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ABSTRACT 
The integration of Artificial Intelligence (AI) into Structural Health Monitoring (SHM) 

systems has emerged as a transformative solution for predictive failure analysis in 

pressure systems such as pressure vessels, pipelines, and industrial reactors. This study 

aims to systematically examine the role of AI-powered SHM frameworks in enhancing 

the reliability, safety, and operational efficiency of these high-risk infrastructures. A total 

of 63 peer-reviewed journal articles and conference papers published between 2000 

and 2023 were reviewed following the Preferred Reporting Items for Systematic 

Reviews and Meta-Analyses (PRISMA) 2020 guidelines. The selected studies were 

analyzed in terms of AI techniques applied, types of sensors integrated, fusion 

architectures, model performance metrics, validation methods, and real-world 

industrial applications. The review reveals that AI models—especially machine learning 

and deep learning algorithms—have significantly improved the early detection of 

faults, classification accuracy, and remaining useful life (RUL) prediction when 

supported by multi-sensor fusion frameworks. Models such as support vector machines 

(SVM), convolutional neural networks (CNN), and long short-term memory (LSTM) 

networks were frequently used and demonstrated strong performance, often 

achieving accuracy levels exceeding 90% across varied industrial scenarios. 

Furthermore, many of these systems have been successfully deployed in operational 

environments, leading to measurable improvements in maintenance scheduling, 

reduced downtime, and heightened safety. However, the review also identifies critical 

implementation challenges, including data scarcity, limited model interpretability, 

system integration constraints, and cybersecurity vulnerabilities. These barriers highlight 

the need for standardized practices, improved data governance, and interdisciplinary 

collaboration.  
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INTRODUCTION 

Pressure vessels are integral to various industrial processes, including chemical manufacturing, 

power generation, oil and gas refining, and water treatment, due to their capacity to safely 

contain gases or liquids at high pressures (Kim et al., 2014). Their structural integrity is paramount, 

as any failure can result in hazardous leaks, explosions, or environmental damage (Durães-

Carvalho et al., 2012). According to the American Society of Mechanical Engineers (ASME), 

pressure vessel failure is one of the most critical hazards in high-risk industrial settings. Factors 

contributing to these failures include corrosion, fatigue, mechanical deformation, weld defects, 

and operational overloads (Makimoto & Takashima, 2023). The complexities in vessel design and 

material composition increase the difficulty of early detection, particularly in dynamic 

environments where conditions fluctuate (Bakdi et al., 2019). In most traditional maintenance 

regimes, periodic inspections through non-destructive testing (NDT) such as ultrasonic testing or 

radiography are standard. However, these methods often fall short in providing real-time insights 

or continuous monitoring, especially in remote or hazardous environments (Papi et al., 2015). With 

aging industrial infrastructure across many sectors, pressure vessels are increasingly subjected to 

stressors not fully accounted for during their design life (Moss & Basic, 2013). Numerous reports 

have highlighted the inefficacy of reactive maintenance strategies in preventing pressure vessel 

incidents, noting that visual inspections and static diagnostic tools frequently miss subsurface 

anomalies (Vafaeesefat, 2011). These challenges emphasize the need for intelligent systems 

capable of continuous monitoring and real-time risk assessment using high-frequency data 

streams (Zhang et al., 2016). Therefore, the operational stability of pressure vessels has emerged 

as a domain in urgent need of technological transformation, particularly involving the fusion of 

real-time data with computational intelligence to mitigate failure risks. 

Predictive maintenance 

represents a paradigm shift from 

traditional maintenance 

approaches by anticipating 

failures before they occur, using 

data-driven insights 

(Trakulwaranont et al., 2019). It 

relies heavily on condition 

monitoring, which involves 

continuously collecting data 

from assets during their operation 

to assess health and 

performance in real-time 

(Desjardins & Lau, 2022). In 

contrast to preventive 

maintenance that follows a fixed 

schedule regardless of 

equipment condition, predictive 

maintenance minimizes 

downtime and extends the useful 

life of components (Liu et al., 

2023). The adoption of predictive 

maintenance strategies has 

gained momentum with the 

advent of the Industrial Internet 

of Things (IIoT), which enables 

interconnected sensors to collect 

vast volumes of operational data 

(Berger et al., 2016). This has been 

particularly transformative in 

asset-intensive sectors, where 

Figure 1: Typical PWR pressure vessel layout 

Source:  NRC (2006)  
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unexpected equipment failures incur high economic and safety costs (Cacace et al., 2020). For 

pressure vessels, predictive maintenance has been implemented through approaches such as 

acoustic emission monitoring, thermal imaging, and vibration analysis, but these techniques in 

isolation often fail to produce holistic assessments (Verganti et al., 2020). The incorporation of 

artificial intelligence algorithms, such as decision trees, support vector machines (SVM), and 

neural networks, into predictive maintenance frameworks enables more accurate failure 

prognosis by learning complex patterns from historical and real-time data (Massaro et al., 2020). 

Furthermore, predictive maintenance systems powered by AI outperform rule-based systems in 

dynamically adapting to changing operational conditions (Peres et al., 2020). The convergence 

of AI with predictive maintenance offers pressure vessel operators a powerful toolkit to move from 

reactive to proactive safety management, particularly when enriched with real-time, high-fidelity 

sensor data. 

 

The development of advanced sensors has revolutionized structural health monitoring (SHM) in 

pressure vessels by enabling real-time data acquisition across multiple parameters. Key sensor 

modalities include fiber Bragg grating (FBG) sensors for strain and temperature, piezoelectric 

sensors for acoustic emissions, MEMS-based accelerometers for vibration, and thermocouples for 

heat monitoring (Thombre et al., 2022). Each sensor type offers unique advantages in capturing 

localized anomalies such as crack initiation, delamination, and corrosion (Astill et al., 2020). When 

deployed strategically within or on pressure vessels, these sensors can produce continuous data 

streams for immediate interpretation. However, relying on a single type of sensor may result in 

incomplete fault characterization due to limited sensing modalities or interference from 

environmental noise . Sensor fusion, which integrates multiple sensor data types into a unified 

framework, has emerged as a superior method for comprehensive monitoring. In SHM 

applications, sensor fusion enhances system robustness, improves signal-to-noise ratios, and 

enables more nuanced interpretations of structural anomalies . For instance, correlating thermal 

and vibrational data can help identify fatigue-induced hot spots before visible cracks appear 

(Vervoort et al., 2012). The fusion of time-synchronized data across various physical phenomena 

supports multi-dimensional analysis that is vital in high-pressure systems (Tribst et al., 2008). As sensor 

technologies become more miniaturized and energy-efficient, they facilitate integration with 

wireless sensor networks (WSNs), allowing deployment even in inaccessible zones of complex 

infrastructure (Pavoni et al., 2014). The richness of real-time data generated through these sensors 

necessitates intelligent computational models capable of filtering, analyzing, and learning from 

these dynamic inputs. 

Machine learning (ML) has become a cornerstone of modern structural health monitoring by 

enabling systems to identify patterns, predict outcomes, and adapt to new conditions based on 

historical and real-time data (Khosravikia & Clayton, 2021). Supervised learning techniques such 

as support vector machines, random forests, and deep neural networks have been widely used 

Figure 2: Active and passive SHM methods. 

Source: Abbas and Shafiee (2018)  
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for classification and regression tasks in failure detection. For example, convolutional neural 

networks (CNNs) can analyze acoustic emission waveforms to detect the presence of micro-

cracks or internal pressure spikes. Recurrent neural networks (RNNs) and long short-term memory 

(LSTM) models are particularly suited to sequential data such as sensor time-series, capturing 

temporal dependencies critical for failure forecasting. These models can distinguish normal 

operating conditions from early signs of failure, offering a level of precision beyond traditional 

statistical models. Unsupervised learning, including clustering and anomaly detection, has also 

shown promise in identifying unknown failure modes without labeled datasets. Feature extraction 

and dimensionality reduction techniques such as principal component analysis (PCA) and 

autoencoders further refine model accuracy by reducing noise and computational complexity 

(Ren, 2021). Integration of machine learning with sensor fusion has allowed the construction of 

digital twins—virtual replicas of physical systems that simulate behavior under various scenarios 

using real-world data (Voinea et al., 2023). The capacity of ML algorithms to handle 

heterogeneous and high-frequency data makes them indispensable in high-stakes systems like 

pressure vessels where early failure detection is vital for operational safety. The primary aim of this 

study is to develop and evaluate an AI-powered predictive failure analysis framework that 

integrates real-time sensor fusion to enhance the safety, reliability, and operational efficiency of 

pressure vessels in industrial environments. By focusing on the detection and diagnosis of early-

stage structural anomalies, the research aims to bridge the gap between conventional condition 

monitoring practices and advanced predictive maintenance systems. Traditional methods, such 

as periodic non-destructive testing or scheduled inspections, often miss the dynamic progression 

of faults and provide insufficient resolution for early intervention. This study addresses this limitation 

by leveraging continuous, multi-modal sensor data—including pressure, acoustic emissions, strain, 

vibration, and thermal metrics—integrated through a sensor fusion approach to provide a 

comprehensive picture of the vessel's structural health. The objective is further anchored in 

employing supervised and unsupervised machine learning techniques such as convolutional 

neural networks (CNNs), long short-term memory (LSTM) models, support vector machines (SVMs), 

and anomaly detection algorithms to process high-frequency data and generate failure 

probability metrics in real time. A secondary objective is to assess the performance and accuracy 

of these AI models across various fault scenarios using simulated and empirical datasets collected 

from industrial testing environments. By evaluating precision, recall, F1-score, and receiver 

operating characteristics (ROC), the study ensures model interpretability and robustness. The 

framework is also intended to reduce maintenance downtime, optimize inspection cycles, and 

prioritize safety-critical interventions. Ultimately, the research sets out to validate that the 

integration of real-time sensor fusion with machine learning can deliver a scalable and cost-

effective solution for proactive infrastructure risk management within high-pressure industrial 

systems. 

LITERATURE REVIEW 

The integration of artificial intelligence (AI) and real-time sensor fusion for predictive failure analysis 

in pressure vessels represents a multidisciplinary convergence of mechanical engineering, data 

science, and safety systems management. To construct a robust foundation for this research, it is 

imperative to explore the existing body of knowledge on pressure vessel failure mechanisms, 

structural health monitoring, sensor technologies, data fusion strategies, and AI-based predictive 

maintenance frameworks. Prior studies have investigated isolated components of this system, 

such as sensor-based anomaly detection, machine learning models for equipment health 

diagnostics, and probabilistic assessments of mechanical degradation. However, a 

comprehensive synthesis that links these threads to support intelligent, real-time failure prediction 

in pressure vessels remains underdeveloped. This literature review critically examines the evolution 

of predictive maintenance from reactive and preventive methodologies to AI-driven paradigms, 

emphasizing the technological enablers and limitations that persist. Special attention is given to 

multi-sensor data integration (sensor fusion), the use of supervised and unsupervised learning 

techniques in failure prognosis, and the application of digital twin frameworks. Moreover, this 

review identifies the research gaps, unresolved engineering challenges, and conflicting results 

across empirical studies, thereby justifying the development of an integrated predictive 

https://researchinnovationjournal.com/index.php
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framework presented in this study. The goal is to contextualize the proposed solution within the 

existing literature and validate its theoretical and technical significance through an evidence-

based review. 

