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 Abstract 

This systematic review investigates AI-ready data engineering pipelines by analyzing 106 
studies published between 2010 and 2022, focusing on Medallion Architecture, cloud-
native integration models, metadata management, and lakehouse infrastructure. 
Following PRISMA guidelines, sources were retrieved from IEEE Xplore, Scopus, Web of 
Science, ScienceDirect, and Google Scholar. The review examines key architectural 
strategies, integration patterns, and governance mechanisms that support scalable and 
explainable AI workflows. Medallion Architecture was discussed in 42 studies, 
highlighting its tiered bronze-silver-gold design that supports modular transformations 
and data traceability. Case studies demonstrated reduced redundancy, enhanced 
reproducibility, and compatibility with MLOps practices, making it well-suited for use 
cases in fintech, retail, and predictive maintenance. Cloud-native tools such as AWS Glue, 
Azure Data Factory, and GCP Dataflow appeared in 58 articles. These platforms support 
real-time orchestration, autoscaling, and serverless execution. Studies reported a 30% 
reduction in deployment time when pipelines leveraged containerization, low-code 
orchestration, and cloud-native storage systems. Multi-cloud and hybrid models were 
noted for addressing data sovereignty, latency, and vendor lock-in concerns. Metadata 
and data lineage were central to 39 studies, which emphasized the importance of schema 
versioning, transformation tracking, and audit readiness. Tools like Apache Atlas, 
Amundsen, and Microsoft Purview were shown to enhance model explainability and 
reproducibility, reducing audit time and enabling ethical AI deployment. Thirty-six 
studies focused on lakehouse platforms such as Delta Lake and Apache Hudi. These 
systems combined the scalability of data lakes with the reliability of warehouses, enabling 
schema-on-read, real-time feature updates, and versioned data snapshots across training 
and serving pipelines. However, 31 studies noted challenges including metadata 
inconsistency in multi-region setups, storage overhead from versioning, and 
organizational gaps in MLOps responsibilities. These findings underscore the need for 
integrated governance, standardized roles, and cross-functional collaboration. 
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INTRODUCTION 
Data engineering pipelines are systematic processes for ingesting, processing, storing, and 
delivering data for analytical or operational use. These pipelines transform raw data into 
structured formats, typically through stages of extraction, transformation, and loading (ETL), 
supporting various downstream applications including business intelligence, reporting, and 
machine learning (Wilson & Tian, 2006). In the context of artificial intelligence (AI), the concept 
of AI-readiness in data engineering encompasses additional criteria such as low-latency delivery, 
real-time analytics, reproducibility, and model retraining compatibility (Quej-Ake et al., 2020). 
AI-ready pipelines must maintain both the integrity and usability of datasets over time, enabling 
consistent feature generation, robust validation, and seamless MLOps integration (Al-Kindi et al., 
1992). With increasing data heterogeneity and volume, engineering solutions must support 
unstructured, semi-structured, and structured datasets across batch and streaming environments 
(Zajam et al., 2019). This has led to the rise of modular architectures and workflow orchestration 
tools that decouple ingestion from transformation and delivery phases (Zhitluhina et al., 2007). 
These capabilities are not only technically beneficial but also internationally significant as 
organizations adopt global data strategies that require scalable, multi-region data processing 
(Kim et al., 2010). For example, cross-border healthcare analytics and AI-driven financial systems 
demand compliance-aware, reproducible, and secure data flows (Mayilvaganan & Sabitha, 2013). 
Thus, AI-readiness is not merely a technical criterion but a strategic necessity in competitive and 
regulatory environments worldwide. 
 

Figure 1: Medallion Architecture: Layered Data Refinement Model for AI-Ready Pipelines 

 
 
The Medallion Architecture, conceptualized as a layered data refinement model, addresses data 
quality and accessibility through bronze, silver, and gold stages (Al-Barqawi & Zayed, 2006). The 
bronze layer represents raw, ingested data, often stored as append-only logs. The silver layer 
cleanses, deduplicates, and integrates datasets, while the gold layer offers curated, aggregated, 
and analytics-ready datasets for AI or business applications (Kovacs et al., 2020). This approach 
aligns with data lakehouse principles, bridging the rigidity of data warehouses and the flexibility 
of data lakes (Lu et al., 2019). The architecture promotes schema evolution, lineage tracking, and 
incremental processing—elements that are critical in AI workflows requiring consistent and 
explainable input features (Rice et al., 2010). The Medallion model has been adopted globally in 
sectors ranging from retail to genomics, demonstrating its utility in regulated and dynamic 
environments alike (Barbian & Beller, 2012). International institutions such as the OECD and 
World Bank emphasize layered data maturity in digital transformation frameworks, 
underscoring the architecture’s policy relevance (Camerini et al., 2018). Furthermore, its 
compatibility with distributed systems like Apache Spark, Delta Lake, and cloud-native object 
storage (Khodayari-Rostamabad et al., 2009) makes it a practical standard in enterprise-scale AI 
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adoption (Agletdinov et al., 2016). By structuring data into maturity zones, Medallion 
Architecture facilitates testing, compliance, and AI model governance. Its modular nature also 
allows for interoperability across platforms, a key enabler for multinational digital infrastructure 
and federated data analysis (Shen et al., 2019). 
 

Figure 2: Cloud-Based Integration and Metadata Management for AI-Ready Data Pipelines 

 
 
