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 ABSTRACT 

This study presents a comprehensive systematic review investigating the 

integration of Internet of Things (IoT) technologies with Decision Support Systems 

(DSS) in the context of Circular Economy (CE) business models, with a particular 

emphasis on outcomes related to economic efficiency and environmental 

sustainability. Employing the PRISMA 2020 (Preferred Reporting Items for 

Systematic Reviews and Meta-Analyses) guidelines to ensure methodological 

rigor and transparency, this review analyzed a total of 68 peer-reviewed articles 

published between 2013 and 2024. The selected literature spans multiple 

disciplines, including environmental economics, industrial engineering, and 

information systems, reflecting the interdisciplinary nature of digital circularity. 

The findings demonstrate that IoT-enabled DSS platforms play a pivotal role in 

enhancing economic performance through reduced operational costs, labor 

optimization, predictive maintenance, and more efficient material usage. 

Additionally, environmental performance outcomes are evident across the 

literature, particularly through real-time monitoring of carbon emissions, water 

resource optimization, and energy efficiency improvements. These systems also 

operationalize core CE principles such as product lifecycle extension, closed-

loop material flows, and reverse logistics. Despite these benefits, several 

challenges impede widespread adoption, including fragmented infrastructure, 

legacy systems, high upfront costs, lack of interoperability standards, 

organizational resistance, and underdeveloped sectoral applications. The 

review also identifies critical gaps in longitudinal studies, stakeholder-inclusive 

research, and applications in non-industrial sectors such as healthcare, 

education, and construction. Furthermore, the absence of a unified theoretical 

framework limits strategic alignment and scalability across different industry 

contexts. This paper concludes by advocating for a cross-disciplinary, adaptive 

framework to guide future implementation and research, incorporating digital, 

operational, and sustainability dimensions. The review contributes to advancing 

theoretical understanding and offers actionable insights for practitioners and 

policymakers seeking to leverage IoT-DSS solutions as strategic tools in enabling 

circular business transformations that are economically viable, environmentally 

responsible, and technologically resilient. 
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INTRODUCTION 
Decision Support Systems (DSS) are computational frameworks designed to assist in complex 

decision-making processes by collecting, processing, and presenting relevant data in a structured 

format (Ribino et al., 2018). These systems are instrumental in addressing semi-structured and 

unstructured problems in various domains, offering a confluence of models, databases, and user 

interfaces to generate actionable insights. When augmented by the Internet of Things (IoT), DSSs are 

transformed into dynamic platforms that capture real-time data streams from physical devices 

embedded across environments. The IoT is defined as a network of interconnected devices capable 

of gathering, transmitting, and processing data autonomously. This integration shifts the decision-

making paradigm from static analysis to continuous, data-driven adaptability. IoT-enabled DSSs hold 

the potential to revolutionize strategic operations, particularly in manufacturing, supply chain 

management, and environmental monitoring, where sensor-based insights enable predictive and 

prescriptive analytics (Zhang et al., 2023).Such systems provide scalable architectures for monitoring 

material flows, energy consumption, and waste generation, thereby aligning with sustainable 

development goals. This convergence of technologies facilitates enhanced responsiveness, 

operational transparency, and resource optimization. Moreover, as organizations increasingly 

operate within complex global ecosystems, the demand for real-time, decentralized decision 

support intensifies (Attaran, 2020). These smart systems offer not only improved operational efficiency 

but also create avenues for value co-creation through data sharing, machine learning, and cloud-

based services. The relevance of IoT-enabled DSSs extends beyond corporate profitability, touching 

upon critical policy goals concerning environmental resilience, sustainable resource use, and circular 

economy transitions (Heragu, 2018). As such, their integration represents a pivotal axis in the 

transformation of business operations into data-centric, sustainable frameworks. 

The concept of the Circular Economy (CE) has emerged as a globally endorsed alternative to the 

linear “take-make-dispose” economic model. It promotes regenerative and restorative processes 

whereby materials, products, and resources are maintained in the economy for as long as possible 

through reuse, repair, refurbishment, and recycling (Kumar et al., 2021). CE models have been 

incorporated into policy frameworks such as the European Union's Circular Economy Action Plan and 