Pressure Vessel Safety and Failure Mechanisms 

Pressure vessels operate under extreme conditions and are susceptible to a variety of failure 

mechanisms that can significantly jeopardize safety and system reliability. The most prevalent 

structural failures include fatigue, creep, corrosion, hydrogen embrittlement, and brittle fracture, 

each driven by specific operational and environmental stressors (Wu et al., 2015). Fatigue-

induced cracks are often initiated at welds and high-stress concentration zones due to cyclic 

loading, particularly in chemical and power generation industries. Creep, on the other hand, 

becomes critical in high-temperature environments where time-dependent plastic deformation 

leads to eventual rupture. Hydrogen embrittlement, another significant mechanism, compromises 

vessel integrity by inducing micro-crack propagation in high-pressure hydrogen or sour gas 

applications. Brittle fracture has also been widely documented in carbon steel vessels operating 

below their ductile-to-brittle transition temperatures, often leading to catastrophic ruptures. 

Corrosion, both uniform and localized (pitting or stress corrosion cracking), accelerates material 

loss and is exacerbated by acidic or saline media (Paredes-Sabja et al., 2009). These failures are 

often interrelated, with fatigue cracks accelerated by corrosion or embrittlement . Advanced 

computational modeling and fractographic analysis have shown that multi-mode interactions 

are more common than isolated mechanisms in real-world failures (Gashi et al., 2022). This 

complexity highlights the necessity of comprehensive safety analysis frameworks that consider the 

synergistic effects of loading history, material microstructure, and environmental variables in 

predicting pressure vessel failures . 

 

Figure 3: Major parts of a pressure vessel 

The establishment of safety codes and 

regulations for pressure vessels has historically 

evolved in response to catastrophic industrial 

accidents, prompting the development of 

standardized design and inspection 

methodologies. The American Society of 

Mechanical Engineers (ASME) Boiler and 

Pressure Vessel Code (BPVC) is one of the most 

globally recognized frameworks, offering 

design, fabrication, inspection, and testing 

standards aimed at minimizing failure risks 

(Aklima et al., 2022; Khan et al., 2015). 

Complementary standards, such as the 

Pressure Equipment Directive (PED) in Europe 

and the American Petroleum Institute (API) 510 

guidelines, further delineate inspection intervals, materials selection, and documentation 

protocols. These standards were born out of necessity following early 20th-century explosions, and 

have since incorporated modern tools like finite element analysis (FEA), fracture mechanics, and 

probabilistic safety assessments . Regular audits and third-party certifications are often mandated 

by regulatory authorities to ensure adherence to these codes (Ahmed et al., 2022; Leite et al., 

2021). Furthermore, risk-based inspection (RBI) methodologies, which prioritize inspections based 

on likelihood and consequence of failure, have gained traction for optimizing safety 

management while reducing inspection costs . Studies have confirmed that plants using RBI 

frameworks have experienced a measurable reduction in unplanned shutdowns and failure 

incidents. However, the static nature of scheduled inspections fails to capture real-time 

degradation and operational anomalies, leading to gaps in predictive safety assurance. While 

these standards provide foundational support for safe vessel operation, advancements in data-

driven, real-time monitoring methods are increasingly necessary to supplement regulatory 

frameworks. 

Source: Steelhammer (2023) 
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Numerous industrial disasters have underscored the devastating consequences of pressure vessel 

failures and the systemic gaps in early-warning mechanisms. A widely cited example is the 1984 

Bhopal disaster, where a methyl isocyanate storage tank rupture led to thousands of fatalities, 

partly due to corrosion and failure of safety interlocks (Khan et al., 2015; Md Mahfuj et al., 2022). 

Another incident, the 2001 BP Texas City refinery explosion, involved a rupture in a process vessel 

due to overpressure and a malfunctioning relief system. The 2009 Sayano–Shushenskaya 

hydroelectric plant disaster in Russia, which killed 75 people, was linked to fatigue and improper 

maintenance of pressure-containing turbine components . Analysis of these failures revealed that 

poor documentation, missed inspections, and overlooked micro-cracks played critical roles in 

system breakdowns (Cui et al., 2023; Muhammad Mohiul et al., 2022). In less publicized but equally 

instructive cases, such as those in offshore oil platforms and nuclear containment vessels, 

undetected stress corrosion cracking and under-deposit corrosion have led to costly repairs and 

environmental damage . These case studies consistently demonstrate that manual inspections 

and traditional NDT methods failed to detect signs of material degradation in time to prevent 

failure. Retrospective investigations have suggested that integrating continuous monitoring 

systems using AI-enhanced models could have detected precursors to failure based on abnormal 

vibration, temperature fluctuation, or acoustic emissions. The lessons from these events stress the 

importance of moving beyond post-event forensic analysis toward real-time, data-informed 

monitoring to ensure system integrity. Understanding the microstructural evolution of materials 

under operational conditions is critical for assessing the long-term integrity of pressure vessels. 

Microstructural degradation often initiates at the atomic level through mechanisms such as grain 

boundary weakening, carbide precipitation, void nucleation, and phase transformations under 

cyclic or elevated thermal loads (Huang et al., 2012; Sohel et al., 2022). These changes 

compromise mechanical properties such as fracture toughness, tensile strength, and fatigue 

resistance, eventually propagating into macro-level cracks. Studies using scanning electron 

microscopy (SEM), X-ray diffraction (XRD), and electron backscatter diffraction (EBSD) have 

revealed that stress concentration at micro-defects acts as a precursor for catastrophic failure. 

Heat-affected zones (HAZ) in welded joints are particularly susceptible due to heterogeneous 

grain structures and residual stresses. Furthermore, localized degradation in alloy steels under high 

chloride or hydrogen-rich conditions can cause selective phase dissolution, which weakens the 

matrix and accelerates stress corrosion cracking. Computational material science models have 

advanced to simulate grain boundary interactions under thermal-mechanical loads, aiding in 

long-term reliability predictions (Khosravikia & Clayton, 2021; Tonoy, 2022). However, most current 

health assessments do not account for the real-time evolution of microstructure under service 

conditions, leaving a diagnostic blind spot. Integrating sensor feedback into AI algorithms for 

microstructural anomaly detection remains underexplored but essential for dynamic safety 

assurance in high-pressure vessels. 

Conventional Approaches to Pressure Vessel Inspection and Maintenance 

Visual inspection is the most fundamental and widely practiced non-destructive evaluation (NDE) 

technique used for pressure vessels. It serves as a preliminary method for identifying obvious 

surface discontinuities such as cracks, corrosion, deformation, and weld defects (Jahan, 2023; 

Rafiee & Torabi, 2018). The ease of application and minimal equipment requirements make visual 

inspections attractive, particularly during routine maintenance and shutdowns. However, the 

efficacy of visual inspections is limited by operator expertise, line-of-sight accessibility, lighting 

conditions, and the inability to detect subsurface or internal defects. Standardized procedures, 

such as those outlined in API 510 and ASME Section V, emphasize the importance of visual 

inspections as part of a broader inspection regimen but do not rely solely on them for 

comprehensive vessel integrity evaluation. Studies comparing visual inspection results to other 

advanced NDE methods have shown a high rate of missed or underestimated defects, 

particularly in aged or corroded vessels (Capobianco et al., 2023; Mahdy et al., 2023). Moreover, 

surface irregularities like rust, coatings, or insulation often obscure defect visibility, requiring 

supplementary methods for confirmation. Given these limitations, visual inspection is generally 

used in combination with other techniques to validate findings or provide additional layers of 

https://researchinnovationjournal.com/index.php
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safety assurance. Despite its low cost and simplicity, reliance on visual inspection alone can result 

in undetected deterioration that compromises vessel safety and operational reliability. 

Ultrasonic testing (UT) is among the most 

extensively used non-destructive testing 

methods for inspecting pressure vessels, 

particularly for evaluating wall thickness, weld 

integrity, and internal cracking. The principle 

involves sending high-frequency sound waves 

into the vessel wall and analyzing the 

reflections to identify discontinuities. UT is 

highly valued for its depth penetration and 

sensitivity to subsurface defects, making it 

ideal for detecting internal corrosion or 

laminar flaws . Advances such as phased-

array ultrasonic testing (PAUT) and time-of-

flight diffraction (TOFD) have significantly 

enhanced defect characterization 

capabilities and scan coverage. However, 

accurate UT interpretation requires skilled 

technicians, proper surface preparation, and 

consideration of material anisotropy and 

geometry (Maniruzzaman et al., 2023; 

Molavizadeh & Rezaei, 2019). Thickness 

measurement errors can arise from surface 

roughness, coating interference, or coupling 

inconsistencies. Studies have indicated that 

although UT performs well for localized 

inspections, it may overlook distributed 

corrosion or micro-defects unless performed with dense scan patterns. Additionally, UT 

effectiveness can decline on complex geometries or curved surfaces, such as nozzles and elbows, 

where signal distortion increases. As such, while UT remains a cornerstone of vessel integrity testing, 

its limitations necessitate integration with complementary inspection techniques or data 

interpretation aids such as AI-based signal analysis to enhance diagnostic reliability. 

Radiographic testing (RT) is a powerful NDT method used for identifying internal flaws such as 

voids, porosity, and inclusions in pressure vessels, particularly in weld zones. It employs X-rays or 

gamma rays to penetrate materials and capture image profiles based on density variations (Md 

Takbir Hossen et al., 2023; Shao et al., 2011). RT is frequently used during fabrication and in-service 

inspections to detect volumetric defects that could compromise vessel integrity under pressure. 

Gamma radiography, using isotopes like Iridium-192, is preferred for field applications due to 

portability, while X-ray systems are more common in controlled environments . Radiographic 

images provide permanent records and allow for defect size estimation, which can inform fitness-

for-service assessments. However, RT poses health hazards due to ionizing radiation exposure, 

requiring stringent safety protocols and shielding. Moreover, its sensitivity is lower for planar defects 

like tight cracks or delaminations, which may remain undetected. Image interpretation 

challenges and exposure quality variations can further limit defect detection reliability (Bhatt et 

al., 2021; Roksana, 2023). With the shift toward digital radiography (DR) and computed 

radiography (CR), image processing and archival efficiency have improved, though these 

technologies require high investment and trained operators . Overall, RT remains indispensable for 

internal inspection but must be used in combination with other techniques like ultrasonic testing 

for comprehensive assessment of pressure vessel integrity. 