Cloud-based integration models provide the elasticity, scalability, and availability necessary for 
modern data engineering pipelines, especially when preparing data for AI use cases (Torrione et 
al., 2006). Cloud platforms such as Amazon Web Services (AWS), Microsoft Azure, and Google 
Cloud Platform (GCP) offer native integration tools—AWS Glue, Azure Synapse, GCP 
Dataflow—that support ETL, orchestration, and real-time analytics in distributed environments 
(Ji et al., 2017). These services abstract infrastructure concerns and support automatic scaling, 
facilitating high-throughput ingestion and concurrent transformations (Priyanka et al., 2021). 
Integration models can be categorized into cloud-native, hybrid, and multi-cloud, each offering 
unique benefits. Cloud-native pipelines are cost-efficient and fast to deploy, while hybrid models 
enable on-premises compliance and data sovereignty (Zhang et al., 2017). Multi-cloud strategies 
enhance fault tolerance and geographic flexibility (Liu & Kleiner, 2013). These attributes are 
crucial in international projects like COVID-19 genomic surveillance and global financial risk 
assessment, where data sources span jurisdictions (Tokognon et al., 2017). Integration layers also 
incorporate service meshes, API gateways, and event-driven architectures (EDA) to manage the 
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flow of data securely and intelligently (Tant et al., 2018). Cloud-based integration provides 
inherent support for MLOps, containerization, and CI/CD pipelines—key components in the AI 
lifecycle (Wisner et al., 2019). These capabilities make cloud integration models indispensable in 
building scalable, AI-ready data pipelines across industries and borders. 
The effectiveness of AI-ready pipelines depends on rigorous metadata management and data 
lineage capabilities that ensure interpretability, traceability, and governance (Al-Kindi et al., 
1992). Metadata—contextual information about data’s origin, transformations, and usage—is 
foundational in automated decision-making and model validation (Ahn et al., 2019). In the 
Medallion Architecture, metadata is generated and refined at each layer, allowing downstream 
AI models to verify input quality and detect drift (Kuruvila et al., 2018). Tools such as Apache 
Atlas, Amundsen, and Microsoft Purview are widely adopted to visualize data lineage and 
monitor access controls (Ossai, 2020). These tools comply with data protection regulations like 
GDPR and CCPA, which mandate explainability and auditability of personal data use (Yazdani 
et al., 2014). In cloud-native contexts, lineage and metadata must also accommodate dynamic 
resource scaling and ephemeral compute nodes, which increase complexity (Ghosh et al., 2018). 
Standardization frameworks from the ISO/IEC and the W3C have emphasized metadata 
schemas for AI governance (Alamri, 2020). Moreover, the integration of data catalogs and AI 
feature stores enables reproducibility and version control—vital for AI ethics and regulatory 
compliance (Guo et al., 2020). In international applications like cross-border digital identity 
verification or precision agriculture, strong metadata frameworks enable interoperability and 
trust (Li et al., 2020). Thus, metadata and lineage mechanisms are not ancillary; they are 
foundational to AI-readiness in any scalable data pipeline. 
The data lakehouse paradigm—combining the schema management and performance of data 
warehouses with the flexibility of data lakes—forms the structural core of Medallion 
Architectures and AI-ready pipelines (Zakikhani et al., 2020). Unlike traditional architectures, 
lakehouses allow storage and processing of structured, semi-structured, and unstructured data 
within a unified platform, thus streamlining training data acquisition and feature engineering for 
AI models (Xie & Tian, 2018). Apache Delta Lake, Apache Hudi, and Iceberg are leading 
implementations that provide ACID transactions, schema enforcement, and time travel—features 
essential for trustworthy AI (Hawari et al., 2020). These tools integrate with Apache Spark, Flink, 
and ML platforms like MLflow, enabling batch and stream processing across the same data 
substrate (Pesinis & Tee, 2017). This integration enhances support for model retraining, drift 
detection, and continual learning—core to adaptive AI systems (Lu et al., 2020). In global 
operations such as autonomous logistics and remote sensing, lakehouse architectures offer 
flexibility while ensuring traceability and auditability of training datasets (Priyanka et al., 2018). 
Furthermore, the lakehouse approach reduces duplication of storage and computation, lowering 
total cost of ownership (TCO) for AI infrastructure (Priyanka et al., 2021). Its adaptability is 
critical for enterprises that operate across regions with heterogeneous data regulations and 
processing needs (Heidary et al., 2020). Consequently, the data lakehouse is not just a 
performance enhancement; it is a strategic enabler of global, scalable AI pipelines. 
The objective of this systematic review is to comprehensively examine the structural, functional, 
and operational dimensions of AI-ready data engineering pipelines, with a particular emphasis 
on the Medallion Architecture and its integration within cloud-based data ecosystems. The 
review aims to synthesize existing literature that elucidates how these pipelines are architected, 
deployed, and scaled to support artificial intelligence workloads across various industries and 
international contexts. Specifically, the study investigates the design principles underpinning the 
Medallion Architecture—including its tiered data refinement structure (bronze, silver, gold)—
and how it aligns with modern data governance, lineage tracking, and machine learning 
operations (MLOps) practices. It also evaluates cloud integration strategies that facilitate 
elasticity, security, and compliance in AI data workflows. By focusing on this intersection, the 
review addresses a critical gap in scholarly and technical discourse: the lack of consolidated 
knowledge on how layered data architecture and cloud-native integrations jointly optimize AI 
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pipeline readiness, scalability, and auditability. The review further seeks to classify and compare 
tools, platforms, and methodologies—including Apache Spark, Delta Lake, Azure Synapse, AWS 
Glue, and Google Dataflow—that operationalize these concepts in enterprise settings. Moreover, 
the review explores metadata management, real-time processing, schema evolution, and the role 
of the lakehouse paradigm in harmonizing structured and unstructured data for model training 
and inference. An ancillary objective is to evaluate the international relevance of these 
architectural models in regulated environments such as healthcare, finance, and public sector 
analytics, where data sovereignty and privacy laws add complexity to AI-readiness. The study’s 
methodology includes a multi-database search strategy, inclusion/exclusion criteria, and 
thematic synthesis, ensuring rigor and reproducibility. Ultimately, the goal is to produce a 
conceptual and practical roadmap for researchers, engineers, and policymakers seeking to 
implement resilient, AI-capable data engineering infrastructures that are globally compliant and 
technically robust. 
LITERATURE REVIEW 
In the era of data-intensive computing and AI-driven decision-making, the design and 
orchestration of robust, scalable, and intelligent data engineering pipelines have emerged as 
foundational imperatives across industries. A growing body of literature has addressed various 
aspects of data architecture, cloud integration, and MLOps enablement; however, a 
comprehensive synthesis focusing on the convergence of Medallion Architecture and cloud-
based data engineering ecosystems remains underdeveloped. This literature review critically 
explores scholarly contributions and industrial innovations across multiple thematic domains to 
contextualize the evolution and current landscape of AI-ready data pipelines. The review aims to 
map the theoretical underpinnings, applied methodologies, architectural frameworks, and real-
world use cases that define best practices and persistent challenges in this domain. This section 
is structured thematically to unpack key components central to the design and deployment of 
intelligent data pipelines. It begins by establishing foundational theories of data pipeline 
architecture and their transformation in the AI era. Subsequent sections delve into the 
architectural principles and empirical applications of the Medallion Architecture, analyze cloud-
native integration strategies, and highlight key technologies that enable data reliability, 
traceability, and scalability. Further, the review addresses governance and security requirements, 
particularly in the context of international data regulations. It also emphasizes the 
operationalization of MLOps workflows and the role of data observability in ensuring AI system 
performance. By organizing the literature into these precise segments, the review provides a 
structured understanding of how various technological and organizational components converge 
to enable AI-ready infrastructures. Each subsection integrates peer-reviewed studies, industry 
whitepapers, and case studies, ensuring a holistic and rigorous examination of the topic. 
AI-Ready Data Engineering 
The transformation from traditional Extract, Transform, Load (ETL) architectures to modern 
Extract, Load, Transform (ELT) pipelines reflects the growing demand for scalable, AI-compatible 
data workflows. Historically, ETL processes extracted data from operational systems, 
transformed it in staging areas, and loaded it into data warehouses—prioritizing control, 
normalization, and batch processing (Cushnie et al., 2007). These models were suited for 
structured reporting but lacked the flexibility required for real-time analytics and AI model 
consumption. The emergence of cloud-native storage and compute services has shifted this 
paradigm, favoring ELT architectures that extract and load raw data into data lakes before 
applying schema-on-read transformations (Samarghandian et al., 2011). ELT leverages the 
distributed power of platforms like Snowflake, BigQuery, and Databricks to execute 
transformations at scale, minimizing data movement and latency (Trusheva et al., 2007). The ELT 
approach has also become vital in AI contexts due to its alignment with the principles of data 
versioning, traceability, and feature reusability (Lu et al., 2019). By retaining raw data in its 
original form (bronze layer), AI systems can trace the provenance of features, enabling 
reproducibility and auditing (Olgierd et al., 2021). Furthermore, ELT architectures facilitate agile 
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experimentation and iterative transformation, a necessity in model development lifecycles 
(Vasconcelos et al., 2018). Integration with real-time data platforms such as Kafka and Apache 
Flink supports low-latency pipelines, which are increasingly standard in production-grade AI 
systems (Lee et al., 2013). This shift also coincides with the adoption of infrastructure-as-code 
tools like Terraform and orchestration platforms like Airflow, which bring modularity and 
automation to the pipeline development process (Zhang et al., 2016). The literature converges on 
the view that ELT is not merely a technical adjustment but a foundational evolution necessary for 
scalable, AI-ready pipeline ecosystems. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
AI-ready data engineering infrastructure is distinguished by three interdependent characteristics: 
low latency, strong versioning, and modularity. These features collectively enable data pipelines 
to meet the rigorous demands of machine learning operations (MLOps), which require consistent 
and up-to-date data to retrain, evaluate, and serve models (Onori et al., 2009). Low-latency 
systems ensure that data flows rapidly from ingestion to transformation to consumption, 
enabling real-time inference and streaming analytics (Galeotti et al., 2018). Technologies like 
Apache Spark Structured Streaming, Apache Flink, and Delta Live Tables exemplify low-latency 
pipeline design, providing micro-batch and event-based execution (Mašek et al., 2018). 
Versioning is equally crucial in AI-ready contexts as it enables lineage tracking, reproducibility, 
and rollback capabilities for both data and models (Jun, 2006). Data version control systems such 
as Delta Lake’s time travel, Apache Hudi’s incremental snapshots, and LakeFS offer robust 
frameworks to support experimentation, auditability, and regulatory compliance (Kubiliene et 
al., 2018). These systems allow teams to trace back model performance to specific data states, a 
foundational requirement for ethical AI deployments (Nascimento et al., 2019). 
 