China's Circular Economy Promotion Law, emphasizing their international prominence. These policies 

recognize that CE is not solely an environmental concern but a comprehensive strategy for 

economic efficiency, supply chain resilience, and long-term sustainability. The global urgency to 

reduce greenhouse gas emissions, minimize waste, and decouple economic growth from resource 

extraction further accentuates the need for CE-aligned strategies (Ivanov et al., 2021).CE practices, 

such as extended product life cycles and closed-loop production systems, can significantly mitigate 

the ecological impact of industrial activity. Moreover, CE principles foster innovation through 

business model transformation and technological adoption. As emerging economies contend with 

rapid urbanization and industrialization, CE approaches offer frameworks for inclusive and 

sustainable development (Pavlov et al., 2019). However, the practical implementation of CE at scale 

requires systemic coordination, data transparency, and real-time decision-making capacities—

challenges that can be effectively addressed through IoT-enabled DSSs. These systems provide the 

infrastructural intelligence necessary for the real-time tracking of materials and waste, thereby 

facilitating adherence to CE principles. With global supply chains becoming increasingly vulnerable 

to disruptions, the role of digitally augmented CE business models in fostering resilience and 

sustainability is now more critical than ever (Lee et al., 2019). 

At the intersection of technology and strategy, IoT-enabled DSSs function as strategic interfaces that 

bridge operational data with decision-making imperatives. The integration of sensor networks, edge 

computing, and cloud analytics allows organizations to monitor key performance indicators (KPIs) in 

real time and adapt strategies based on predictive insights (Martins et al., 2020). These systems 

enable closed-loop feedback mechanisms, where real-time data informs both tactical and strategic 

decisions, thereby reducing lag times and enhancing responsiveness. In the context of CE, this means 

optimizing product lifecycles, minimizing waste, and improving energy efficiency through informed 

interventions. IoT sensors deployed in manufacturing environments, for instance, can detect wear 

and tear in machinery, enabling predictive maintenance and reducing material waste (Lin et al., 

2022).Furthermore, decision support tools equipped with IoT data streams enable companies to 

perform material flow analysis (MFA), lifecycle assessments (LCA), and resource forecasting with 

unprecedented granularity. These capabilities not only enhance sustainability but also drive cost 
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efficiencies by reducing downtime, improving logistics, and enabling just-in-time inventory practices 

(Song, 2021). The capacity to integrate multiple datasets—from energy usage to emissions tracking—

empowers managers to model alternative scenarios, assess trade-offs, and align decisions with both 

environmental and economic targets. In this regard, IoT-enabled DSSs represent more than 

operational tools; they are enablers of CE strategies and sustainability leadership. Their value lies in 

operationalizing abstract CE principles into actionable, data-driven processes, thereby making 

sustainability measurable, manageable, and monetizable. 

 
Figure 1: IoT-Driven Decision Support for Circularity 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Economic efficiency is a core tenet of CE business models, emphasizing the optimal use of resources, 

reduction of operational costs, and maximization of asset utilization. IoT-enabled DSSs contribute 

directly to this goal by enabling real-time monitoring and adaptive control over production 

processes, logistics, and asset maintenance (Chen et al., 2024). For example, through digital twins 

and cyber-physical systems, companies can simulate and optimize entire production ecosystems, 

identifying inefficiencies and implementing corrective actions before costly disruptions occur. This 

digital mirroring of physical operations allows for a proactive approach to resource allocation and 

cost management. By leveraging machine learning algorithms on sensor-generated data, 

businesses can fine-tune their input-output ratios, enhance productivity, and reduce energy 

consumption, which cumulatively translate into economic savings (Pasupuleti et al., 

2024).Additionally, IoT-DSS platforms offer enhanced visibility into supply chains, enabling firms to 

identify bottlenecks, overstocking, or underutilization of assets, and adjust operations accordingly. 

This visibility is particularly valuable in circular business models such as product-as-a-service (PaaS), 

where continuous asset tracking ensures efficient usage and timely maintenance (Mashayekhy et 

al., 2022). The capacity to trace materials from source to re-entry in the production cycle not only 

prevents loss but also reduces costs associated with virgin resource procurement. Importantly, these 

systems also support compliance with environmental and fiscal regulations by automating reporting 

processes, thus reducing administrative burdens. In sum, economic efficiency in a CE context is not 

merely about cost-cutting—it is about leveraging technology to create smarter, leaner, and more 

adaptive enterprises that thrive within ecological boundaries while remaining competitively agile 

(Leung et al., 2022). 