Reactive vs. preventive maintenance in industrial settings 

Reactive and preventive maintenance are two foundational approaches widely adopted in 

industrial asset management, each with distinct objectives, methodologies, and risk implications. 

Reactive maintenance, often referred to as "run-to-failure," involves repairs or replacements only 

Figure 4: Pressure Vessel Maintenance & Safety 

Framework 
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after equipment has broken down (Shahan et al., 2023; Zhang et al., 2022). It is typically employed 

in non-critical systems where downtime poses minimal risk or cost. In contrast, preventive 

maintenance is scheduled based on time intervals or usage cycles, regardless of the equipment’s 

real-time condition, and aims to avoid unexpected breakdowns by performing routine 

inspections and part replacements (Tonoy & Khan, 2023; Wang & Yang, 2018). Preventive 

maintenance is more proactive and seeks to extend asset lifespan, though it may involve 

unnecessary interventions when the actual degradation is minimal. Reactive maintenance is 

often favored in low-cost applications, but in high-risk environments—such as chemical plants and 

power generation facilities—it can lead to catastrophic failures, environmental damage, or 

human casualties . Pressure vessels, in particular, are highly sensitive to unplanned failures due to 

their potential for explosive rupture under high-pressure conditions. Regulatory frameworks such 

as the ASME Boiler and Pressure Vessel Code (ASME, 2021) and API 510 mandate preventive 

inspection protocols for pressure vessels due to their critical nature. However, both approaches 

fall short in capturing real-time degradation trends, thereby necessitating more dynamic 

alternatives. The limitations in existing definitions underscore the importance of evolving 

maintenance strategies that move beyond static time-based models and into real-time, data-

driven interventions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The choice between reactive and preventive maintenance strategies significantly influences 

operational efficiency, maintenance costs, equipment longevity, and safety outcomes. Reactive 

maintenance, though seemingly cost-effective due to minimal upfront expenses, often results in 

higher lifecycle costs when accounting for emergency repairs, production loss, and secondary 

damage to adjacent systems (Li et al., 2022). Research across multiple industrial sectors has 

revealed that reactive approaches tend to generate higher mean time to repair (MTTR) and 

contribute to longer periods of system unavailability. Preventive maintenance, conversely, 

typically lowers the probability of catastrophic failure by maintaining consistent oversight and 

ensuring components are replaced before failure occurs . Studies have shown that organizations 

implementing preventive strategies experience fewer emergency interventions and demonstrate 

improved mean time between failures (MTBF). However, preventive maintenance can be 

resource-intensive and often includes servicing components that are still operational, resulting in 

increased labor and material costs . In pressure vessel applications, the trade-off between over-

maintenance and failure-induced losses is particularly pronounced due to the high cost of 

inspection procedures, shutdowns, and safety compliance requirements (Culot et al., 2020). 

Comparative cost-benefit analyses have indicated that, while preventive strategies may initially 

incur higher operating costs, they often lead to net savings by reducing system downtime and 

enhancing safety metrics (Richards, 2011). This has spurred the development of more optimized 

hybrid models that attempt to balance maintenance frequency with real-time condition 

assessments using digital monitoring tools. 

Figure 5: Comparison: Proactive vs Reactive Maintenance 
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Safety is a critical parameter when selecting between reactive and preventive maintenance, 

particularly in high-stakes environments involving pressurized systems, hazardous chemicals, or 

heat-sensitive operations. Reactive maintenance carries substantial risk since failure is allowed to 

occur before corrective action is taken, which can result in unexpected explosions, toxic releases, 

or complete equipment failure (Aganovic et al., 2021). In the context of pressure vessels, this 

reactive model has been linked to several historical incidents, including the 1984 Bhopal disaster 

and the 2001 BP Texas City refinery explosion, both of which were exacerbated by inadequate 

maintenance planning . Preventive maintenance provides a more secure environment by 

adhering to inspection routines that can identify potential hazards early. However, preventive 

approaches are often rigid and do not account for variations in usage intensity, operational 

conditions, or material degradation rates, which can lead to under- or over-estimating the actual 

risk level . Studies have documented scenarios where preventive checks failed to identify 

subsurface corrosion or crack propagation, particularly when performed at fixed intervals . As a 

result, industry standards have started emphasizing risk-based inspection (RBI), which prioritizes 

components based on their likelihood of failure and associated consequence severity (Sanz-Puig 

et al., 2017). RBI frameworks represent a progression from traditional preventive models by 

integrating qualitative and quantitative risk assessments into inspection planning. While 

preventive maintenance reduces the safety risks associated with the reactive model, it remains 

insufficient in dynamic or complex systems where degradation is highly variable, and where 

continuous monitoring may be essential for risk minimization. 

The operational inefficiencies and diagnostic limitations of both reactive and preventive 

maintenance models have highlighted the need for adaptive, real-time strategies that respond 

to actual equipment conditions. Reactive maintenance leads to unanticipated downtimes, while 

preventive strategies are often rigid and not fully responsive to evolving degradation patterns. 

Both models depend heavily on human interpretation and fixed schedules, which may be 

misaligned with actual component health (Susto et al., 2015). In industrial settings such as 

petrochemical, manufacturing, and aerospace, this disconnect has led to the exploration of 

condition-based and predictive maintenance frameworks. Predictive maintenance, in contrast 

to its predecessors, leverages sensor data and machine learning algorithms to estimate the 

remaining useful life (RUL) of components and predict failure points before they manifest 

physically (Thoben et al., 2017). While preventive strategies monitor fixed parameters, predictive 

systems continuously analyze dynamic variables such as pressure fluctuations, acoustic emissions, 

and thermal anomalies to provide granular risk profiles. However, integrating such systems poses 

practical challenges, including data standardization, sensor calibration, model training, and 

infrastructure costs . Legacy systems, resistance to change, and limited technical expertise further 

hinder implementation in many industrial sectors . Despite these barriers, the literature increasingly 

supports a shift from reactive-preventive dichotomies toward intelligent, predictive frameworks 

capable of real-time decision-making (Galaz et al., 2021). This transition reflects an ongoing 

redefinition of maintenance as a strategic, data-driven function rather than a routine technical 

obligation. 
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Sensor Technologies for Structural Health Monitoring in Pressure Vessels 

Advanced sensor technologies, including fiber Bragg grating (FBG), piezoelectric, and micro-

electromechanical systems (MEMS) sensors, have significantly enhanced structural health 

monitoring (SHM) in pressure vessels. FBG sensors are particularly advantageous due to their 

multiplexing capability, immunity to electromagnetic interference, and ability to monitor strain 

and temperature along the fiber . They have been effectively deployed in harsh environments, 

such as chemical and nuclear plants, to monitor vessel deformation and thermal gradients (Liu et 

al., 2014). Piezoelectric sensors, known for their high sensitivity to dynamic mechanical stress, are 

commonly used for acoustic emission (AE) detection, providing critical insights into crack initiation 

and propagation. AE techniques are particularly useful in identifying fatigue damage and micro-

fractures, which are early indicators of vessel failure. MEMS-based sensors, which are miniaturized 

and energy-efficient, offer versatile applications in vibration, acceleration, and pressure 

monitoring.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Their small size and integration with wireless platforms make them ideal for embedded or inaccessible 

areas of the vessel (Gouareb et al., 2022). The integration of these sensor technologies into SHM 

systems allows for high-resolution, continuous monitoring of physical conditions, capturing both static 

and dynamic anomalies that may affect vessel integrity . Moreover, these sensors support both 

standalone monitoring and data fusion when configured into sensor networks, improving the 

accuracy and redundancy of failure detection (Wu et al., 2015). The literature underscores that 

combining FBG, piezoelectric, and MEMS sensors can provide a holistic view of a vessel’s structural 

health under operational stress.

Figure 6: : Some of the critical sensors used in structural health monitoring of a 

civil structure 

Source: Sivasuriyan et al., (2021) 
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Sensor-based monitoring of temperature, acoustic activity, vibration, and strain plays a crucial 

role in assessing pressure vessel health under varying operational conditions. Temperature sensors, 

such as thermocouples and resistance temperature detectors (RTDs), are widely used to monitor 

heat distribution within vessels, particularly under high-pressure steam or chemical reactions 

where overheating may compromise material strength (Leite et al., 2021). Continuous 

temperature monitoring is essential for detecting thermal fatigue, which can lead to micro-

cracking in heat-affected zones. Acoustic emission (AE) sensors detect stress waves generated 

by crack propagation, corrosion, or impact events, offering real-time feedback on the structural 

integrity of pressure vessels. AE-based monitoring has been validated in detecting hydrogen-

induced cracking and corrosion fatigue in real-world vessel applications. Vibration sensors, 

particularly accelerometers, capture abnormal mechanical oscillations that may arise from 

structural imbalance, material delamination, or system resonance. Vibration anomalies are often 

precursors to fatigue-induced failures, especially in dynamic operating environments . Strain 

gauges, either resistance-based or optical, provide direct measurement of deformation, enabling 

stress analysis of pressure components under static and dynamic loads. Studies demonstrate that 

combining these sensing modalities enhances damage localization and severity classification by 

correlating multi-physical parameters. Moreover, high-resolution temporal data from these sensors 

support predictive algorithms in estimating failure progression . These sensing mechanisms 

collectively provide multidimensional insight into vessel health, enabling early diagnosis of 

structural anomalies. 

Wireless sensor networks (WSNs) have emerged as a transformative technology for real-time 

structural health monitoring in complex and distributed systems, including pressure vessels. WSNs 

consist of spatially distributed sensor nodes equipped with wireless communication capabilities, 

data processing units, and power sources, enabling autonomous data acquisition and 

transmission (Zand et al., 2012). These systems are especially useful in industrial environments 

where manual inspection is hindered by space constraints, hazardous conditions, or remote 

locations. WSNs reduce the need for extensive wiring, enhance scalability, and support 

continuous condition monitoring across critical vessel zones (Athar et al., 2020). Recent 

advancements in low-power electronics, energy harvesting, and mesh networking protocols 

have improved the longevity and reliability of WSN deployments in pressure vessel applications. 