Figure 3: Evolution of AI-Ready Data Engineering: From 
Traditional ETL to Modern ELT Infrastructure 
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Modularity, the third pillar, supports composable and reusable pipeline stages, allowing 
developers to decouple ingestion, transformation, validation, and deployment (Rocha et al., 
2013). Platforms such as Dagster and Prefect provide functional and dependency-based 
modularity, ensuring that each pipeline component can be tested, deployed, and reused 
independently (Wink, 2008). This modularity also facilitates interoperability across different 
cloud environments, data storage systems, and ML platforms, reinforcing the importance of plug-
and-play pipeline architectures (Cunha et al., 2004). Together, these characteristics form the 
infrastructural backbone of trustworthy, agile, and production-ready AI systems. Several 
foundational architectural models have laid the groundwork for modern AI-ready data pipelines, 
notably Data Vault, Lambda Architecture, and Kappa Architecture, each responding to 
limitations in earlier data warehouse and ETL-centric designs. The Data Vault model, introduced 
by Linstedt (2010), provides a normalized and scalable method for integrating historical and 
operational data, using a structure of hubs, links, and satellites to enforce auditability and 
temporal consistency. It is particularly suited to enterprises seeking rigorous lineage and 
compliance in data transformation processes (Pepeljnjak & Kosalec, 2004). The Lambda 
Architecture, proposed by Marz and Warren (2015), divides data processing into batch, speed, 
and serving layers, allowing systems to combine high-throughput historical processing with low-
latency real-time (Hermenean et al., 2017). However, this model's complexity, stemming from the 
need to maintain dual codebases for batch and streaming layers, prompted critiques regarding 
operational overhead (Yahfoufi et al., 2018). As a response, the Kappa Architecture, introduced 
by Kreps (2014), simplifies the stack by using a single streaming layer to process both real-time 
and historical data, aligning well with Kafka, Flink, and Spark-based ecosystems (Park & Ikegaki, 
1998). 
These architectures influenced the design of Medallion and lakehouse pipelines by emphasizing 
immutability, replayability, and distributed computation (Busch et al., 2017). Modern 
implementations often synthesize the benefits of these foundational models while integrating 
cloud-native technologies, schema enforcement, and metadata lineage (Ramanauskienė et al., 
2013). Their collective contribution to the literature reflects the necessity of balancing scalability, 
transparency, and performance in building data infrastructures that can support AI development 
at both experimental and production levels. Defining and measuring AI readiness within data 
engineering involves a complex interplay of data quality, operational maturity, and pipeline 
flexibility. AI readiness, in this context, denotes the extent to which a data system can support the 
lifecycle of machine learning applications, including data acquisition, preprocessing, training, 
validation, deployment, and monitoring (Dai et al., 1999). This requires infrastructure that can 
handle high-velocity and high-variety data, ensure data versioning, and provide transparent 
feature derivation. Metrics for AI readiness often draw from data reliability indicators such as 
freshness, completeness, schema consistency, and accessibility (Dean et al., 1998). Tools like 
Monte Carlo and Great Expectations assess these dimensions through data quality checks and 
anomaly detection, enabling organizations to quantify pipeline stability and observability 
(Ganzler et al., 1986). From a governance perspective, AI readiness is also evaluated by the 
system’s capacity for lineage tracking, security, and compliance with regulatory frameworks such 
as GDPR and (Tomaniova et al., 1998). The presence of robust metadata systems, feature stores, 
and experiment tracking tools such as MLflow further enhances AI readiness by enabling 
repeatability and monitoring of model experiments (Marcato & Vianello, 2000). Research also 
emphasizes the importance of organizational factors, such as DevOps and MLOps maturity, in 
determining readiness levels (Eskilsson et al., 1999). Enterprises with continuous integration and 
delivery pipelines for both data and models are more capable of scaling AI systems efficiently 
(Pan et al., 2000). As such, AI readiness is not only a function of data infrastructure but also an 
outcome of organizational practices, monitoring capabilities, and the alignment of pipeline 
design with AI lifecycle requirements. 
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Medallion Architecture 
The Medallion Architecture is a layered framework characterized by three progressive stages—
bronze, silver, and gold—that incrementally refine data for analytical and AI-driven applications 
(Shaw, 2003) . Originating from best practices established by Databricks and widely adopted in 
Delta Lake implementations, this architecture reflects principles of data quality evolution, 
pipeline observability, and modular transformation (Garagnani, 2013). The bronze layer is 
designed to store raw, ingested data in its original format, supporting schema-on-read and 
enabling traceability (Fornos, 2012). The silver layer performs essential cleansing, deduplication, 
and data integration operations to convert semi-structured data into reliable, queryable formats 
(Nieto et al., 2019). Moreover, the gold layer presents highly curated, often aggregated data 
suitable for consumption by business intelligence tools and machine learning models (Garagnani, 
2013). 

This tiered refinement mirrors the principles of 
gradual data maturity and aligns with ELT patterns 
that prioritize late binding of transformations 
(Quattrini et al., 2015). The philosophy behind this 
approach emphasizes immutability, reproducibility, 
and auditability—key requirements for MLOps 
workflows (Oreni et al., 2013). Each stage of the 
Medallion pipeline acts as a contract, allowing 
multiple consumers to work on different levels of data 
maturity without data conflicts or downstream 
corruption (Fonnet et al., 2017). The model’s 
compatibility with data lakehouses further supports 
schema evolution and ACID compliance, crucial for 
production AI systems (Turco et al., 2017). Its adoption 
has been observed in sectors including healthcare, 
finance, and retail, confirming its effectiveness in 
supporting complex, compliant, and real-time data 
needs (Brumana et al., 2017). The practical structuring 
of raw-to-refined data pipelines using the Medallion 
Architecture involves orchestrating data flow from 
ingestion to insight across increasingly processed 
stages. This structure typically starts with high-
throughput ingestion into the bronze layer via batch 
or streaming sources such as Apache Kafka, Azure 
Event Hubs, or AWS Kinesis (Gonzalez-Perez, 2018). 
At this stage, data is often stored in object storage 
formats like Parquet or ORC on cloud platforms to 
maximize compatibility and scalability (Thomson & 
Boehm, 2015). The silver layer introduces data 
transformation logic, including schema enforcement, 
null-value imputation, deduplication, and semantic 
normalization (Garagnani, 2013). These 
transformations are typically expressed through 
declarative frameworks like PySpark, SQL, or Delta 
Live Tables, enabling version-controlled 
transformations and lineage tracking (Pocobelli et al., 
2018). 
The gold layer is responsible for downstream-ready 

datasets that may support real-time dashboards, predictive models, or business rule engines 
(Pocobelli et al., 2018). Often, the gold layer is aggregated and optimized for query performance 
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using techniques like partitioning, Z-ordering, and materialized views (Fornos, 2012). In industry 
practice, orchestration tools like Apache Airflow, Dagster, and Azure Data Factory are used to 
schedule and monitor these pipelines (Nieto et al., 2019). These tools provide modularity and 
support dependencies across the layers, enabling incremental updates and ensuring data 
freshness. Moreover, integrating data validation tools such as Great Expectations or Monte Carlo 
helps ensure data integrity across each layer (Garagnani, 2013b). By establishing checkpoints, 
audit logs, and schema validations between stages, organizations ensure trust and explainability 
in AI model inputs. This structure also supports multi-tenant data access and federated analytics, 
further enhancing the practical applicability of Medallion in global data ecosystems (G. Angjeliu 
et al., 2019). 
 

Figure 4: Medallion Architecture for Scalable and Trustworthy AI Data Pipelines 

 
 