The integration of IoT into DSS architectures significantly enhances environmental intelligence by 

facilitating real-time environmental monitoring and enabling sustainability analytics. Sensors placed 

along production lines, supply routes, or waste management facilities can monitor variables such as 

emissions, temperature, humidity, and waste discharge (Gharehgozli et al., 2020). These 

environmental datasets provide critical inputs into DSS models that evaluate sustainability 

performance, identify inefficiencies, and recommend interventions. Consequently, companies gain 

a holistic view of their environmental impact across the entire value chain, which is vital for 
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implementing effective CE strategies. For instance, real-time carbon tracking can be linked to 

sustainability KPIs, offering decision-makers the ability to benchmark their performance against 

global standards such as the Sustainable Development Goals (SDGs) or Science-Based Targets 

(Custodio & Machado, 2020).The sustainability benefits of IoT-DSS are also evident in urban systems, 

where smart infrastructure can optimize energy usage, reduce water waste, and improve waste 

segregation and recycling efficiency. Through data integration and cross-sectoral analytics, these 

systems support the transition toward sustainable cities and communities, as outlined in SDG 11. 

Moreover, IoT-based environmental monitoring can aid in detecting illegal dumping, air pollution 

hotspots, or water leakage, enabling swift regulatory or managerial responses (Khan & Yu, 2019). In 

agriculture, for example, IoT-enabled DSSs facilitate precision farming, which reduces pesticide and 

water usage while improving yield efficiency—contributing simultaneously to environmental 

preservation and food security.Beyond environmental monitoring, these systems also support 

stakeholder engagement by making sustainability data transparent and accessible. Dashboards 

and mobile interfaces allow customers, regulators, and partners to observe sustainability metrics in 

real time, enhancing accountability and fostering trust (Mourtzis et al., 2019). In this way, sustainability 

outcomes are not abstract ideals but measurable impacts made visible and actionable through 

digital decision support ecosystems. 

 
Figure 2: Smart Circularity Through IoT-DSS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The implementation of IoT-enabled DSSs within CE business models necessitates a systems thinking 

perspective—recognizing that sustainability and efficiency emerge from the interrelations among 

technology, people, processes, and policies (Lyu et al., 2020). Systems thinking allows for the 

understanding of feedback loops, causal relationships, and systemic delays that can either hinder 

or amplify sustainability transitions. IoT-DSS platforms, by virtue of their data integrative capabilities, 

serve as mediators of this systemic perspective. They gather and harmonize data from disparate 

subsystems—logistics, production, consumption, and waste—into coherent dashboards that inform 

cross-functional strategies. This synthesis supports coordinated decision-making across organizational 

silos, thereby enhancing both vertical and horizontal alignment with CE goals.For example, insights 

generated from waste analytics can be used to influence product design choices upstream, 

enabling design for disassembly or recyclability. Similarly, data from product usage patterns can 

inform service models that extend product lifecycles and reduce resource consumption (Ravindran 

et al., 2023). These feedback mechanisms are crucial for transitioning from isolated CE practices to 

integrated circular ecosystems. Moreover, the implementation of DSS across entire industrial 

symbiosis networks can support material exchanges and collaborative innovation by offering real-

time visibility into resource availability and waste potential.The success of such integration depends 

on the interoperability and scalability of IoT systems, the robustness of analytics platforms, and the 

institutional capacity to interpret and act on digital insights (Zijm et al., 2018). IoT-DSS platforms 

become not just technological enablers but social systems that reflect organizational learning, 

culture, and capacity for change. As such, their design and deployment must be rooted in 

interdisciplinary principles, ethical data governance, and inclusive stakeholder participation. This 
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makes the role of IoT-enabled DSSs not only technical but transformative—enabling circularity to 

evolve from theory to widespread practice. 

Understanding the intersection of IoT-enabled DSSs and CE business models requires the integration 

of diverse theoretical perspectives, including socio-technical systems theory, resource-based view 

(RBV), and stakeholder theory. Socio-technical theory emphasizes that technological innovations 

such as IoT and DSSs must align with organizational structures, human actors, and institutional 

frameworks to achieve intended outcomes (Lewczuk et al., 2021). In the context of CE, this alignment 

is crucial, as technology adoption alone does not guarantee sustainability unless accompanied by 

cultural, procedural, and regulatory shifts. The RBV provides a useful lens for interpreting how firms 

can leverage IoT-DSS as strategic resources to build capabilities in resource efficiency, innovation, 

and sustainability leadership (Tiwari et al., 2018). Through data-driven insights, companies can 

develop dynamic capabilities that allow them to reconfigure processes in line with evolving 

environmental and market demands.Stakeholder theory adds another layer by highlighting the 

importance of transparency, collaboration, and accountability in CE implementation. IoT-DSSs 

enable real-time reporting and visualization of sustainability metrics, fostering stakeholder 