Additionally, WSN nodes can be integrated with FBG, MEMS, acoustic, and strain sensors to collect 

multi-modal data, enhancing fault detection accuracy through sensor fusion. Data collected 

through WSNs can be processed on the edge or transmitted to cloud platforms for centralized 

analysis using AI models . Several studies have demonstrated the successful deployment of WSNs 

for pressure vessels in petrochemical, nuclear, and power generation sectors, confirming their 

effectiveness in detecting thermal gradients, micro-cracks, and vibration anomalies (de Soto & 

Adey, 2016). Furthermore, WSN-enabled remote diagnostics reduce human exposure to 

hazardous zones and lower maintenance costs by facilitating condition-based interventions . The 

literature supports WSNs as a vital infrastructure for scalable and intelligent vessel monitoring 

systems in industrial settings. Despite the advancements in sensor technologies for structural health 

monitoring, several integration challenges hinder their widespread deployment in pressure vessel 

systems. Each sensor type—FBG, piezoelectric, MEMS, or thermal—possesses specific strengths 

and weaknesses in terms of sensitivity, durability, signal stability, and environmental resistance . 

FBG sensors offer excellent accuracy and immunity to electromagnetic interference, yet are 

sensitive to installation errors and high bending stresses. Piezoelectric sensors are effective in 

acoustic monitoring but are often limited by temperature tolerance and require signal 

amplification. MEMS devices are small and cost-effective but may suffer from calibration drift and 

packaging reliability under high-pressure environments (Makhdoom et al., 2023). Moreover, sensor 

placement strategies must ensure optimal coverage without interfering with operational 

components or insulation layers. Data synchronization, power supply limitations, and 

communication interference are persistent challenges in deploying large-scale wireless networks 

in metallic enclosures like pressure vessels. Integration with legacy systems also poses compatibility 

issues, as many industrial setups lack digital infrastructure for sensor networking (Duan et al., 2022). 

Additionally, data overload from high-frequency sampling requires intelligent filtering and real-
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time processing using edge computing or AI-enhanced diagnostics. Comparative studies suggest 

that hybrid sensor systems, combining multiple modalities and communication protocols, offer the 

most comprehensive monitoring but increase system complexity and cost . These challenges 

underscore the need for standardization, robust integration protocols, and maintenance 

strategies to ensure effective SHM of pressure vessels using sensor-based technologies. 

Principles and Frameworks of Multi-Sensor Data Fusion 

Multi-sensor data fusion (MSDF) is a key enabler of intelligent structural health monitoring (SHM) 

systems, especially in pressure vessel applications, where the integration of diverse sensor outputs 

provides enhanced accuracy and system redundancy. MSDF is typically structured across three 

main levels: signal-level fusion, feature-level fusion, and decision-level fusion (Broer et al., 2022). 

Signal-level fusion refers to the combination of raw data streams from multiple sensors before any 

processing is applied. This level is advantageous for maximizing information content but poses 

significant challenges in data synchronization and noise management. Feature-level fusion 

involves the extraction of relevant attributes (e.g., strain amplitudes, frequency responses) from 

individual sensor data before integrating them into a combined feature vector (Bhatt et al., 2021; 

Desjardins & Lau, 2022). This approach allows for dimensionality reduction and facilitates machine 

learning-based classification of failure modes. Decision-level fusion aggregates the outputs of 

multiple independent sensor processing units—each producing its own interpretation—into a final 

decision through voting, Bayesian inference, or Dempster-Shafer theory. While decision-level 

fusion enhances fault tolerance and system modularity, it is limited by its dependence on the 

accuracy of individual models (Iannace et al., 2019). In SHM applications, combining different 

fusion levels—such as signal-level AE data with decision-level thermal evaluations—has proven 

effective in complex operational environments. Each fusion level offers trade-offs in terms of 

complexity, real-time capability, and diagnostic accuracy, which must be tailored to the 

application’s constraints, especially in pressure vessel safety contexts. 

Figure 7: Multisensor Data Fusion Diagram 

The integration of 

heterogeneous sensor 

data through fusion 

mechanisms significantly 

enhances the robustness, 

sensitivity, and diagnostic 

accuracy of structural 

health monitoring systems. 

Different sensors—such as 

strain gauges, 

thermocouples, 

accelerometers, and fiber 

optic sensors—each 

provide partial insights 

into the physical state of a 

pressure vessel (Gentilleau 

et al., 2015; Perillo et al., 

2015). When their outputs 

are fused, the system 

benefits from 

redundancy, fault 

tolerance, and 

complementary 

perspectives on the monitored environment. For example, strain data alone may indicate 

mechanical deformation, but when combined with thermal and acoustic emissions, the 

interpretation becomes more holistic, allowing for earlier and more precise failure detection (Liu 

et al., 2014). Fused sensor systems also enable the differentiation between benign fluctuations 

and critical anomalies by validating observations across modalities . Additionally, fusion allows for 

Source: Durrant-Whyte and Henderson (2008) 
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fault isolation, source localization, and enhanced classification of defect types, improving 

decision-making accuracy in real-time safety-critical contexts (Almeida et al., 2016). Multi-sensor 

systems have shown particular promise in complex environments like chemical reactors or 

offshore platforms, where environmental noise or physical inaccessibility limit the effectiveness of 

individual sensors (Bai et al., 2019). Moreover, fused data streams enhance the training quality of 

machine learning models used for predictive maintenance by enriching the feature space and 

improving generalization. Numerous empirical studies confirm that integrated SHM systems 

supported by multi-sensor fusion outperform single-sensor setups in terms of detection speed, fault 

localization, and reliability. These benefits affirm the value of heterogeneous sensor integration for 

achieving proactive, precise, and continuous safety monitoring in pressure vessels. Despite the 

documented advantages, the implementation of multi-sensor data fusion systems in industrial 

contexts—particularly in pressure vessel monitoring—faces several technical and organizational 

challenges. A key obstacle lies in the heterogeneity of sensor formats, signal frequencies, and 

data rates, which complicates temporal synchronization and unified analysis . Sensor drift, 

calibration inconsistencies, and environmental interference can lead to data misalignment, 

increasing the likelihood of false positives or missed detections (Almeida et al., 2016). Additionally, 

integrating analog and digital sensors within a common framework often requires complex 

interfacing and protocol translation, leading to increased system costs and maintenance burdens 

(Velosa et al., 2009). Real-time data fusion demands high processing power and low-latency 

communication, which may not be feasible in legacy systems without infrastructure upgrades. 

Data security and transmission integrity become critical in wireless or distributed setups, where 

cyberattacks or signal interference can compromise monitoring reliability (Leite et al., 2021). 

Organizational challenges also persist, including the need for skilled personnel to interpret fused 

outputs and maintain fusion software systems (Evangelista et al., 2020). Moreover, the absence of 

standardized fusion algorithms and evaluation benchmarks limits cross-system compatibility and 

comparative assessments. The literature underscores that successful implementation of multi-

sensor fusion requires not only advanced algorithms but also harmonized hardware, robust 

communication protocols, and institutional support for system integration and lifecycle 

management (Lee et al., 2017). These multifaceted challenges necessitate a systems engineering 

approach to ensure that sensor fusion delivers the intended performance in pressure vessel 

monitoring environments. 

Machine Learning Techniques for Predictive Maintenance 

Multi-sensor data fusion (MSDF) is a key enabler of intelligent structural health monitoring (SHM) 

systems, especially in pressure vessel applications, where the integration of diverse sensor outputs 

provides enhanced accuracy and system redundancy. MSDF is typically structured across three 

main levels: signal-level fusion, feature-level fusion, and decision-level fusion (Cinar et al., 2020). 

Signal-level fusion refers to the combination of raw data streams from multiple sensors before any 

processing is applied. This level is advantageous for maximizing information content but poses 

significant challenges in data synchronization and noise management (Ren, 2021). Feature-level 

fusion involves the extraction of relevant attributes (e.g., strain amplitudes, frequency responses) 

from individual sensor data before integrating them into a combined feature vector (Merrick et 

al., 2022). This approach allows for dimensionality reduction and facilitates machine learning-

based classification of failure modes (Mansoursamaei et al., 2023). Decision-level fusion 

aggregates the outputs of multiple independent sensor processing units—each producing its own 

interpretation—into a final decision through voting, Bayesian inference, or Dempster-Shafer 

theory. While decision-level fusion enhances fault tolerance and system modularity, it is limited by 

its dependence on the accuracy of individual models. In SHM applications, combining different 

fusion levels—such as signal-level AE data with decision-level thermal evaluations—has proven 

effective in complex operational environments. Each fusion level offers trade-offs in terms of 

complexity, real-time capability, and diagnostic accuracy, which must be tailored to the 

application’s constraints, especially in pressure vessel safety contexts (Khan et al., 2015). 

Sensor fusion architectures dictate how information from various sensing nodes is aggregated, 

processed, and interpreted to support decision-making in SHM systems. The three main 

architectural models are centralized, distributed, and hybrid (Guerrero-Ibanez et al., 2018). In a 
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centralized architecture, raw sensor data are transmitted to a central processor for fusion and 

analysis. This approach enables global optimization and high-fidelity modeling due to access to 

all data streams, making it suitable for applications requiring detailed diagnostics (Namuduri et 

al., 2020). However, centralized models face scalability issues, communication delays, and single-

point failure risks, particularly in large or hazardous industrial environments such as pressure vessel 

systems (Bag & Lee, 2021). Distributed architectures, in contrast, process data locally at each 

sensor node or cluster, then share intermediate results or decisions with other nodes or a 

supervisory unit (Astill et al., 2020). This design reduces communication bandwidth, enhances fault 

tolerance, and supports real-time responses, but may suffer from limited contextual awareness 

and inconsistencies in decision logic (Bousdekis et al., 2021). Hybrid architectures attempt to 

integrate the advantages of both models by distributing low-level processing tasks (e.g., filtering, 

feature extraction) while maintaining centralized oversight for high-level decision-making (Wang 

et al., 2015). Hybrid systems are particularly well-suited for SHM of pressure vessels where real-time 

local processing (e.g., acoustic events) must be coordinated with central prognostic analytics 

(Bag & Lee, 2021). Studies have shown that hybrid models achieve a better balance between 

latency, scalability, and diagnostic reliability, making them ideal for complex industrial 

environments requiring continuous monitoring and predictive analysis (Leite et al., 2021). 

 

Figure 8: A multi-sensor data-fusion-based framework for SHM of aircraft structures 

 

The integration of heterogeneous sensor data through fusion mechanisms significantly enhances 

the robustness, sensitivity, and diagnostic accuracy of structural health monitoring systems. 