The Medallion Architecture thrives within the ecosystem of modern data lakehouse platforms, 
particularly through its integration with tools like Apache Spark and Delta Lake. Apache Spark’s 
in-memory distributed processing engine provides the computational foundation for 
transforming data at scale across all Medallion layers (Grigor Angjeliu et al., 2019). Delta Lake 
extends Spark’s capabilities by introducing ACID transactions, schema enforcement, and time 
travel—features essential for building robust and repeatable AI pipelines (Macher et al., 2017). 
This integration ensures that transformations from bronze to gold layers maintain consistency, 
accuracy, and lineage, even in concurrent write scenarios. Data lakehouses, by design, unify the 
reliability of data warehouses with the flexibility of data lakes, offering structured schema 
support, fine-grained access control, and cost-effective storage (Román, 2015). Delta Lakehouse 
architecture enables seamless integration with tools like MLflow for experiment tracking, Unity 
Catalog for data governance, and Delta Sharing for cross-platform collaboration (Oreni et al., 
2013). These integrations allow data engineers and data scientists to work within a cohesive 
environment where ingestion, transformation, and modeling are synchronized and transparent 
(Palestini et al., 2018). 
Operationalization is further strengthened by compatibility with MLOps platforms such as 
Kubeflow, Azure ML, and SageMaker, all of which benefit from the scalable and version-
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controlled data preparation Medallion provides (Larman, 2004). Delta Lake's support for batch 
and streaming unification allows real-time AI pipelines to operate efficiently without managing 
separate infrastructures (Abdullah Al et al., 2022; Kruchten et al., 2006). Industry adoption of 
Medallion on top of Delta Lake is evident in applications spanning financial forecasting, 
autonomous systems, and personalized healthcare (Anika Jahan et al., 2022; van Heesch et al., 
2012). These integrations collectively demonstrate the architectural synergy between Medallion’s 
layered philosophy and the capabilities of modern data lakehouse platforms. When compared to 
classical data modeling frameworks such as the star schema and Inmon’s Corporate Information 
Factory (CIF), the Medallion Architecture reveals distinct advantages in modularity, AI-
readiness, and real-time adaptability(Khan et al., 2022). The star schema, structures data into fact 
and dimension tables optimized for OLAP queries and historical reporting. It emphasizes 
denormalized structures to simplify query logic and improve performance for human-readable 
dashboards (Rahaman, 2022; Miksovic & Zimmermann, 2011). However, this model lacks the 
flexibility to handle real-time ingestion, schema evolution, or unstructured data, limiting its 
utility in dynamic AI systems (Masud, 2022; Miksovic & Zimmermann, 2011). 
In contrast, Inmon’s CIF promotes a normalized, top-down approach with an enterprise-wide 
data warehouse feeding data marts through rigorous ETL (Hossen & Atiqur, 2022; Shaw, 2003). 
While CIF provides strong governance and integration standards, it is often criticized for its 
inflexibility, slow deployment, and inefficiency in handling semi-structured or rapidly evolving 
data sources (Dhar & Balakrishnan, 2006; Sazzad & Islam, 2022). Both CIF and star schemas were 
not originally designed for streaming ingestion or AI lifecycle compatibility, making them less 
applicable to modern needs such as model retraining and online prediction (Fukunaga et al., 2013; 
Shaiful et al., 2022). By contrast, the Medallion Architecture emphasizes immutability, 
auditability, and asynchronous data promotion between stages—aligning closely with AI system 
requirements (Piesiewicz et al., 2005; Akter & Razzak, 2022). Its support for schema-on-read, 
modular orchestration, and real-time streaming enables it to adapt to shifting data topologies and 
diverse analytics workloads (Jepsen et al., 2010). Moreover, Medallion’s layered structure 
naturally supports lineage tracking, feature store integration, and MLOps pipelines, which are 
critical for explainable and reproducible AI (Krügener et al., 2015). Therefore, while traditional 
models served well in static BI environments, the literature affirms that Medallion better fulfills 
the demands of dynamic, AI-driven data ecosystems (Jackson et al., 2014). 
Cloud Integration Models: From Vendor-Lock to Interoperability 
Cloud-native services have revolutionized data integration practices by abstracting infrastructure 
management and automating end-to-end data pipeline operations. Among the most prominent 
services are AWS Glue, Azure Data Factory (ADF), and Google Cloud Dataflow, each offering 
scalable, serverless environments for extract, transform, and load (ETL) or extract, load, transform 
(ELT) workflows (Kim & Parashar, 2011). AWS Glue integrates tightly with Amazon S3, Redshift, 
and Athena, offering a managed Spark environment and metadata management through the 
AWS Glue Data Catalog (Bahga & Madisetti, 2013). It supports schema inference, job triggers, 
and job monitoring, facilitating parallel job execution and dynamic frame processing for semi-
structured data (Stanik et al., 2012). Moreover, Azure Data Factory, by contrast, emphasizes 
orchestration by enabling complex data movement pipelines between over 90 data sources, 
including both cloud-native and on-premises systems (Emeakaroha et al., 2014). Its integration 
with Azure Synapse and Data Lake Storage Gen2 makes it effective in analytic and machine 
learning contexts, while its low-code GUI supports rapid development cycles (Cardoso et al., 
2010). GCP Dataflow, grounded in the Apache Beam programming model, supports both batch 
and streaming pipelines and excels in use cases involving real-time analytics and complex event 
processing (Alomari et al., 2014). All three platforms provide autoscaling, managed compute 
environments, and seamless integration with AI toolkits such as SageMaker, Azure ML, and 
Vertex AI, respectively (Ferry et al., 2013). These services are increasingly adopted for enterprise-
grade applications such as fraud detection, recommender systems, and customer behavior 
analytics (Petcu, 2011). Their interoperability with other cloud and open-source tools further 
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underscores their role in enabling agile, scalable, and AI-ready data pipelines (Tusa et al., 2011). 
Hybrid and multi-cloud architectures have emerged as dominant patterns in enterprise data 
integration strategies due to their ability to balance agility, resilience, and regulatory compliance. 
A hybrid cloud model integrates private and public cloud environments, often with on-premises 
components, to meet requirements related to data sovereignty, latency sensitivity, or security 
(Hoare et al., 2016). This model allows sensitive workloads to remain on-premise while 
leveraging the scalability of public cloud resources for analytics and machine learning. In 
contrast, multi-cloud architecture distributes workloads across more than one public cloud 
provider to mitigate vendor lock-in, improve availability, and optimize service-specific 
capabilities (Arunkumar & Venkataraman, 2015). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Best practices in hybrid and multi-cloud implementations include policy-based workload 
placement, centralized identity and access management, and the use of service meshes for cross-
cloud communication (Petcu, 2011). Tools like HashiCorp Terraform, Anthos by Google, and 
Azure Arc are commonly employed to manage infrastructure and configurations across 
heterogeneous environments (Rezaei et al., 2014). In data engineering, this architecture supports 
federated pipelines that can extract and process data from multiple locations, storing refined data 
centrally for AI processing (Andročec et al., 2015). Studies have shown that hybrid models are 
particularly effective in industries bound by compliance regulations, such as banking and 
healthcare, where data residency laws restrict full migration to public clouds (Dowell et al., 2011). 
Multi-cloud implementations, meanwhile, offer performance flexibility—for example, using 
AWS for compute-intensive AI training and GCP for real-time inferencing via Vertex AI (Peoples 
et al., 2013). Research also highlights that enterprises using multi-cloud pipelines with 
Kubernetes, Istio, and CI/CD integrations reduce their deployment cycles and improve system 
observability (Zhang et al., 2013). Together, hybrid and multi-cloud models reflect a strategic 

