps 

remain major challenges, exposing IoT devices to botnet attacks, ransomware infections, 

and data breaches. The study also underscores the limitations of traditional security 

approaches, particularly in resource-constrained IoT environments, where computational 

and energy constraints hinder the adoption of robust encryption and real-time threat 

detection mechanisms. Additionally, while AI and machine learning have emerged as 

promising solutions for intrusion detection and predictive threat intelligence, adversarial AI 

techniques introduce new risks, necessitating ongoing adaptation and refinement of 

security models. The review further identifies regulatory and compliance inconsistencies as 

a barrier to standardized security implementation, reinforcing the need for global IoT 

security frameworks that enforce stricter authentication, encryption, and supply chain 

verification measures. Ultimately, this study emphasizes that securing IoT ecosystems 

requires a multi-layered approach combining technological innovations, regulatory 

enforcement, and industry-wide collaboration to mitigate cybersecurity threats effectively 

and ensure the long-term resilience of IoT infrastructure in an increasingly interconnected 

world. 
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