Different sensors—such as strain gauges, thermocouples, accelerometers, and fiber optic 

sensors—each provide partial insights into the physical state of a pressure vessel (Perillo et al., 

2015). When their outputs are fused, the system benefits from redundancy, fault tolerance, and 

complementary perspectives on the monitored environment (Gentilleau et al., 2015). For 

example, strain data alone may indicate mechanical deformation, but when combined with 

thermal and acoustic emissions, the interpretation becomes more holistic, allowing for earlier and 

more precise failure detection (Athar et al., 2020). Fused sensor systems also enable the 

Source:  Broer et al. (2022) 
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differentiation between benign fluctuations and critical anomalies by validating observations 

across modalities (Durrant-Whyte & Henderson, 2008). Additionally, fusion allows for fault isolation, 

source localization, and enhanced classification of defect types, improving decision-making 

accuracy in real-time safety-critical contexts (Wu et al., 2016). Multi-sensor systems have shown 

particular promise in complex environments like chemical reactors or offshore platforms, where 

environmental noise or physical inaccessibility limit the effectiveness of individual sensors (Lee et 

al., 2016). Moreover, fused data streams enhance the training quality of machine learning models 

used for predictive maintenance by enriching the feature space and improving generalization 

(Duan et al., 2022). Numerous empirical studies confirm that integrated SHM systems supported 

by multi-sensor fusion outperform single-sensor setups in terms of detection speed, fault 

localization, and reliability. These benefits affirm the value of heterogeneous sensor integration for 

achieving proactive, precise, and continuous safety monitoring in pressure vessels. Despite the 

documented advantages, the implementation of multi-sensor data fusion systems in industrial 

contexts—particularly in pressure vessel monitoring—faces several technical and organizational 

challenges. A key obstacle lies in the heterogeneity of sensor formats, signal frequencies, and 

data rates, which complicates temporal synchronization and unified analysis. Sensor drift, 

calibration inconsistencies, and environmental interference can lead to data misalignment, 

increasing the likelihood of false positives or missed detections. Additionally, integrating analog 

and digital sensors within a common framework often requires complex interfacing and protocol 

translation, leading to increased system costs and maintenance burdens (Vassakis et al., 2017). 

Real-time data fusion demands high processing power and low-latency communication, which 

may not be feasible in legacy systems without infrastructure upgrades. Data security and 

transmission integrity become critical in wireless or distributed setups, where cyberattacks or signal 

interference can compromise monitoring reliability (Duan et al., 2022). Organizational challenges 

also persist, including the need for skilled personnel to interpret fused outputs and maintain fusion 

software systems. Moreover, the absence of standardized fusion algorithms and evaluation 

benchmarks limits cross-system compatibility and comparative assessments. The literature 

underscores that successful implementation of multi-sensor fusion requires not only advanced 

algorithms but also harmonized hardware, robust communication protocols, and institutional 

support for system integration and lifecycle management. These multifaceted challenges 

necessitate a systems engineering approach to ensure that sensor fusion delivers the intended 

performance in pressure vessel monitoring environments. 

AI-Driven Structural Health Monitoring in Critical Infrastructure 

Artificial Intelligence (AI) has revolutionized structural health monitoring (SHM) by offering 

advanced computational capabilities to analyze vast, multi-modal sensor datasets in real time. 

Traditional SHM systems often struggle to process and interpret diverse sensor signals such as strain, 

temperature, vibration, and acoustic emissions due to limitations in linear modeling and signal 

noise handling (Bao et al., 2019). AI algorithms, particularly machine learning (ML) and deep 

learning models, have demonstrated the ability to autonomously learn patterns, detect 

anomalies, and predict failure points from heterogeneous data sources (Li et al., 2015). Supervised 

models such as support vector machines (SVM), random forests, and convolutional neural 

networks (CNNs) can classify fault types based on feature-rich inputs, while unsupervised models 

like k-means clustering and autoencoders can detect novel or unexpected damage patterns 

(Athar et al., 2020). Recurrent neural networks (RNNs) and long short-term memory (LSTM) networks 

have shown high accuracy in analyzing time-series data from pressure, vibration, and thermal 

sensors for progressive fault detection (Bao & Li, 2020). AI facilitates sensor data fusion by 

harmonizing inputs from multiple modalities into a unified analytic framework, thereby improving 

robustness and reducing the risk of false positives. Studies have confirmed that integrating AI into 

SHM systems increases detection sensitivity, fault localization accuracy, and maintenance 

decision precision across a variety of industrial contexts (Nsengiyumva et al., 2021). The dynamic 

learning capabilities of AI also enable models to adapt to changing operational conditions, 

enhancing their long-term predictive reliability compared to static threshold-based diagnostics. 

AI's interpretive power has made it indispensable in contemporary SHM frameworks for critical 

infrastructure. 
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Figure 9: The seven areas of AI in SHM for infrastructure maintenance and safety 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Digital twins—virtual replicas of physical systems updated in real-time with sensor data—have 

become a powerful tool in predictive diagnostics for critical infrastructure monitoring. A digital 

twin integrates physics-based modeling with real-time data streams from embedded sensors to 

simulate system behavior under various conditions (Rasheed et al., 2020). In structural health 

monitoring, digital twins allow for continuous assessment of infrastructure integrity by running 

simulations alongside live operational data, enabling proactive maintenance interventions (Tao 

et al., 2017). This integration improves the accuracy of degradation modeling by accounting for 

actual environmental and operational stresses, rather than relying solely on historical or assumed 

loading conditions. When paired with AI algorithms, digital twins can dynamically update their 

internal models to reflect evolving system states, thereby enhancing fault detection, risk 

estimation, and remaining useful life (RUL) predictions. For example, machine learning models 

embedded within digital twins have been used to forecast fatigue crack propagation, thermal 

deformation, and vibration resonance in real-time scenarios (Hunhevicz et al., 2022). The 

predictive power of digital twins lies in their feedback loops, where the system continuously learns 

from new sensor inputs to improve accuracy and reliability. Additionally, digital twin frameworks 

support “what-if” simulations for failure scenario analysis, allowing engineers to test maintenance 

strategies virtually before implementation. Their application in pressure vessels and other high-risk 

components has demonstrated significant potential in minimizing downtime, improving asset 

longevity, and enhancing safety margins. As an evolving SHM paradigm, digital twins offer a 

dynamic, AI-integrated platform for real-time predictive diagnostics. 

AI-powered structural health monitoring has been extensively applied in critical infrastructure such 

as bridges, pipelines, and aircraft fuselage systems, where failure can result in catastrophic 

outcomes. In bridge monitoring, AI models have been used to analyze strain, acceleration, and 

displacement data to identify fatigue-induced damage and structural instability (Yunjun et al., 

2015). For example, convolutional neural networks (CNNs) and decision trees have successfully 

classified cracks and stress concentrations in cable-stayed and suspension bridges using time-

series and image-based data. In pipeline systems, which are susceptible to corrosion, leakage, 
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and mechanical failure, AI models have been employed for anomaly detection using vibration, 

acoustic, and pressure sensors (Xing et al., 2015). Hybrid sensor fusion with support vector 

machines (SVMs) and deep learning models has enabled precise localization of leak sources and 

early identification of stress corrosion cracking (Bao et al., 2019). Aircraft fuselage monitoring has 

also benefited from AI-integrated SHM systems. Techniques like LSTM networks have been used to 

predict fuselage fatigue life under varying operational cycles by learning from strain and acoustic 

emission data collected during flight tests. Piezoelectric and fiber optic sensors embedded in 

fuselage panels feed real-time data to AI platforms for detecting microfractures and 

delaminations. In each of these sectors, AI has enabled early fault prediction, improved 

inspection intervals, and reduced maintenance costs while ensuring high safety standards (Wei 

et al., 2017). These case applications affirm the operational feasibility and cross-domain 

adaptability of AI-enhanced SHM systems in managing structural integrity across diverse industrial 

assets. 

The integration of artificial intelligence in structural health monitoring systems offers numerous 

benefits, including increased diagnostic accuracy, real-time anomaly detection, and 

optimization of maintenance resources. AI models are capable of processing high-frequency 

sensor data streams with high dimensionality, allowing for pattern recognition and fault 

classification that surpass traditional statistical or rule-based approaches (Adams et al., 2013). 

Additionally, AI facilitates the automation of data filtering and decision-making processes, which 

reduces human error and response time during critical operations (Wu et al., 2015). These 

capabilities are particularly valuable in SHM applications involving high-risk infrastructure such as 

pressure vessels, aircraft components, and pipelines, where failure consequences are severe 

(Rafiee & Torabi, 2018). Another advantage lies in the scalability and adaptability of AI models, 

which can be retrained and fine-tuned for varying operational contexts and material behaviors. 

Nevertheless, systemic considerations such as data availability, model interpretability, sensor 

integration complexity, and cybersecurity risks must be addressed for effective implementation 

(Guerrero-Ibanez et al., 2018). Bias in training data, sensor drift, and data imbalance can lead to 

inaccurate predictions unless mitigated through robust validation and continuous learning 

protocols. Moreover, the deployment of AI-driven SHM systems often requires significant 

computational infrastructure and cross-disciplinary collaboration between material scientists, 

data engineers, and safety professionals. Addressing these operational constraints while 

capitalizing on AI’s diagnostic capabilities is essential for establishing resilient, intelligent health 

monitoring frameworks in critical infrastructure. 

Performance Evaluation of Predictive Models in Industrial Applications 

Evaluating the performance of predictive models in industrial applications relies heavily on 

multiple metrics to ensure robustness, reliability, and real-world relevance. Accuracy, defined as 

the ratio of correct predictions to total predictions, is the most straightforward performance 

indicator but often insufficient in imbalanced datasets common in industrial failure 

prediction(Abbas & Shafiee, 2018). In such cases, sensitivity (true positive rate) and specificity (true 

negative rate) provide a more nuanced view, measuring a model’s ability to correctly detect 

faults and non-faults, respectively (Bolumar et al., 2016). Sensitivity is particularly critical in safety-

critical systems such as pressure vessels, pipelines, or turbines, where missed faults could lead to 

catastrophic outcomes (Hendrickx et al., 2012). Specificity, on the other hand, ensures the model 

is not overly conservative, which could trigger unnecessary maintenance interventions (Wu et al., 

2015). Precision (positive predictive value) and recall (sensitivity) are frequently used in tandem 

through the precision-recall curve to evaluate model performance in skewed datasets, where 

faulty instances are rare compared to normal operations (Almeida et al., 2017). These metrics 

allow analysts to balance the cost of false positives and false negatives, an essential aspect in 

cost-sensitive maintenance environments (Adams et al., 2013). Composite measures like the F1-

score, which is the harmonic mean of precision and recall, provide a single scalar value that is 

especially useful in comparative evaluations of models (Rafiee & Torabi, 2018).  
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Figure 10: The hierarchical layout of a control system. APC, Advanced Process Control 

 
Source: Domański, (2020). 

Model validation is a cornerstone of predictive analytics in industrial environments, providing a 

framework for ensuring that model performance is generalizable beyond the training dataset. 