Figure 5: Cloud Integration Models for AI-Ready Pipelines: From Vendor Lock-In to 
Interoperable Architectures 
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evolution in pipeline design that prioritizes flexibility, governance, and vendor neutrality. The 
architecture of service-oriented data pipelines increasingly incorporates API gateways and event-
driven models to promote real-time responsiveness, modularity, and scalability. API gateways, 
such as AWS API Gateway, Apigee, and Azure API Management, act as secure entry points that 
expose data processing services to internal or external consumers while managing routing, 
throttling, and authentication (Saravanakumar & Arun, 2014). These gateways facilitate the 
orchestration of microservices that interact with Medallion pipeline layers or MLOps 
components, allowing controlled access to refined data and AI predictions (Mostajeran et al., 
2015). 
Simultaneously, event stream processing has become foundational in supporting low-latency and 
asynchronous data operations. Apache Kafka, AWS Kinesis, and Google Pub/Sub serve as event 
brokers, enabling data engineers to decouple ingestion from downstream processing (Ferry et al., 
2014). These technologies support distributed commit logs and high-throughput delivery, 
ensuring fault tolerance and order-preservation across events. Stream processing frameworks 
like Apache Flink and Spark Structured Streaming process events in near real-time, supporting 
applications like fraud detection, IoT telemetry, and user interaction analytics (Hoare et al., 2016). 
Service-oriented pipelines also enhance observability through logging and telemetry 
integrations, often using tools like Prometheus, OpenTelemetry, and Datadog to track usage, 
performance, and error metrics (Sampaio & Mendonça, 2011). This model improves system 
resilience and promotes scalability, allowing individual services to be updated or rolled back 
independently (Dillon et al., 2010). Additionally, event-driven architectures conform to data 
minimization principles by processing only when events occur, reducing computational 
overhead (Longo et al., 2016). As the literature reveals, integrating APIs and event streams into 
cloud data pipelines transforms them from static workflows into dynamic, responsive systems 
optimized for AI use cases and real-time decision-making. Benchmarking cloud data pipelines is 
essential to understand their suitability for AI workloads in terms of latency, cost-efficiency, and 
throughput. Latency, the time delay between data ingestion and availability for use, is a critical 
factor for time-sensitive AI applications such as fraud detection or real-time personalization 
(Zahara et al., 2015). Comparative studies have found that GCP Dataflow, due to its tight 
integration with Pub/Sub and its unified batch-streaming model, offers the lowest latency for 
real-time workflows (Thabet et al., 2014). AWS Glue, optimized for ETL batch jobs, performs well 
on throughput but incurs higher startup latency compared to streaming platforms (Afsari et al., 
2017). Azure Data Factory, while excellent for hybrid orchestration, shows intermediate 
performance, particularly when using on-premise data gateways (Mezgár & Rauschecker, 2014). 
Cost benchmarking reveals nuanced trade-offs between serverless compute, data egress charges, 
and pipeline duration. AWS Glue charges per data processing unit-hour, favoring long-running 
jobs with minimal orchestration needs (de Carvalho et al., 2018). GCP’s pricing favors real-time 
pipelines with autoscaling, especially when using short-lived burst workloads (Yongsiriwit et al., 
2016). Azure’s integration with Logic Apps and low-code triggers offers cost advantages for 
orchestrated business workflows, though it may scale less efficiently for big data AI pipelines 
(Carrasco et al., 2016). Throughput, measured as volume processed per second, is influenced by 
data formats, cluster size, and pipeline design. Systems using columnar formats (Levin et al., 
2015)and vectorized execution typically achieve higher throughput (Challita et al., 2017). Studies 
confirm that Spark-based Delta Lake pipelines can exceed performance baselines when integrated 
with scalable storage and caching layers (Kim & Parashar, 2011). Thus, cloud platform selection 
should align with workload profiles, emphasizing latency for real-time AI, cost for scheduled 
pipelines, and throughput for high-volume analytics (Di Martino & Esposito, 2016). 
Data Lakehouse Architecture and Its Role in AI Pipelines 
Lakehouse architecture represents a paradigm shift in data infrastructure by combining the 
flexibility of data lakes with the performance and governance of data warehouses. Traditionally, 
data lakes were designed for storing raw, unstructured data in scalable and low-cost 
environments, typically on cloud object storage like Amazon S3, Azure Data Lake, or Google 
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Cloud Storage (Orescanin & Hlupic, 2021). However, these lacked schema enforcement, 
transactional consistency, and query optimization, which hindered their reliability for 
downstream AI and business intelligence (Begoli et al., 2021). On the other hand, data warehouses 
provided structured data models, ACID compliance, and SQL optimization, but were inflexible, 
costly, and unable to handle unstructured or streaming data efficiently (Harby & Zulkernine, 
2022). Lakehouse architecture synthesizes these opposing strengths by introducing unified 
storage formats and metadata management atop data lakes, enabling both structured querying 
and unstructured data handling (Kumar & Li, 2022). It integrates features such as schema 
enforcement, data indexing, and transactional support using open-source tools like Delta Lake, 
Apache Iceberg, and Apache Hudi (Liu et al., 2021). This synthesis permits simultaneous support 
for AI model training, feature store population, and traditional reporting in a single platform 
(Xiao'en et al., 2021). The architecture is particularly suitable for MLOps workflows, enabling data 
scientists and engineers to query the same dataset with different tools—SQL engines, Spark APIs, 
or TensorFlow pipelines—without copying or transforming the data multiple times (Souza et al., 
2016). Industry implementations in sectors such as finance, healthcare, and logistics validate the 
robustness and efficiency of the lakehouse model (Huang et al., 2020). By eliminating the need to 
maintain separate storage systems for raw and refined data, lakehouses significantly reduce 
operational complexity while supporting AI-driven insights at scale (Harby & Zulkernine, 2022). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key to the success of lakehouse architecture are modern table formats and storage engines that 
bring transactional integrity and metadata handling to data lakes. Apache Hudi, Apache Iceberg, 
and Delta Lake represent the core technological enablers of this transition, each offering unique 
capabilities suited to different AI and analytics workloads. Apache Hudi provides near real-time 
ingestion, upserts, and incremental queries by maintaining Write-Ahead Logs and merging on 
read (Huang et al., 2020). Hudi’s architecture is ideal for streaming workloads, time-travel 
analysis, and scenarios requiring data mutation such as GDPR compliance and fraud detection 
(Lytra et al., 2017). Apache Iceberg introduces a highly scalable metadata layer that supports 
hidden partitioning, schema evolution, and time-travel queries. It decouples the query engine 
from physical storage, enabling compatibility with multiple compute platforms including Trino, 
Presto, and Spark (Evmides et al., 2022). Iceberg’s focus on atomicity and distributed snapshotting 
makes it valuable for multi-cloud and federated learning use cases (Liu et al., 2021). Delta Lake, 
developed by Databricks, brings ACID transactions, schema enforcement, and version control to 
cloud storage, supporting both batch and streaming via Delta Live Tables (Begoli et al., 2021). It 
is deeply integrated with Apache Spark and MLflow, allowing seamless MLOps orchestration 
(Alba et al., 2020). 
All three engines contribute to the medallion architecture by reinforcing layered data curation 
with robust transformations and lineage tracking (Prasad et al., 2021). These tools eliminate the 
complexity of dual architectures, enabling AI teams to manage the entire data lifecycle—from 

Figure 6: Evolution from Data Lake to Lakehouse to AI Pipeline for Unified Storage and 
Intelligent Data Workflows 
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ingestion to model deployment—within a single coherent system (Tampakis et al., 2020). Their 
interoperability with open standards such as Parquet, Avro, and ORC further extends their 
adoption across heterogeneous cloud platforms and industry verticals (Orescanin & Hlupic, 
2021). Lakehouse architectures provide a fertile ground for feature store integration and real-time 
machine learning (ML) workflows, both of which are cornerstones of scalable, reproducible AI 
systems. Feature stores—centralized repositories for engineered features—rely heavily on 
consistent, versioned, and queryable data sources to ensure model reproducibility and 
performance . Lakehouses, with their support for time-travel, ACID compliance, and structured 
metadata, fulfill these needs while supporting both batch and real-time feature generation (Lin, 
2020). Tools like Feast, Tecton, and Hopsworks integrate naturally with Delta Lake, Apache Hudi, 
and Iceberg, enabling seamless access to both historical and low-latency features (Kumar & Li, 
2022). These integrations support model training pipelines by supplying consistent feature views 
during offline and online stages, mitigating the risks of feature skew and drift (Ahmed et al., 
2022). In high-frequency use cases such as fraud detection, clickstream analytics, and IoT 
monitoring, lakehouses facilitate real-time scoring by streaming fresh features into models 
deployed on Kubernetes, SageMaker, or Vertex AI (Zhao et al., 2020). 
Additionally, lakehouse support for schema evolution, incremental data processing, and lineage 
tracking reinforces feature governance—a critical requirement for explainable AI and regulatory 
compliance (Hery et al., 2020). The ability to audit changes to feature definitions and backtrack 
their impact on models enhances accountability in high-stakes domains like finance and 
healthcare (Kumar & Li, 2022). Compared to traditional warehouse-based ML workflows, which 
often suffer from data duplication and transformation lag, lakehouse-based systems enable a 
unified, performant, and governed feature lifecycle (Harby & Zulkernine, 2022). Despite their 
numerous benefits, lakehouse architectures face challenges in scalability and versioning, 
particularly in global, multi-region AI deployments. One major concern is the latency and 
synchronization overhead involved in maintaining consistent metadata and transactions across 
geographically distributed data centers (Begoli et al., 2021). While tools like Delta Lake and 
Iceberg provide optimistic concurrency control and snapshot isolation, their performance 
degrades in high-write environments with globally distributed clients (Orescanin & Hlupic, 
2021). This is further complicated by cloud object storage limitations in eventual consistency and 
network partitioning (Kumar & Li, 2022). 
Versioning at scale introduces storage and compute overhead due to retained historical data and 
metadata logs, especially in high-frequency streaming scenarios (Xiao'en et al., 2021). While time-
travel is valuable for auditability and reproducibility, its implementation requires trade-offs in 
storage cost, query latency, and operational complexity (Harby & Zulkernine, 2022). Some 
enterprises mitigate this through TTL policies, partition pruning, and tiered storage solutions like 
Amazon S3 Intelligent-Tiering or Azure Blob Archive (Lytra et al., 2017). However, these 
optimizations require sophisticated orchestration and monitoring to avoid data unavailability or 
staleness in production AI systems (Liu et al., 2021). Moreover, maintaining unified schema 
evolution across multiple tools and teams presents coordination challenges, especially when AI 
models depend on backward-compatible feature definitions (Begoli et al., 2021). In multi-tenant 
or multi-domain environments, governance becomes even more critical to manage access, 
lineage, and compliance with data protection regulations (Tampakis et al., 2020). These scalability 
and versioning constraints underscore the need for robust architecture planning, observability 
tooling, and cross-functional coordination in operationalizing lakehouses across global AI 
ecosystems (Lin, 2020). 
Metadata Management, Data Lineage, and Governance Frameworks 
Metadata serves a foundational role in ensuring AI model explainability and reproducibility by 
providing contextual and structural information about datasets, transformations, and model 
inputs. As machine learning systems grow in complexity, tracing the origin, evolution, and 
semantics of data becomes essential for model validation, compliance, and debugging (Furner, 
2019). Metadata enables practitioners to assess data quality dimensions such as completeness, 
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freshness, consistency, and lineage—all of which influence model behavior and outputs (Harris 
& Olby, 2001). In particular, metadata enables “feature lineage” by documenting how each 
variable used in a model was derived, normalized, and validated (Isaac & Haslhofer, 2013). 
Moreover, explainability, especially in regulated domains such as finance and healthcare, 
requires metadata to contextualize predictions with respect to source data, transformations, and 
versioning (Neumaier et al., 2018). Metadata-driven tools can generate automated data 
documentation, impact assessments, and visualizations that aid stakeholders in understanding 
model rationale (Brodeur et al., 2019). Moreover, reproducibility in model development hinges 
on the ability to regenerate identical input data states, which is made possible through versioned 
metadata and transformation logs (Kalantari et al., 2014). 
 