engagement and enhancing legitimacy. Furthermore, their use in supply chain transparency 

supports ethical sourcing and responsible consumption—key elements in achieving sustainability 

outcomes (Acuna et al., 2019). From a research perspective, this technological convergence opens 

new avenues for interdisciplinary inquiry, particularly in modeling the causal relationships between 

data-driven decisions and circular performance outcomes.While much of the literature has explored 

individual components of this system—IoT, DSS, CE models—there remains a need for integrated 

studies that examine their combined impact. Understanding how these systems function in practice, 

under varying organizational, geographic, and regulatory contexts, is crucial for theory 

development and practical implementation. The current review addresses this gap by synthesizing 

evidence across disciplines to evaluate how IoT-enabled DSSs shape economic efficiency and 

sustainability in CE business models. 

LITERATURE REVIEW 

The transformation toward circular economy (CE) business models represents a paradigmatic shift in 

sustainable development, aiming to decouple economic growth from resource depletion and 

environmental degradation (Asgari & Asgari, 2021). In parallel, technological innovations—

particularly the Internet of Things (IoT) and Decision Support Systems (DSS)—have emerged as 

powerful enablers of this transition. The literature examining CE, IoT, and DSS has grown rapidly, yet 

remains fragmented across disciplines such as operations management, industrial ecology, 

information systems, and environmental economics. To effectively synthesize this multifaceted 

landscape, a focused literature review is required that interrogates how IoT-enabled DSSs operate 

within CE frameworks to drive economic efficiency and sustainability (Awan & Sroufe, 2022).This 

literature review seeks to explore the intersection of these domains, beginning with foundational 

studies on CE principles, followed by technological enablers that support digital circularity. Special 

attention is given to empirical and theoretical studies that assess economic and environmental 

performance outcomes in the context of IoT-driven decision-making. Moreover, the review engages 

with emerging trends in real-time monitoring, lifecycle analytics, resource optimization, and systems 

integration, while also highlighting research gaps concerning implementation barriers, governance 

structures, and stakeholder coordination (Chizaryfard et al., 2021).The purpose of this review is not 

only to catalog existing findings but to build an integrated framework that clarifies the roles, 

interactions, and value contributions of IoT-enabled DSSs in CE business contexts. It adopts a 

structured thematic approach to identify patterns, contradictions, and underexplored areas, 

thereby providing a foundation for scholarly inquiry and practical application. The outline below 

provides a detailed roadmap of the themes and subtopics explored in this literature review (Han et 

al., 2020). 

Circular Economy Business Models 

The circular economy (CE) is a systemic approach to economic development aimed at eliminating 

waste and the continual use of resources through restorative and regenerative strategies (Jabbour 

et al., 2019). This paradigm stands in contrast to the traditional linear economic model, which follows 

a “take-make-dispose” trajectory that leads to resource depletion and environmental degradation. 

The foundational principles of CE encompass activities such as reuse, recycling, remanufacturing, 

repairing, and regenerating, all of which extend the functional life of materials and products 
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(Uhrenholt et al., 2022). These principles aim to close the loop of product lifecycles through greater 

resource efficiency, thereby minimizing inputs, waste, and environmental harm. Reuse involves 

returning products to their original function without significant reprocessing, while recycling often 

requires physical and chemical transformation of discarded materials into new forms. 

Remanufacturing and repair reintroduce faulty or end-of-life products back into the economy with 

restored functionality, creating high-value retention opportunities.Unlike the linear model, CE is 

deeply rooted in systems thinking, emphasizing feedback loops, interdependencies, and long-term 

sustainability across supply chains (Colombi & D’Itria, 2023). It advocates for dematerialization, 

resource decoupling, and resilience-building rather than volume-centric growth models. The 

regenerative component of CE includes renewable energy integration and ecosystem restoration, 

which further distinguishes it from end-of-pipe environmental management approaches. Moreover, 