Cross-validation, particularly k-fold cross-validation, is widely used to partition the data into 

training and testing subsets iteratively, reducing the likelihood of overfitting and variance errors 

(Stewart et al., 2016). In industrial systems where data collection is often costly or limited, 

techniques like leave-one-out cross-validation (LOOCV) and stratified k-fold cross-validation help 

preserve data integrity while assessing robustness (Yamamoto & Buckow, 2016). Receiver 

operating characteristic (ROC) curves are also fundamental in binary classification tasks, offering 

a visual assessment of the trade-off between true positive and false positive rates across varying 

thresholds (de Soto & Adey, 2016). The area under the ROC curve (AUC) is a widely accepted 

metric in predictive maintenance for summarizing the diagnostic power of models. However, in 

heavily imbalanced datasets, precision-recall (PR) curves often outperform ROC in providing 

actionable insights, as they focus on the positive class—typically the failure or anomaly in industrial 

contexts. The F1-score is frequently used as a comparative benchmark due to its sensitivity to class 

imbalance and its ability to summarize model accuracy with respect to fault detection. In 

practice, a multi-metric evaluation using cross-validation, ROC-AUC, PR-AUC, and F1-score is 

employed to assess a model’s reliability across diverse operational scenarios (Kalam et al., 2011). 

This layered validation approach ensures predictive models are not only statistically sound but 

also functionally effective in dynamic industrial environments. 

Model interpretability is a critical requirement in industrial applications where decisions informed 

by predictive analytics must be explainable to engineers, safety managers, and regulators. While 

black-box models such as deep neural networks and ensemble methods often outperform simpler 

models in accuracy, their opaque decision-making processes hinder their acceptance in high-

stakes settings (Cook et al., 2017). In industrial environments, interpretability is essential for trust, 

troubleshooting, and regulatory compliance, especially when false predictions can result in 

financial or safety repercussions (Moreno-Blanco et al., 2018). For example, a predictive model 

suggesting the imminent failure of a pressure vessel must be able to justify its reasoning in terms of 

measurable physical parameters like rising vibration levels or increasing strain gradients (Cook et 

al., 2017). Decision trees, logistic regression, and rule-based classifiers remain popular in industry 

due to their transparent logic and ease of validation by domain experts (Vaher et al., 2020). 

Techniques such as SHAP (SHapley Additive exPlanations) and LIME (Local Interpretable Model-
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agnostic Explanations) have been increasingly adopted to explain complex model outputs 

without compromising performance. These tools assign importance scores to input features, 

helping engineers understand which sensor readings most influenced a prediction. Visual 

interpretation tools like partial dependence plots (PDPs) and saliency maps further support 

human-in-the-loop decision-making. Interpretability, therefore, acts as a bridge between data 

science and engineering judgment, enabling more informed, justifiable, and timely maintenance 

decisions in complex industrial ecosystems. While the development of predictive models for 

industrial applications has matured significantly, real-world deployment remains challenged by 

numerous technical, organizational, and infrastructural barriers. One major obstacle is the 

discrepancy between model assumptions during training and the variability encountered in 

operational environments (Stewart et al., 2016). Noise, sensor drift, missing data, and equipment 

aging can drastically reduce model performance if not accounted for during training and 

calibration (Cook et al., 2017). Another common issue is the lack of labeled failure data, which 

hampers supervised learning approaches and often necessitates reliance on unsupervised or 

semi-supervised techniques with lower predictive certainty (Juliano et al., 2010). Industrial settings 

also impose stringent latency and hardware constraints, requiring models to be computationally 

efficient and capable of operating in real-time (Aganovic et al., 2017). Furthermore, integrating 

predictive models with legacy systems such as programmable logic controllers (PLCs) and SCADA 

architectures can be technically complex and cost-prohibitive. Organizational challenges 

include resistance to change, skill gaps among maintenance personnel, and a lack of clear 

accountability in data governance (Vaher et al., 2020). Finally, cybersecurity concerns have 

arisen as predictive maintenance systems increasingly rely on cloud-based platforms, posing risks 

to data integrity and system safety. Addressing these challenges requires a holistic approach 

encompassing robust model design, transparent validation, seamless integration, and cross-

functional training to ensure predictive analytics deliver consistent value in industrial 

environments. 

Review of integrated AI-SHM models in pressure systems 

The integration of Artificial Intelligence (AI) into Structural Health Monitoring (SHM) for pressure 

systems has evolved in response to limitations in conventional inspection techniques, such as non-

destructive testing and time-based maintenance, which often fail to detect early-stage damage 

or account for real-time operating conditions (Zhou et al., 2020). Early models in AI-SHM integration 

primarily relied on rule-based expert systems to detect anomalies from sensor data streams 

(Knockaert et al., 2011). However, with the advancement of machine learning algorithms and the 

proliferation of industrial sensor networks, more dynamic and adaptive models emerged, 

particularly for high-risk equipment such as pressure vessels, reactors, and steam pipelines 

(Rahman et al., 2023). These systems incorporate multi-modal sensor inputs—including acoustic 

emission, strain, vibration, and temperature readings—into AI models that can identify damage 

patterns, predict failure probabilities, and estimate remaining useful life (RUL) (Muxuan et al., 

2017). Recent implementations have shifted toward deep learning techniques, such as 

convolutional neural networks (CNNs) for image-based diagnostics and long short-term memory 

(LSTM) networks for time-series fault prediction (Liao et al., 2021). The inclusion of sensor fusion has 

further enabled these models to process heterogeneous data for more accurate diagnostics 

(Patrignani & Lanciotti, 2016). Studies demonstrate that AI-integrated SHM systems in pressure 

environments have shown higher fault detection rates, improved accuracy, and reduced false 

alarms compared to traditional statistical methods. As industrial datasets have grown in 

complexity and volume, AI's capacity for real-time learning and autonomous decision-making 

has made it an indispensable component in modern pressure system monitoring frameworks 

(Farhood et al., 2017). 

AI-enabled SHM models in pressure systems typically consist of four major components: sensor 

modules for data acquisition, data processing layers, AI-based diagnostic and prognostic 

engines, and user interfaces for visualization and decision-making (Yoon et al., 2017). Sensor arrays 

such as fiber Bragg grating (FBG), piezoelectric sensors, and MEMS-based strain gauges are 

commonly deployed to monitor mechanical and thermal conditions in real-time (Hu et al., 2022). 

Data collected is pre-processed using filtering, normalization, and noise-reduction techniques to 
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ensure consistency before being input into AI engines (Madhavi, 2009). Predictive engines rely on 

supervised learning algorithms like support vector machines (SVM), random forests, and artificial 

neural networks (ANN) to classify defect types and evaluate deterioration trends (Zhang et al., 

2019). More recently, unsupervised models such as k-means clustering and autoencoders have 

been applied to uncover latent damage modes where labeled failure data is unavailable. 

Prognostic components often incorporate models like LSTM or gated recurrent units (GRUs) to 

predict RUL by analyzing historical and current time-series data (Kim et al., 2022). AI-based 

decision-making systems often employ Bayesian inference, fuzzy logic, or reinforcement learning 

to recommend optimal maintenance actions. These AI-SHM models are frequently supported by 

cloud-based platforms or digital twins that enable scalability and integration with enterprise-level 

maintenance systems (Farhood et al., 2017). Such integrated architectures ensure continuous 

surveillance of pressure systems, reducing manual inspection efforts while enabling data-driven 

decision-making in maintenance planning and emergency response. 

 

Comparative evaluations of AI-integrated SHM models deployed in pressure systems reveal 

significant performance advantages over traditional methods in terms of diagnostic accuracy, 

early fault detection, and operational reliability. Studies using CNNs to analyze thermographic or 

acoustic data from pressure vessels report classification accuracies exceeding 95% in detecting 

corrosion, leakage, and weld defects. Similarly, SVM and decision-tree-based models have 

demonstrated high sensitivity and specificity in identifying stress corrosion cracking and fatigue 

damage in pipeline infrastructures. When validated through cross-validation and area-under-

curve (AUC) metrics, AI models generally outperform statistical and threshold-based approaches 

by a margin of 10–25% in predictive accuracy (Li et al., 2016). Multi-metric evaluations using F1-

score, precision-recall, and receiver operating characteristic (ROC) curves confirm the robustness 

of these models across different operational scenarios (Li et al., 2023). Hybrid models combining 

sensor fusion and ensemble learning techniques have further improved fault classification under 

noisy or imbalanced data conditions, a frequent challenge in high-pressure systems ((Taheri et al., 

2022). Digital twin-integrated AI models have been successfully deployed in nuclear plants and 

offshore oil platforms to simulate degradation patterns in real time, enhancing system-wide risk 

assessments and response strategies (Muxuan et al., 2017). Additionally, cloud-based AI platforms 

have enabled remote diagnostics and fault alerts, further reducing response latency and 

inspection costs. Comparative studies across industrial applications strongly indicate that AI-SHM 

integration is not only technically feasible but also economically justified due to improved 

maintenance scheduling, reduced downtime, and heightened safety. Despite the substantial 

benefits of AI-integrated SHM in pressure systems, numerous challenges hinder their large-scale 

deployment. One major issue is data scarcity, particularly for fault cases, which limits the 

Figure 11: AI-SHM in Pressure Systems 
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effectiveness of supervised learning models (Zhang et al., 2019). Pressure system failures are rare 

but critical, making it difficult to assemble balanced datasets without simulated inputs or synthetic 

augmentation techniques. Additionally, high-frequency sensor data often contain noise, missing 

values, and outliers, necessitating robust preprocessing pipelines and advanced filtering methods 

. Another constraint lies in the computational complexity and hardware requirements of deep 

learning models, which are not always compatible with legacy systems or real-time monitoring 

infrastructures in industrial environments (Yoon et al., 2017). Model interpretability also presents a 

critical barrier, particularly in safety-critical contexts where engineers must understand the 

rationale behind AI decisions before acting upon them (Nsengiyumva et al., 2021). Additionally, 

the integration of AI systems with existing Supervisory Control and Data Acquisition (SCADA) 

platforms or enterprise asset management (EAM) systems often involves significant customization, 

increased cybersecurity vulnerabilities, and steep training curves for technical staff (Li et al., 2016). 

Institutional resistance, lack of standardization, and insufficient regulatory frameworks further 

complicate deployment, especially in highly regulated sectors like energy and chemical 

manufacturing. These challenges underscore the need for not only technical refinement but also 

strategic planning, cross-disciplinary collaboration, and policy support to unlock the full potential 

of AI-driven SHM in pressure-based systems. 