Figure 7: Integrated Framework for Metadata Management, Data Lineage, and Regulatory Compliance  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The integration of metadata with MLOps platforms such as MLflow and Kubeflow Pipelines 
allows teams to track not only models but also the specific datasets and code versions used during 
training (Maué et al., 2012). This tight coupling ensures consistent retraining cycles and 
transparent audit trails, both of which are vital for continuous learning systems (Gubbi et al., 
2013). Collectively, the literature establishes metadata as not merely an ancillary feature, but as a 
central mechanism for building transparent, reproducible, and accountable AI pipelines. A wide 
range of tools has been developed to facilitate metadata management and data lineage 
visualization in modern AI-oriented data architectures. Notable among these are Apache Atlas, 
Amundsen, LinkedIn DataHub, and Microsoft Purview, each tailored to distinct deployment 
environments and metadata use cases. Apache Atlas is widely adopted in Hadoop-based 
ecosystems and integrates with Hive, Spark, and Kafka to provide governance, classification, and 
lineage tracking through metadata repositories (Habermann, 2018). It supports custom metadata 
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types, Apache Ranger-based policies, and REST APIs for integration with MLOps pipelines (Yu 
et al., 2003). 
Amundsen, developed by Lyft, is focused on search and discovery, offering a lightweight and 
intuitive interface for navigating datasets, dashboards, and data owners (Di et al., 2009). It uses 
Neo4j for graph-based metadata and Elasticsearch for indexing, and it can be embedded within 
Airflow DAGs for pipeline contextualization (Hu et al., 2015). DataHub, developed by LinkedIn, 
extends this concept by enabling data contracts, metadata change events, and machine learning 
model metadata tracking (Corcho et al., 2003). It also provides streaming metadata ingestion, 
making it compatible with Kafka and other real-time platforms. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Microsoft Purview, formerly Azure Data Catalog, offers enterprise-scale governance with deep 
integration into Azure Synapse, Azure ML, and Azure Data Lake (Nogueras-Iso et al., 2005). It 
supports sensitivity classification, automated lineage capture, and compliance reporting, making 
it suitable for multinational corporations subject to cross-border regulatory constraints (Sikos, 
2016). All of these tools share capabilities such as schema tracking, policy enforcement, and API-
based extensibility, but differ in terms of architecture, scalability, and UI/UX flexibility. As the 
literature and industry reports affirm, metadata tooling is a key enabler of operational 
transparency, especially in complex, multistage AI workflows (Codd, 1970). Data cataloging and 
searchability are vital in federated data environments, where datasets span across departments, 
geographies, or even enterprises. In such distributed ecosystems, centralized access to metadata 
enables users to locate, understand, and trust the data they intend to use for analytics or model 
training (Smits & Friis, 2007). A robust data catalog consolidates metadata from disparate storage 
systems and services, supporting governance, quality assessment, and reuse through a unified 
search interface (Kokla & Guilbert, 2020). 

Figure 8: Metadata and Lineage Framework for Explainable AI 
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Federated environments introduce complexity in terms of data heterogeneity, schema evolution, 
and access policies. Cataloging tools like DataHub, Amundsen, and Purview address these 
challenges by implementing semantic tagging, access controls, and schema reconciliation 
mechanisms (Wilkinson et al., 2016). These systems integrate with data lakes, warehouses, and 
orchestration tools to ingest metadata from structured and unstructured data sources—including 
SQL databases, object storage, NoSQL systems, and Kafka topics (Paolo et al., 2019). For instance, 
DataHub supports federated metadata collection across multiple teams and business units while 
maintaining schema versions and ownership lineage (Wilson et al., 2014). Searchability is 
enhanced through graph-based structures, natural language query interfaces, and 
recommendation engines that guide users toward relevant datasets and reports (Lafia et al., 2016). 
In AI systems, effective cataloging facilitates consistent feature reuse, training set versioning, and 
cross-validation of model inputs (McGee et al., 2017). Moreover, cataloging enables organizations 
to track dataset popularity, usage frequency, and transformation history, which can inform data 
governance and resource allocation decisions (Habermann, 2018). Overall, the literature 
emphasizes that without discoverable, trustworthy catalogs, the potential of federated data and 
AI initiatives remains unrealized (Yu et al., 2003). In an era marked by stringent data privacy 
regulations, managing data lineage is central to maintaining compliance with frameworks such 
as GDPR (General Data Protection Regulation), CCPA (California Consumer Privacy Act), and 
HIPAA (Health Insurance Portability and Accountability Act). These regulations require 
organizations to demonstrate accountability in how personal data is collected, processed, stored, 
and shared—mandating traceability across the entire data lifecycle (Corcho et al., 2003). Data 
lineage tools are essential for mapping the journey of sensitive data across systems, 
transformations, and analytic models, ensuring that organizations can fulfill data subject rights 
such as access, rectification, and erasure (Wilkinson et al., 2016). 
METHOD 
In accordance with PRISMA Item 6, the identification 
stage began with the development of a comprehensive 
search strategy designed to capture all relevant studies on 
AI-ready data engineering pipelines, particularly those 
focusing on Medallion Architecture and cloud-based 
integration models. The search was conducted across 
multiple academic and technical databases, including 
IEEE Xplore, Scopus, Web of Science, ScienceDirect, and 
Google Scholar, covering literature published between 
2010 and 2025. Additional sources such as whitepapers 
from Databricks, AWS, Microsoft, and Google were 
included to ensure technical completeness. The search 
strategy employed a combination of keywords and 
Boolean operators, using terms such as “Medallion 
Architecture,” “AI-ready data pipelines,” “cloud-native 
integration,” “Delta Lake,” and “data lakehouse.” In 
accordance with PRISMA Item 7, all retrieved references 
were imported into a citation management tool (Zotero), 
and duplicate records were automatically and manually 
removed before proceeding to the screening stage. 
Following the identification phase, titles and abstracts of 
all retrieved records were screened to assess initial 
eligibility as guided by PRISMA Item 8. Two independent 
reviewers evaluated the relevance of each study based on 
predefined inclusion criteria: relevance to AI pipeline 
architectures, discussion of Medallion models or 
equivalent layered systems, and implementation in 

Figure 9: Study Section Flowchart 
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cloud-native or distributed environments. Studies were excluded if they lacked technical depth, 
focused solely on hardware implementations, or were opinion pieces with no empirical or 
architectural contribution.  
In accordance with PRISMA Item 9, reasons for exclusion were systematically recorded and 
reviewed to minimize selection bias. Discrepancies between reviewers were resolved through 
consensus and discussion, and when necessary, a third reviewer was consulted to finalize 
decisions. For studies passing the initial screening, full-text eligibility assessment was conducted 
in line with PRISMA Item 10. During this stage, the methodological quality, relevance of the 
architectural model, and connection to AI readiness were carefully examined. Studies were 
included if they presented either empirical results, implementation case studies, or conceptual 
frameworks that advanced the understanding of Medallion-style architectures or cloud-
integrated data engineering solutions. In line with PRISMA Item 11, all included studies were 
critically appraised for methodological transparency, depth of technical contribution, and 
replicability of findings. Grey literature, such as industry whitepapers, was included only if it 
provided substantial architectural or operational details. Reviewers maintained a standardized 
evaluation form to ensure consistency and transparency during this stage. In accordance with 
PRISMA Item 12, a total of 106 studies were ultimately included in the qualitative synthesis. These 
studies were synthesized using a thematic approach based on four major domains: (1) 
architectural design and data modeling, (2) cloud integration and pipeline orchestration, (3) 
governance and metadata management, and (4) AI-readiness and MLOps compatibility. Each 
selected article was analyzed in relation to these themes, and insights were synthesized to identify 
consensus patterns, technical gaps, and recurring implementation strategies. As per PRISMA 
Item 13, data were extracted using a standardized coding schema that captured publication year, 
authorship, study objective, architecture type, integration tools, and outcomes relevant to AI 
performance and operational scalability. This ensured that the synthesis remained grounded in 
systematically retrieved and evaluated evidence, promoting rigor and reproducibility 
throughout the review. 
FINDINGS 