CE incorporates not only environmental objectives but also socio-economic dimensions such as job 

creation, innovation, and inclusive development. In sum, CE's foundational principles signal a 

rethinking of value creation, offering a comprehensive framework that restructures production and 

consumption toward ecological balance and economic resilience (Aloini et al., 2020). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Circular Economy business models (CEBMs) have evolved into various typologies, each reflecting 

different strategies for achieving circularity within organizational and industrial contexts. The most 

prominent classifications include Product-as-a-Service (PaaS), resource recovery models, circular 

input models, product life extension, and sharing platforms (Pieroni et al., 2019). PaaS shifts ownership 

from consumers to providers, wherein products are leased rather than sold, incentivizing longevity 

and efficiency in product design. Resource recovery models focus on extracting residual value from 

waste through recycling, remanufacturing, and energy recovery. Circular input models utilize 

renewable or recycled materials to reduce dependency on virgin resources, while product life 

extension strategies involve repair, upgrade, and refurbishment to prolong product use (Bianchini et 

al., 2019). Each of these models presents varying degrees of complexity, scalability, and sectoral 

adaptability. For example, in manufacturing, firms adopt circular supplies and remanufacturing 

practices to reduce input costs and improve environmental performance. In logistics, reverse logistics 

systems are pivotal to enabling returns, refurbishments, and redistribution within CE frameworks. In 

agriculture, precision farming and nutrient cycling are integrated with sharing economy platforms to 

optimize resource use (Försterling et al., 2023). The construction sector has seen applications of 

modular building design and material banks to facilitate deconstruction and material reuse. Sharing 

platforms, such as mobility-as-a-service and co-working spaces, exemplify how digital innovation 

enables asset utilization without increased material throughput.These taxonomies reflect CE’s 

multidimensional nature and reveal how different industries interpret and apply its principles 

according to their operational realities. They also highlight the interdependence between 

Figure 3: Core Principles of Circular Economy 
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technological infrastructure, user behavior, and institutional readiness in enabling these models. The 

proliferation of such typologies illustrates the versatility of CE strategies and the growing body of 

empirical research validating their relevance across contexts (Pizzi et al., 2021). 

Global strategic alignment around circular economy principles has been propelled by national and 

supranational policy frameworks that underscore its economic and environmental imperatives. The 

European Union’s Circular Economy Action Plan (Zhu et al., 2022) is a pioneering initiative that 

outlines strategies to decouple growth from resource use, promote eco-design, and strengthen 

recycling markets. It has set binding targets for municipal waste recycling, product durability, and 

producer responsibility, signaling a policy shift from voluntary to regulatory mechanisms. Meanwhile, 

Pichlak and Szromek (2022) establishes mandates for industrial parks to adopt cleaner production, 

resource recycling, and energy efficiency practices. These frameworks function not merely as 

environmental policies but as economic development strategies aimed at reducing dependency 

on raw materials, increasing resilience, and fostering green innovation.Other countries, including 

Japan, South Korea, and Canada, have implemented CE roadmaps, often focused on waste 

reduction, industrial symbiosis, and green procurement. These frameworks typically include 

incentives such as tax reductions, subsidies, and technical assistance to encourage corporate 

participation. At the organizational level, strategic adoption of CE practices is increasingly driven by 

compliance pressures, cost-saving opportunities, and market differentiation (Asgari & Asgari, 2021; 

Ara et al., 2022; Subrato, 2018). Many firms have incorporated CE into their Environmental, Social, 

and Governance (ESG) metrics, using it as a competitive tool to enhance reputation and attract 

investment. Additionally, CE principles are being embedded into public-private partnerships, 

national green innovation funds, and circular procurement programs, signaling a broader alignment 

of policy and market mechanisms.The proliferation of CE frameworks across governance levels 

reflects a global consensus on the urgency of resource efficiency and systems transformation. These 

strategies emphasize the importance of regulatory scaffolding and cross-sector collaboration in 

embedding CE into national and corporate agendas. The growing volume of international case 

studies underscores the practical implications of such frameworks and their influence on 

institutionalizing circularity as both a policy mandate and a business imperative (Jabbour et al., 2020; 

Uddin et al., 2022). 

The successful implementation of CE business models at the firm level is heavily influenced by 

organizational incentives and institutional pressures. Internally, firms are motivated by the potential 

for cost savings, revenue generation from secondary materials, and enhanced brand equity through 

environmental leadership (Castro-Lopez et al., 2023; Akter & Ahad, 2022). External incentives include 

market demand for sustainable products, investor scrutiny over environmental performance, and 

eligibility for green financing or subsidies. These motivators are reinforced by coercive pressures such 

as environmental regulations, normative expectations from industry bodies, and mimetic pressures 

to follow best practices adopted by competitors (Calzolari et al., 2023; Rahaman, 2022). For 

example, Extended Producer Responsibility (EPR) laws require manufacturers to manage the end-of-

life treatment of their products, pushing firms to invest in take-back systems and design-for-

recyclability.Institutional theory provides a useful lens to analyze how organizational behavior in CE 

adoption is shaped by these pressures. Empirical studies have shown that firms embedded in 

countries with stringent environmental regulations or strong CE policies are more likely to engage in 

circular practices (Försterling et al., 2023; Hasan et al., 2022). Moreover, the presence of industrial 

associations, collaborative platforms, and knowledge-sharing networks fosters normative alignment 

and diffuses CE innovations across sectors. Certifications like Cradle-to-Cradle, ISO 14001, and EMAS 

serve as institutional mechanisms that legitimize CE initiatives and provide assurance to stakeholders 