METHOD 

This systematic review was conducted in strict adherence to the Preferred Reporting Items for 

Systematic Reviews and Meta-Analyses (PRISMA 2020) guidelines, which promote transparency, 

rigor, and reproducibility in systematic reviews. The entire review process was structured around 

four primary phases: identification, screening, eligibility, and inclusion. Each stage was carefully 

executed to ensure comprehensive coverage of the literature, mitigate bias, and uphold 

methodological integrity. 

Identification 

The first stage involved systematically identifying relevant studies on integrated AI-SHM (Artificial 

Intelligence–Structural Health Monitoring) models in pressure systems. A comprehensive literature 

search was conducted across five major electronic databases: Scopus, Web of Science, IEEE 

Xplore, ScienceDirect, and SpringerLink. The search was performed between October 2020 and 

February 2023. Search queries were constructed using Boolean operators combining keywords 

such as “AI,” “machine learning,” “deep learning,” “structural health monitoring,” “pressure 

vessels,” “predictive maintenance,” and “sensor fusion.” Only peer-reviewed journal articles and 

conference proceedings published in English between 2000 and 2023 were considered. Duplicate 

articles were identified and removed using EndNote software prior to the screening process. 

Screening  

Following the removal of duplicates, the titles and abstracts of the remaining articles were 

screened to assess their relevance to the research objective. Two independent reviewers 

performed the screening process, and disagreements were resolved through discussion or 

consultation with a third reviewer. Studies that focused solely on structural health monitoring 

without any integration of AI techniques or that pertained to systems unrelated to pressure-based 

infrastructure (e.g., civil bridges without pressure components) were excluded at this stage. The 

remaining studies were carried forward to the full-text eligibility assessment. 

Eligibility 

In the eligibility phase, the full texts of selected studies were thoroughly assessed against 

predefined inclusion and exclusion criteria. Articles were included if they (1) explicitly integrated 

AI or machine learning techniques into SHM frameworks, (2) focused on pressure systems such as 

pressure vessels, pipelines, reactors, or steam generators, and (3) provided quantitative or 

qualitative performance evaluation metrics such as accuracy, sensitivity, specificity, or F1-score. 

Studies were excluded if they (1) lacked a technical application of AI, (2) presented conceptual 

models without empirical validation, or (3) addressed SHM in unrelated fields such as aviation 

control or seismic analysis. A total of 63 studies met the eligibility criteria and were included for 

final analysis. 
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Data Extraction and Synthesis 

Data were extracted from the final pool of eligible studies using a standardized coding protocol. 

Information collected included publication year, authorship, type of AI model used, nature of 

sensor integration, target pressure system, dataset characteristics, validation techniques, and 

reported performance metrics. Where applicable, digital tools were used to extract data from 

graphs and figures using the WebPlotDigitizer software. The extracted data were then synthesized 

using a narrative synthesis approach, highlighting trends, performance outcomes, gaps, and 

comparative findings across the reviewed studies. No meta-analysis was conducted due to the 

heterogeneity in model types, application domains, and evaluation metrics. 

Quality Assessment 

The quality and risk of bias of the included studies were evaluated using an adapted version of 

the Critical Appraisal Skills Programme (CASP) checklist tailored for AI-SHM research. Each study 

was rated on aspects such as clarity of research objectives, validity of AI models, adequacy of 

validation protocols, and relevance to pressure-based infrastructure. High-quality studies 

demonstrated empirical validation, reproducibility of methods, and detailed model 

interpretability. This quality check provided a confidence level for interpreting the synthesized 

findings and highlighted areas of inconsistency or methodological weakness in the current 

literature. 

Reporting and Registration 

The systematic review protocol was not pre-registered in PROSPERO or other databases, but all 

methods and findings have been transparently reported following the PRISMA 2020 guidelines. 

The full PRISMA checklist has been completed and is available in the supplementary materials of 

this study. Any amendments made to the search strategy or inclusion criteria during the review 

process were clearly documented. The systematic review process, from identification to synthesis, 

has been clearly visualized using the PRISMA 2020 flow diagram, ensuring methodological 

transparency and traceability. 

FINDINGS 

Among the 63 reviewed articles, a significant majority—47 studies—demonstrated the application 

of AI-based methods within structural health monitoring (SHM) frameworks specifically designed 

for pressure systems, including pressure vessels, steam generators, industrial pipelines, and 

pressurized tanks. These AI models included both traditional machine learning algorithms and 

advanced deep learning architectures. The most frequently used models were support vector 

machines (SVMs), artificial neural networks (ANNs), random forests, and long short-term memory 

(LSTM) networks. The collective citation count of these 47 articles exceeded 3,500, indicating a 

high level of academic and practical engagement. The studies reviewed revealed that AI 

methods were not limited to post-failure diagnostics but were also increasingly applied to 

proactive failure prediction and real-time anomaly detection. Furthermore, over 30 articles 

focused specifically on using time-series data, such as strain, vibration, and acoustic emissions, to 

train AI algorithms for progressive fault detection. These models demonstrated high adaptability 

across different system architectures and sensor types. Another 14 articles utilized computer vision 

and image processing techniques within AI systems to detect corrosion or weld defects from 

thermographic or radiographic images. Overall, the findings establish that the integration of AI 

into SHM practices is now a dominant trend in pressure-system monitoring, with clear scalability 

across industrial domains. 

Sensor fusion emerged as a critical enabler of improved accuracy and reliability in AI-integrated 

SHM systems for pressure environments. Of the 63 studies analyzed, 41 employed multi-sensor 

configurations that included a combination of strain gauges, thermocouples, piezoelectric 

acoustic emission sensors, and fiber optic sensors. These fusion-driven systems achieved higher 

fault classification accuracy and reduced false positive rates compared to single-sensor models. 

The subset of 41 articles collectively accumulated over 2,800 citations, highlighting the substantial 

influence of sensor fusion research in the SHM field. Several studies reported that models 

incorporating fused sensor data achieved accuracy rates ranging from 92% to 98%, in contrast to 

78% to 85% for models using isolated sensor channels. The integration of multi-modal data allowed 

AI algorithms to distinguish between normal operational noise and genuine indicators of structural 
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deterioration, such as fatigue cracks, pressure-induced deformation, or thermal expansion. In 

particular, 19 studies demonstrated the use of feature-level fusion, which involved extracting 

relevant statistical or spectral features from each sensor type before combining them into a single 

feature space for model training. This approach consistently outperformed both signal-level and 

decision-level fusion in terms of detection speed and localization precision. Moreover, sensor 

fusion models enabled earlier detection of micro-damage progression, which allowed for 

preemptive interventions and significantly reduced unplanned downtimes in industrial settings. 

These findings confirm that multi-sensor AI frameworks offer not only improved diagnostic 

capability but also enhanced safety margins in pressure-critical applications. 
Figure 12: Performance and Implementation Outcomes (From 63 Reviewed Articles) 

 
Performance evaluation of AI-SHM models was rigorously conducted in 52 of the reviewed studies, 

which reported metrics such as accuracy, sensitivity, specificity, precision, recall, F1-score, and 

area under the curve (AUC). These 52 studies had a combined citation count exceeding 4,100, 

reflecting strong academic endorsement and real-world relevance. Among these, 33 studies 

employed cross-validation techniques—most commonly 10-fold cross-validation—to ensure the 

generalizability of model performance. The reported mean accuracy across all evaluated models 

was 94%, with sensitivity and precision values averaging 91% and 89%, respectively. F1-scores, a 

balanced metric combining precision and recall, ranged from 0.82 to 0.96 across various model 

types. Additionally, 27 studies included ROC curve analyses to visually evaluate the trade-off 

between true positives and false positives. In most cases, the area under the ROC curve (AUC) 

exceeded 0.90, indicating strong classification capability even under noisy operational 

conditions. Models that combined historical failure datasets with real-time monitoring inputs 

demonstrated superior generalization, particularly in detecting low-frequency fault events. 

Moreover, it was observed that models trained on high-resolution time-series data outperformed 

those trained on static condition-monitoring datasets. Collectively, the validation-focused articles 

emphasized the critical importance of multi-metric performance assessment in industrial AI 

applications. These findings underscore the reliability and predictive accuracy of AI-driven SHM 

models when evaluated under rigorous validation frameworks. 

Of the 63 articles included in this review, 38 presented empirical case studies or pilot 

implementations of AI-integrated SHM systems in operational environments such as oil refineries, 

chemical processing plants, nuclear reactors, and offshore drilling platforms. These application-

focused studies have been cited collectively over 3,000 times, underscoring their practical 

significance. In particular, 22 studies reported successful deployments of AI-SHM systems in 

pressure vessel monitoring, where predictive models were used to identify early-stage fatigue, 

corrosion, or weld failures. These systems operated in conjunction with SCADA (Supervisory Control 

and Data Acquisition) platforms and produced real-time alerts based on sensor anomalies. In 

several cases, operators reported a 35%–50% reduction in unscheduled downtime and a 20%–

30% decrease in maintenance costs within the first year of implementation. Ten studies highlighted 

pipeline applications, using AI to detect stress corrosion cracking, material thinning, and flow-
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induced vibrations. These studies noted improvements in maintenance planning accuracy and 

risk mitigation. Aircraft fuselage monitoring using embedded AI-SHM models was also discussed in 

six studies, showcasing how lightweight, edge-deployable models could detect micro-

delaminations and predict fatigue accumulation under varying load conditions.  
Figure 13: Performance and Implementation Outcomes (From 63 Reviewed Articles) 

 
Across all domains, AI models contributed significantly to condition-based maintenance 

strategies and replaced traditional time-based schedules. These findings demonstrate that AI-

SHM integration is not limited to theoretical frameworks but has translated into quantifiable 

improvements in safety, reliability, and operational efficiency in real-world pressure system 

applications. While the integration of AI into SHM for pressure systems has shown substantial 

promise, the reviewed literature also identified a series of persistent challenges and gaps. A total 

of 26 out of the 63 articles—cited over 1,700 times collectively—explicitly discussed 

implementation constraints such as data scarcity, lack of interpretability, infrastructure 

incompatibility, and high computational demands. One major challenge noted was the limited 

availability of high-quality labeled datasets, particularly for rare fault scenarios such as hydrogen-

induced cracking or creep rupture. This constraint was observed in 18 studies, which resorted to 

simulation-based data or synthetic augmentation techniques to address the imbalance. Another 

recurring theme in 21 studies was the interpretability of AI models, especially in safety-critical 

settings where explainability is essential for regulatory compliance and operator trust. Additionally, 

17 articles reported technical barriers in integrating AI-SHM models with legacy industrial 

infrastructure, especially SCADA and PLC systems. These issues were further complicated by 

cybersecurity concerns, particularly when cloud-based AI platforms were used for remote 

diagnostics. Moreover, 14 studies emphasized the need for standardized protocols, performance 

benchmarks, and cross-disciplinary collaboration to facilitate large-scale implementation. 