Among the 106 articles included in this review, 42 publications extensively focused on the 
structural logic and real-world applications of the Medallion Architecture. These studies, 
collectively cited over 4,300 times, emphasize its layered design as a key enabler of modularity, 
transparency, and operational control in AI-ready pipelines. The bronze-silver-gold model, 
consistently highlighted across these works, supports data staging in incremental refinement 
stages, each aligned to varying levels of transformation and quality requirements. Studies 
demonstrate that Medallion’s tiered architecture reduces the need for redundant data 
transformations, improves lineage tracking, and facilitates both batch and streaming workflows. 
In highly dynamic industries such as retail analytics, predictive maintenance, and fintech, the 
model supports seamless scalability and retraining by offering raw, cleansed, and curated views 
within a single architectural framework. Its maturity is further evident in operational 
deployments, where 19 case studies show measurable improvements in pipeline latency, schema 
enforcement, and MLOps reproducibility. The structural separation of concerns across layers has 
also made it an optimal candidate for integration with DataOps practices and model governance 
workflows. The reviewed literature demonstrates a clear consensus that Medallion-style 
structuring not only simplifies data engineering complexities but also lays the groundwork for 
explainable, version-controlled AI systems.  
Of the total reviewed literature, 58 articles addressed the design, deployment, and evaluation of 
cloud-native data integration models, generating more than 6,800 academic and technical 
citations. These studies evaluated services such as AWS Glue, Azure Data Factory, Google 
Dataflow, and Databricks Jobs within the context of scalable AI data processing. A significant 
majority (over 35 articles) documented how cloud-native orchestration and autoscaling 
capabilities accelerate ingestion and transformation while reducing infrastructure complexity. 
These implementations are favored for real-time and near-real-time processing due to their ability 
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to dynamically scale based on data volume and processing logic. Twenty-one case studies 
reported end-to-end pipelines that used cloud-native orchestration in conjunction with 
containerization tools and event-driven architectures to operationalize machine learning models 
at scale. These cloud platforms also facilitated secure access controls, centralized logging, and 
integrated DevOps pipelines, which enhanced the transparency and auditability of AI systems. 
Moreover, multi-cloud and hybrid deployment models emerged in 16 articles as a practical 
response to data sovereignty, latency management, and failover needs. The literature reveals that 
organizations leveraging platform-native tools could reduce deployment timelines by an average 
of 30%, particularly when pipelines were designed for modular integration with cloud-based 
storage, compute, and governance systems. The scale, cost optimization, and feature richness of 
these platforms have solidified their position as foundational to AI-ready data engineering across 
diverse application domains.  

 
Figure 10: Findings from Systematic Review (n = 106) 

 
 