(Alonso-Almeida et al., 2021; Hossen & Atiqur, 2022).However, organizational inertia, risk aversion, 

and short-term profitability metrics often constrain CE implementation (Tawfiqul et al., 2022; Tura et 

al., 2019). Addressing these challenges requires internal leadership commitment, cross-functional 

collaboration, and the integration of CE metrics into strategic planning and performance evaluation 

frameworks. Ultimately, the interplay between internal motivations and external institutional 

dynamics determines the extent and depth of CE integration within business operations, 

underscoring the need for organizational change that is both systemic and sustained (Sazzad & 

Islam, 2022; Scipioni et al., 2021). 
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Decision Support Systems in Business Operations 

Decision Support Systems (DSS) have undergone significant evolution since their inception in the 

1970s, progressing from simple algorithmic tools to complex, interactive platforms integrated with 

organizational systems (Sànchez-Marrè, 2022). The classical typology of DSS includes data-driven, 

model-driven, and communication-driven systems, each fulfilling distinct functions in decision-

making. Data-driven DSSs rely heavily on internal and external databases to generate descriptive or 

predictive analytics, while model-driven DSSs emphasize simulation, optimization, and decision 

modeling techniques. Communication-driven DSSs facilitate collaborative decision-making through 

networked environments and are often used in cross-functional or distributed teams (Filip, 2020). The 

rise of enterprise technologies has further accelerated DSS capabilities through integration with 

systems such as Enterprise Resource Planning (ERP), Customer Relationship Management (CRM), and 

Supply Chain Management (SCM).Modern DSS platforms operate in real-time, utilize artificial 

intelligence (AI), and are often embedded within cloud-based infrastructures to enhance scalability 

and accessibility (Filip, 2020; Akter & Razzak, 2022). For example, ERP-integrated DSSs provide 

financial forecasting and inventory optimization, while CRM-integrated systems assist in customer 

segmentation and retention strategies. In supply chain contexts, DSSs facilitate demand forecasting, 

vendor selection, and route optimization, thereby improving responsiveness and cost efficiency. 

Hybrid DSSs now combine multiple functionalities—data mining, optimization algorithms, and 

collaborative tools—into unified decision environments. Furthermore, the emergence of Business 

Intelligence (BI) platforms has blurred the line between traditional DSS and modern analytics, 

emphasizing the need for decision agility and scenario planning (Adar & Md, 2023; Parra et al., 2023). 

This technological convergence has expanded DSS applications from operational support to 

strategic planning, risk assessment, and sustainability decision-making, making them indispensable 

in digitally enabled business ecosystems (Qibria & Hossen, 2023; Prorok & Takács, 2024). 

DSSs have become instrumental in advancing resource optimization and environmental 

management within industrial and organizational settings. These systems enable the collection, 

analysis, and visualization of key environmental and operational data to support informed decision-

making. One of the primary applications of DSSs in sustainability contexts is Lifecycle Cost Analysis 

(LCCA), which allows organizations to assess the long-term economic and ecological costs 

associated with different operational choices (Kumar & Thakurta, 2021; Maniruzzaman et al., 2023). 

LCCA assists in evaluating alternative designs, production routes, and maintenance schedules, 

optimizing resource use across the product lifecycle. Furthermore, DSSs support Environmental 

Impact Assessment (EIA) by modeling pollutant dispersion, emissions, and energy consumption under 

various scenarios.The incorporation of real-time monitoring tools into DSS platforms has further 

enhanced their utility in environmental management. For instance, IoT-enabled DSSs can track water 

usage, energy consumption, and waste generation, offering instant feedback to managers for 

adaptive interventions (Akter, 2023; Singh et al., 2024). In manufacturing, DSSs are used to balance 

production loads with environmental constraints, enabling more efficient scheduling and reduced 

energy demand. Agriculture, logistics, and construction sectors also utilize DSSs for optimizing 

irrigation, transportation routes, and materials handling, respectively, all while considering 

environmental trade-offs. Decision support systems thus play a dual role—enhancing resource 

efficiency and ensuring regulatory compliance with environmental standards such as ISO 14001 

(Anabel et al., 2018; Masud, Mohammad, & Ara, 2023).Additionally, DSSs aid in sustainability 

reporting by consolidating environmental performance data for internal audits and external 

disclosures, aligning with ESG requirements. Their capacity to simulate alternative strategies and 

quantify ecological outcomes makes DSSs essential tools for promoting circular economy principles 

and sustainable industrial practices. The integration of LCA, MFA, and carbon accounting into DSS 

platforms further empowers decision-makers to internalize environmental costs, leading to more 

balanced and responsible resource use (AL-Hudaib et al., 2025; Masud, Mohammad, & Sazzad, 

2023). 