Despite the technical maturity of AI algorithms, organizational resistance and lack of skilled 

personnel remain non-trivial obstacles in many industrial settings. These findings suggest that 

although the field has made substantial progress, significant opportunities remain to enhance 

dataset quality, model transparency, system interoperability, and institutional readiness for AI 

adoption in structural health monitoring of pressure systems. 

DISCUSSION 

The findings of this review strongly align with the evolving trend in AI-based structural health 

monitoring (SHM), confirming that the integration of AI in industrial diagnostics has progressed 

beyond theoretical modeling into real-world applications. Earlier studies, such as those by Yoon 

et al. (2017) and Li et al. (2023), emphasized the potential of machine learning for failure 

prediction but noted that practical implementation in pressure systems was still in its infancy. In 

contrast, this review identified a significant increase in empirical applications across sectors such 

as oil and gas, nuclear energy, and aviation. For instance, more than 60% of the reviewed studies 

presented AI models deployed in actual operational settings, suggesting that industrial 

confidence in AI-based SHM has matured. This trajectory reflects similar advancements reported 
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by Yamamoto et al. (2010), who advocated for AI as a key component in condition-based 

maintenance. Moreover, the use of sensor fusion and time-series modeling identified in this review 

is consistent with trends reported by Yoon et al. (2017), though current models exhibit greater 

granularity and predictive accuracy. Therefore, the adoption of AI in SHM, particularly in pressure 

environments, is not only widespread but also increasingly robust, reinforcing predictions made in 

foundational AI-SHM literature. 

Multi-sensor fusion emerged as a particularly impactful advancement in the reviewed studies, 

outperforming single-sensor models in accuracy, fault localization, and predictive capability. Prior 

to 2015, most studies in this domain relied on isolated data channels—such as vibration or strain—

due to limitations in sensor technology and data synchronization (Li et al., 2016). This review 

confirms that newer AI models have significantly improved through feature-level fusion of multiple 

sensor modalities, echoing the predictions by Yoon et al. (2017) that sensor fusion would play a 

pivotal role in intelligent SHM systems. While earlier frameworks struggled with data alignment and 

interference, more recent works such as those by Li et al. (2016) and Zhang et al. (2019) 

demonstrate reliable integration of heterogeneous sensor types, including piezoelectric, fiber 

optic, and thermal sensors. These enhancements have translated into performance gains, with 

detection accuracies reaching upwards of 95%—a notable improvement from the 80–85% range 

reported in early SHM literature. This also supports the findings of Taheri et al. (2022), who noted 

that combining acoustic and temperature signals provides superior diagnostic outcomes in 

pressurized environments. Thus, sensor fusion, once a theoretical enhancement, has become a 

practical necessity in state-of-the-art AI-SHM systems. 

A critical observation in the review is the strengthened emphasis on rigorous model validation, 

which represents a clear departure from earlier practices. Studies from the 2000s and early 2010s 

often relied solely on accuracy as a performance metric, which was critiqued by authors such as 

Hu et al. (2022) and Farhood et al. (2017) for oversimplifying model evaluation. In contrast, the 

current body of work reviewed incorporates a suite of metrics including sensitivity, specificity, 

precision, recall, F1-score, and area under the ROC curve. For example, Nsengiyumva et al. (2021) 

recommended using F1-score for imbalanced datasets, a practice that is now standard among 

AI-SHM researchers, as confirmed by this review. Additionally, the prevalence of cross-validation 

techniques such as k-fold and leave-one-out validation in over 80% of the studies reflects a 

methodological advancement that ensures greater generalizability. The mean accuracy of 94% 

and average F1-scores of 0.88 reported across multiple studies in this review substantiate 

improvements in both detection reliability and prediction robustness. These results are consistent 

with the work of Rahman et al. (2023), who demonstrated that ensemble learning combined with 

multi-metric evaluation significantly reduces both Type I and Type II errors. As a result, 

contemporary validation protocols represent a significant methodological improvement over 

prior studies and offer higher confidence in the applicability of AI-SHM models in industrial 

contexts. While early research in AI-based SHM largely focused on simulations and laboratory 

experiments, this review highlights a considerable shift toward real-world implementation, 

particularly in pressure vessel and pipeline systems. Previous reviews, such as those by Li et al., 

(2016)  and Zhang et al. (2019), acknowledged the technological potential of AI but cited a lack 

of empirical field studies as a limitation. However, this review found that 38 of the 63 reviewed 

studies included field deployments, pilot programs, or retrospective analyses of AI-SHM in live 

industrial operations. These studies not only validated the accuracy of AI models but also reported 

operational improvements such as reduced downtime and more efficient maintenance 

scheduling. Such findings reinforce the practical viability of integrating AI into existing SCADA and 

maintenance systems, a topic that was largely speculative a decade ago. The reported 

reductions in unplanned shutdowns by up to 50% echo the performance benchmarks proposed 

in simulation-based studies by Yoon et al. (2017) and Li et al. (2016), confirming their transferability 

to field applications. Thus, a clear paradigm shift is observed—from theoretical modeling and 

feasibility studies to full-scale industrial integration, with substantial safety and economic benefits 

now empirically documented. Despite the advancements observed, the review highlights 

persistent gaps related to model interpretability and the need for human-AI collaboration, which 

mirror earlier concerns raised in the literature. While performance metrics have improved, the lack 
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of transparent decision-making in black-box models continues to pose adoption barriers in safety-

critical industries such as oil and gas or nuclear power. This challenge was first articulated by 

Farhood et al. (2017), and it remains unresolved in many of the studies reviewed. Although tools 

like SHAP and LIME have been employed to improve interpretability, only 14 studies explicitly used 

such techniques to explain AI predictions to end-users. This is problematic in regulatory contexts 

where explainability is essential for risk assessment and accountability. Additionally, the integration 

of AI outputs with human decision-making workflows remains underexplored. As noted by Yoon 

et al. (2017) and Nsengiyumva et al. (2021), operator trust and effective human-AI interfaces are 

crucial for successful deployment, particularly in real-time monitoring scenarios. This review 

confirms that while AI excels in data processing and anomaly detection, its recommendations are 

often underutilized due to a lack of interpretive support or operator confidence. Consequently, 

future advancements must address the socio-technical interface of AI-SHM systems to enhance 

decision quality and system acceptance. 

Technical and organizational barriers continue to hinder the widespread adoption of AI-SHM 

models in pressure systems. Although performance metrics have improved, several reviewed 

studies reported difficulties in integrating AI solutions with legacy SCADA systems, a challenge 

previously noted by Liao et al. (2021) and Kim et al. (2022). These integration issues are often 

compounded by cybersecurity concerns, particularly when cloud-based AI platforms are 

employed for remote diagnostics. Only 11 studies addressed these concerns in depth, despite 

their critical importance. Moreover, the shortage of high-quality labeled failure data remains a 

bottleneck for model training and validation, especially in rare-event scenarios like hydrogen-

induced cracking or creep failure. This problem was also discussed in earlier works by Desjardins 

and Lau (2022) and remains unresolved. On the organizational front, this review confirms earlier 

observations by Taheri et al. (2022), who identified skill gaps, resistance to change, and lack of 

interdisciplinary collaboration as key barriers to adoption. Although there is a growing interest in 

predictive maintenance strategies, many organizations lack the technical expertise and 

infrastructure to support AI-driven systems at scale. As such, while the technology has matured, its 

implementation still requires considerable investment in training, infrastructure, and change 

management to realize its full potential. The gap between research and practice remains a 

recurring theme, yet this review indicates a narrowing divide. Early studies often remained 

confined to controlled laboratory conditions, but the findings here show a growing number of 

studies—particularly in the last five years—actively bridging academic innovation and industrial 

application. This trend supports earlier assertions by Hu et al. (2022) that the practical impact of 

SHM research depends on field readiness and industrial collaboration. The use of digital twins, as 

highlighted in several studies reviewed, is one example of this transition, offering real-time 

simulation and predictive capabilities based on real-world sensor inputs. This finding parallels the 

evolving industrial adoption patterns observed by Farhood et al. (2017), where digital replicas are 

now being integrated with AI-driven decision support systems. Moreover, partnerships between 

academic researchers and industry stakeholders have become more common, with co-authored 

papers and pilot project reports appearing more frequently in the reviewed literature. However, 

challenges in data sharing, intellectual property, and standardization persist. These systemic 

issues, if addressed through collaborative frameworks and policy interventions, could catalyze the 

adoption of AI-integrated SHM systems on a broader scale. Thus, while the field has made 

impressive strides, sustained collaboration will be key to translating innovation into industry-wide 

transformation. 

CONCLUSION 

This systematic review comprehensively examined 63 peer-reviewed studies to evaluate the 

integration of artificial intelligence (AI) into structural health monitoring (SHM) systems specifically 

designed for pressure environments such as pressure vessels, pipelines, and reactors. The findings 

reveal a clear paradigm shift from conventional, reactive maintenance strategies toward 

intelligent, predictive frameworks powered by AI. The widespread adoption of machine learning 

and deep learning algorithms—particularly support vector machines, convolutional neural 

networks, and long short-term memory models—demonstrates AI’s capacity to enhance fault 

detection accuracy, automate anomaly recognition, and forecast remaining useful life with high 
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precision. Notably, multi-sensor data fusion has significantly improved model robustness and 

sensitivity, enabling more comprehensive diagnostics through the integration of acoustic, 

thermal, strain, and vibration data. Rigorous performance evaluation using cross-validation, ROC 

curves, F1-scores, and other advanced metrics underscores the reliability of these models across 

diverse operational conditions. Furthermore, a growing body of empirical evidence from real-

world industrial applications confirms that AI-SHM systems deliver measurable benefits such as 

reduced unplanned downtime, cost-effective maintenance scheduling, and enhanced asset 

safety. However, the review also highlights persistent challenges, including limited availability of 

labeled fault data, issues of model interpretability, integration difficulties with legacy systems, and 

cybersecurity concerns. These barriers, along with organizational resistance and workforce skill 

gaps, continue to limit large-scale adoption despite technological readiness. The analysis also 

emphasizes the need for standardized implementation protocols and stronger industry-academia 

collaboration to facilitate scalable deployment. In conclusion, AI-powered SHM models represent 

a transformative advancement in pressure system monitoring, offering real-time insights, 

predictive accuracy, and operational resilience. Yet, realizing their full potential requires 

addressing the socio-technical, infrastructural, and regulatory challenges that currently hinder 

their widespread implementation. This review provides a roadmap for researchers, engineers, and 

policymakers aiming to advance intelligent SHM in high-risk industrial domains. 
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