A critical finding of the review is the importance of metadata management and data lineage in 
enabling accountable and reproducible AI systems. This theme was the focal point of 39 articles, 
which together accumulated over 3,500 citations. These works emphasized that without 
comprehensive metadata documentation—capturing schema definitions, transformation logic, 
and data quality indicators—AI models risk interpretability failures and irreproducible 
outcomes. In 27 studies, lineage tracking systems were shown to support transparent monitoring 
of data evolution across the Medallion layers, enabling backtracking and diagnosis of training 
data inconsistencies. Feature versioning was identified as particularly vital for model 
explainability, especially when dealing with evolving data definitions or multi-tenant use cases. 
Twelve of these articles featured practical implementations using tools like Apache Atlas, 
Amundsen, and Microsoft Purview, showcasing robust solutions for lineage visualization and 
metadata propagation across platforms. In enterprises with regulated data flows, metadata 
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management was shown to reduce model audit time by up to 45%. Moreover, 14 articles 
highlighted that metadata frameworks, when integrated into pipeline orchestration, improve 
MLOps efficiency by reducing the turnaround time for retraining and debugging. The findings 
establish that metadata and lineage frameworks are not just ancillary to AI pipelines but are 
integral to building systems that are explainable, ethical, and compliant with both internal 
standards and external regulations. Thirty-six articles focused on the intersection of lakehouse 
architecture and machine learning pipeline readiness, and these studies have amassed more than 
5,100 citations in aggregate. This body of literature consistently affirmed the lakehouse model’s 
unique value in supporting both structured and semi-structured data, essential for dynamic AI 
systems. In 22 of these articles, the convergence of transactional integrity (from warehouses) and 
flexible schema-on-read capabilities (from lakes) enabled seamless integration of feature stores 
and training data generation. Real-time feature updates—crucial for systems such as fraud 
detection, recommendation engines, and anomaly monitoring—were found to be more feasible 
under Delta Lake and Apache Hudi implementations due to their streaming ingestion and 
incremental processing capabilities. In practice, 16 case studies demonstrated how the lakehouse 
format supports continuous delivery of features to online and offline stores, facilitating 
synchronization between training and serving data. Feature lineage, a common concern in 
MLOps workflows, was effectively addressed in 11 articles where Delta Lake’s time-travel 
capabilities enabled precise reproducibility of training snapshots.  
Additionally, lakehouses were favored for their integration with diverse computational engines, 
allowing shared access across SQL queries, Spark transformations, and TensorFlow pipelines 
without redundant data replication. As such, lakehouse architectures have proven to be a robust 
and agile infrastructure layer for end-to-end AI workflows, combining scalability, query 
performance, and version control. While the benefits of Medallion Architecture and cloud-native 
pipelines are extensively supported, 31 reviewed articles (with more than 3,200 citations 
combined) highlighted significant technical and organizational challenges associated with their 
deployment. One key issue identified in 24 articles was scalability in multi-region environments, 
where synchronization latency and metadata consistency pose serious constraints on 
performance and availability. Articles covering global deployments noted that even with 
eventual consistency protocols, pipeline failures due to metadata corruption or schema drift 
occurred frequently in systems that lacked rigorous governance controls. Versioning overhead, 
especially in streaming use cases, was reported in 17 articles to increase storage costs and 
introduce operational complexity when historical states were maintained across multiple layers. 
In addition to these technical barriers, 21 articles addressed human-centric challenges, 
particularly the lack of standardized roles for data stewards and MLOps engineers, which led to 
fragmented workflows and untracked pipeline changes. Organizational silos also emerged as a 
recurring theme in 14 articles, where coordination gaps between data engineering and data 
science teams resulted in broken lineage, undocumented transformations, and delayed retraining 
cycles. These challenges emphasize that scaling AI-ready pipelines is not solely a matter of 
technology, but one that requires cohesive governance models, centralized metadata systems, 
and role clarity across operational teams. Therefore, the literature confirms that the successful 
adoption of AI pipeline architectures depends equally on process design, change management, 
and sustained cross-functional collaboration. 
DISCUSSION 
The findings of this systematic review strongly support the growing industry-wide adoption of 
modular data architectures, particularly the Medallion model. Earlier frameworks often 
emphasized rigid data pipelines with monolithic processing layers, which limited agility and 
reusability. In contrast, the layered approach of Medallion—organizing data into bronze, silver, 
and gold tiers—offers a practical solution to the need for refinement, governance, and 
reproducibility across data lifecycle stages. Compared to earlier studies that only conceptualized 
tiered data models, this review presents substantial evidence of operational implementations that 
validate its practicality in real-world AI environments. The degree of refinement achieved in the 
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silver and gold layers allows for seamless integration with machine learning systems, unlike the 
static data mart models previously documented. The real value lies in the fact that Medallion-
based architectures allow for concurrent data exploration, transformation, and modeling without 
redundancy. This is a significant evolution from the earlier ETL-centric paradigms that separated 
analytics from operational data storage. The current synthesis shows that Medallion architectures 
are not merely theoretical; they are actively used to support continuous learning systems, version 
control, and lineage—a functionality that previous systems struggled to achieve with clarity or 
consistency. The widespread adoption of cloud-native data engineering tools marks a departure 
from traditional on-premises data pipelines and static warehouse architectures.  
Earlier research typically emphasized the challenges of latency, scalability, and maintenance in 
self-hosted environments, where infrastructural complexity often outweighed analytical benefits. 
However, this review finds that cloud-native solutions like AWS Glue, Azure Data Factory, and 
GCP Dataflow offer automation, autoscaling, and integration flexibility that were largely absent 
in earlier models. Unlike previous systems that required manual intervention for pipeline tuning, 
modern cloud-native services automatically adjust compute and memory configurations based 
on workload demands. Moreover, they support both batch and streaming operations, giving 
them a competitive edge over earlier big data platforms that lacked dynamic scalability. In prior 
studies, the orchestration of workflows often required custom scripting and standalone cron jobs, 
but cloud-native tools now incorporate visual interfaces, template-based deployment, and API-
level extensibility that reduce development overhead. This evolution marks a significant 
inflection point from the challenges observed in earlier models, particularly those related to cost 
management, elasticity, and governance. The findings reinforce the notion that cloud-native 
architectures are not just infrastructural improvements but represent a strategic shift in how data 
engineering is operationalized in AI ecosystems.  
Compared to earlier literature that treated metadata as an auxiliary feature of data systems, this 
review illustrates a clear shift in the perception of metadata as a core operational requirement. 
Prior studies often limited metadata to basic descriptors such as column names and data types, 
while lineage was largely undocumented or managed through spreadsheets and ad hoc 
documentation. This review, however, finds that modern implementations view metadata as 
foundational to AI accountability, enabling systems to track data origin, transformations, and 
usage across the entire pipeline. Tools such as Apache Atlas, DataHub, and Microsoft Purview 
have introduced granular metadata collection and automated lineage tracking, which were 
absent or minimally implemented in older systems. The ability to perform impact analysis, trace 
input features to their raw origins, and maintain reproducible datasets is now critical for model 
auditability. This contrasts with earlier studies that only suggested the value of such practices 
without demonstrating how they could be operationalized at scale. The current findings also 
reveal that metadata systems are now deeply integrated into orchestration layers and feature 
stores, further differentiating them from the passive metadata registries of the past. This 
transition underscores a paradigm shift in which metadata and lineage are essential enablers of 
ethical, traceable, and reproducible AI—goals that were historically difficult to implement in 
legacy data environments. Earlier studies on data lake and warehouse architectures highlighted 
the performance and governance limitations of data lakes, as well as the rigidity and cost of 
warehouses.  
This review confirms that lakehouse frameworks effectively reconcile those limitations by 
combining scalable object storage with schema enforcement and transactional capabilities. The 
findings expand upon earlier conceptual models by presenting empirical evidence from 
operational implementations using Delta Lake, Apache Hudi, and Iceberg. While previous 
research often treated data lakes as passive repositories, lakehouses now actively support model 
training, versioning, and feature engineering—all from the same data source. Unlike the 
bifurcated systems of the past, where separate environments were maintained for training and 
inference, lakehouses facilitate a unified architecture that supports both analytical and 
operational AI workflows. Moreover, the review demonstrates that lakehouse systems integrate 
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seamlessly with orchestration tools, feature stores, and MLOps platforms, enabling real-time 
feature computation and retraining. This level of interoperability was largely missing in earlier 
systems, where AI readiness was constrained by fragmented infrastructure. The evolution from 
dual-pipeline designs to integrated lakehouse platforms reflects a fundamental shift in how data 
infrastructure supports intelligent systems, confirming the growing recognition that unified 
storage and compute models are essential for AI at scale. In comparison to earlier studies that 
primarily addressed batch processing pipelines, the present review finds a marked emphasis on 
real-time and streaming workflows within AI-ready data engineering. Historically, streaming 
solutions were limited in their adoption due to technical complexity, lack of fault tolerance, and 
insufficient tooling. However, current evidence from this review reveals that frameworks such as 
Apache Kafka, Spark Structured Streaming, and Flink have significantly matured, offering robust 
solutions for micro-batch and continuous event processing. These tools are now routinely used 
in conjunction with Medallion Architecture and lakehouse platforms to ensure low-latency data 
delivery and real-time model serving.  
In contrast to older systems that operated on daily or hourly batch windows, modern AI 
applications demand sub-second processing to support fraud detection, recommendation 
engines, and behavioral analytics. The integration of event streams into modern pipelines, often 
coordinated through API gateways and service meshes, illustrates a technological leap over prior 
architectures that lacked real-time observability. Moreover, these streaming systems now support 
precisely-once semantics, watermarking, and complex event hierarchies, which address many of 
the issues previously reported in early streaming literature. The evidence confirms a paradigm 
shift from batch-only paradigms to real-time, event-driven architectures, enabling AI systems to 
respond to data as it is generated rather than after it is stored and queried. Despite the maturity 
of modern tools and architectures, this review identifies persistent scalability and versioning 
challenges, particularly in global and multi-region AI deployments. Previous studies had already 
noted concerns with data synchronization and metadata consistency across distributed systems, 
and these issues remain evident in the current review. Although tools such as Delta Lake and 
Iceberg offer version control and transactional support, the overhead associated with storing 
historical versions and metadata logs introduces significant infrastructure costs at scale. Earlier 
systems suffered from schema rigidity and lacked rollback capabilities, but modern systems—
while more flexible—still encounter performance bottlenecks when managing high-frequency 
data updates across regions. Moreover, synchronization of data lakes across geographic 
boundaries continues to introduce latency and eventual consistency concerns. These issues are 
amplified in streaming environments where real-time demands conflict with consistency 
guarantees. While past research lacked sufficient empirical evidence on the impact of global 
deployment, this review identifies specific cases in which pipeline reliability decreased due to 
metadata replication failures or stale state references.  
Although advancements have been made, the current body of evidence suggests that the 
challenges of scalability and version control remain partially unresolved and will continue to 
shape the architectural decisions of data engineering teams operating at global scale. Earlier 
literature has often emphasized the technical components of AI systems, with minimal attention 
paid to the organizational dynamics that underpin sustainable pipeline management. This review 
highlights a critical gap in cross-functional collaboration, revealing that data science, data 
engineering, and MLOps teams frequently operate in silos. While the availability of powerful 
tools and platforms has improved dramatically, the coordination required to implement 
governance, versioning, and observability practices remains uneven. In contrast to earlier studies 
that viewed pipeline challenges as predominantly technical, this review finds that organizational 
misalignment is a substantial bottleneck in pipeline reproducibility and scalability. Specifically, 
the absence of clear roles for metadata management, feature ownership, and model governance 
contributes to undocumented transformations and broken lineage. Teams often lack shared 
protocols for schema evolution, resulting in incompatible updates that propagate errors through 
downstream AI models. Moreover, earlier frameworks rarely addressed the need for centralized 
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governance frameworks, but this review shows that without them, pipeline complexity increases 
and accountability decreases. The findings confirm that while technical infrastructure has 
advanced, the effectiveness of AI-ready pipelines depends equally on organizational maturity, 
cross-functional communication, and a shared commitment to data governance. Addressing 
these challenges requires both structural changes and cultural shifts that align technical execution 
with strategic AI goals. 
CONCLUSION 

The discussion of this systematic review underscores the convergence of emerging architectural 
models with evolving AI readiness requirements, positioning the Medallion Architecture and 
cloud-native integration as transformative frameworks in data engineering. Compared to 
traditional ETL and data warehousing approaches, the Medallion model—validated by over 42 
reviewed studies—offers modular, asynchronous processing that improves traceability and reuse 
across bronze, silver, and gold layers, addressing longstanding limitations of rigidity and schema 
coupling found in classical architectures like Inmon’s CIF and the star schema. Similarly, cloud-
native services such as AWS Glue, Azure Data Factory, and Google Dataflow, as documented in 
58 studies, demonstrate significant advancements from early Hadoop and MapReduce 
implementations by enabling elastic scaling, infrastructure abstraction, and seamless 
orchestration for batch and streaming workloads. These capabilities outperform earlier systems 
in latency, availability, and DevOps automation. Metadata management and lineage, once a 
theoretical ideal due to lack of supporting tools, are now deeply integrated into modern pipelines 
via platforms like Apache Atlas, Amundsen, and Microsoft Purview, which facilitate AI model 
explainability, versioning, and compliance—key themes covered in 39 articles. The rise of 
lakehouse architectures, explored in 36 reviewed works, confirms the architectural synthesis of 
data lakes and warehouses, supporting concurrent analytic and AI workloads without 
redundancy or data duplication. Unlike earlier lakes prone to schema drift and governance 
lapses, lakehouses equipped with Delta Lake, Hudi, and Iceberg enforce schema integrity and 
transactional consistency across distributed environments. Moreover, the operationalization of 
feature stores within these environments, covered in 29 studies, marks a departure from ad hoc 
ML workflows by supporting feature versioning, online-offline consistency, and low-latency 
retrieval. Governance and regulatory alignment, once treated as post-hoc, are now embedded 
within transformation and orchestration processes, enabling real-time compliance under GDPR, 
HIPAA, and CCPA. Despite these advancements, 31 studies highlight persistent organizational 
challenges, including cross-functional misalignment, tooling silos, and insufficient 
observability—factors that parallel concerns in earlier literature and emphasize the ongoing need 
for cultural and procedural maturity to fully realize AI-ready infrastructures. 
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