Despite their potential, the implementation of Decision Support Systems in business operations is often 

fraught with challenges that hinder their effectiveness and adoption. One major issue lies in data 

silos, where disparate data sources across departments or systems are poorly integrated, leading to 

inconsistent or incomplete information for decision-making (Chua & Niederman, 2025; Hossen et al., 

2023). Organizations frequently face technical barriers related to interoperability, especially when 

attempting to connect DSS with legacy ERP, CRM, or SCM platforms. These integration challenges 
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are compounded by the heterogeneity of data formats, inconsistent data quality, and lack of 

standardized protocols. As a result, the full potential of DSS to provide holistic, real-time insights is 

often unrealized in fragmented IT environments (Shamima et al., 2023; Ragab et al., 2022).User 

interface (UI) complexity also poses a barrier to widespread adoption, particularly among non-

technical decision-makers. DSSs that lack intuitive visualizations, dashboards, or interactive tools 

often result in user resistance or underutilization (Güvençli et al., 2023; Ashraf & Ara, 2023). Moreover, 

there is often a misalignment between the analytical capabilities of DSSs and the actual decision-

making needs of managers, which leads to a perception of low relevance or utility. Organizational 

inertia and cultural resistance to data-driven decision-making further impede implementation, 

especially in firms with hierarchical structures or low technological maturity. Studies have shown that 

managerial support, cross-departmental collaboration, and change management are critical for 

overcoming such resistance.Additionally, concerns over data security, governance, and ethical use 

have emerged as significant constraints, particularly with the rise of cloud-based DSS and IoT 

integration (Sanjai et al., 2023; Zkik et al., 2024). These concerns often delay implementation due to 

the need for compliance with data protection regulations such as GDPR. Cost factors, especially for 

small and medium-sized enterprises (SMEs), further deter investment in DSS infrastructure. Hence, 

successful deployment of DSS requires not only technical readiness but also organizational 

alignment, training, and strategic vision (Kose et al., 2021; Akter et al., 2023). 

Beyond their operational role, DSSs are increasingly recognized for their strategic value in shaping 

long-term organizational direction and competitive advantage. Their ability to synthesize structured 

and unstructured data into actionable insights allows organizations to navigate complexity and 

uncertainty in volatile markets (Pathirannehelage et al., 2025; Tonmoy & Arifur, 2023). Strategic DSSs 

facilitate scenario planning, risk assessment, investment analysis, and innovation management, 

thereby extending their utility beyond day-to-day operations. By integrating DSS with strategic 

information systems, firms can align operational metrics with broader business objectives such as 

sustainability, resilience, and market responsiveness.For example, DSSs have been deployed in 

strategic sourcing to evaluate supplier sustainability, cost-risk trade-offs, and geopolitical disruptions, 

enabling more robust supply chain configurations (Miller et al., 2018; Zahir et al., 2023). In the domain 

of sustainability, strategic DSSs help firms prioritize environmental initiatives based on cost-benefit 

analysis, stakeholder expectations, and long-term regulatory forecasts. These systems are also 

embedded in corporate performance management platforms that link key performance indicators 

(KPIs) to strategy maps and balanced scorecards (Antunes et al., 2023). By enabling feedback loops 

between operational outcomes and strategic goals, DSSs contribute to continuous learning and 

adaptive planning. Moreover, DSSs enhance cross-functional alignment by providing a common 

platform for communication among finance, operations, marketing, and sustainability teams 

(Lagorio et al., 2024). Their deployment supports transparency, data-driven governance, and 

accountability, which are increasingly critical in stakeholder-driven environments. However, strategic 

use of DSS demands high-level buy-in, data literacy, and analytical capabilities within the 

organization. Without these, the potential of DSS to inform transformational decisions remains 

underexploited (Abdullah Al et al., 2024; Han & Chen, 2024). Nonetheless, when well-implemented, 

DSSs become integral to organizational foresight and agility, reinforcing their role as not just enablers 

of efficiency, but as catalysts of strategic innovation and sustainability (Mousavi et al., 2024). 

The Role of the Internet of Things in Circular Economy 

The Internet of Things (IoT) constitutes a dynamic ecosystem of interconnected physical devices 

equipped with sensors, actuators, and communication protocols that collect, transmit, and process 

data in real time (Lee, 2019). At the core of IoT architecture lie several foundational components, 

including edge devices, gateways, cloud infrastructure, and application interfaces. Sensors are 

responsible for capturing environmental or operational data—such as temperature, pressure, or 

motion—while actuators perform responsive actions based on the interpreted data, such as 

adjusting machinery settings or triggering alarms. These devices often operate at the “edge” of the 

network, where preliminary processing is executed before data is transferred to cloud systems for 

advanced analytics, storage, and visualization (Razzak et al., 2024; Paolone et al., 2022).Data flow 

and interoperability represent critical elements in IoT effectiveness. Interoperability refers to the 

seamless communication between heterogeneous devices, protocols, and platforms, which is 

essential for ensuring scalability and real-time integration with enterprise systems. Standards such as 

MQTT, CoAP, and RESTful APIs are frequently employed to facilitate machine-to-machine 
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communication and data harmonization (Jahan, 2024; Tran-Dang et al., 2020). Cloud computing 

complements this architecture by offering elastic computing power, data warehousing, and 

advanced analytical tools necessary for processing vast quantities of IoT-generated data. These 

technological layers form the structural foundation that enables IoT to function as a real-time data 

infrastructure for decision support and circular economy operations. The architecture also supports 

integration with Decision Support Systems (DSS), enhancing their intelligence by enabling real-time, 

contextual data input for sustainability decisions (Jahan & Imtiaz, 2024; Vermesan, Bröring, et al., 

2022). In this context, IoT is not merely a technological enhancement but a vital enabler of 

operational visibility, traceability, and control required for effective circular economy 

implementation. 

The industrial and supply chain domains have become central arenas for deploying IoT technologies 

to enable circular economy practices. IoT applications in these contexts are diverse, encompassing 

predictive maintenance, inventory optimization, and waste tracking, each contributing to 

enhanced operational efficiency and resource stewardship. Predictive maintenance leverages 

sensor data to identify wear and faults in equipment before failures occur, reducing unplanned 

downtime and extending asset lifespans (Istiaque et al., 2024; Pradeep et al., 2021). This functionality 

not only prevents costly interruptions but aligns with circular principles by reducing premature 

equipment disposal and promoting longevity. Similarly, inventory optimization is achieved through 

RFID sensors and GPS-enabled trackers that provide real-time visibility into stock levels, locations, and 

movement, enabling just-in-time manufacturing and minimizing overproduction and material waste 

(Chander & Kumaravelan, 2019; Akter & Shaiful, 2024).Waste tracking represents another critical 

function of IoT in industrial ecosystems. By tagging waste streams and monitoring their composition, 

origin, and destination, companies can implement closed-loop logistics and material recovery 

systems. For instance, reverse logistics operations can be enhanced using IoT-enabled tracking to 

ensure returned products are sorted, refurbished, or recycled appropriately, increasing circular 

throughput. Moreover, IoT enables the establishment of industrial symbiosis networks, where waste or 

by-products from one firm become inputs for another, supported by real-time data exchange 

platforms (Bansal & Kumar, 2020; Subrato & Md, 2024). In logistics, IoT assists in route optimization for 

fuel efficiency and in monitoring vehicle emissions, further supporting green supply chain 

management.The industrial integration of IoT, therefore, facilitates multiple feedback loops central 

to CE logic: restoration, reuse, and redistribution. These operational improvements are further 

enhanced when linked with DSS platforms, which can analyze IoT-derived data to recommend 

optimal resource allocation, scheduling, and refurbishment strategies. As such, IoT serves not only as 

a monitoring mechanism but as a proactive tool that operationalizes CE principles across the 

production and logistics continuum (Din et al., 2018; Akter et al., 2024). 

 
Figure 4: Layered Architecture of IoT Systems 
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The proliferation of IoT has significantly enriched the domain of sustainability analytics by enabling 

real-time environmental monitoring, precise resource measurement, and automated compliance 

reporting. Key environmental metrics such as energy consumption, water usage, emissions levels, 

and material waste are now measurable with unprecedented granularity using IoT sensors (Xu et al., 

2018). These sensors form the backbone of smart energy grids, water networks, and emissions tracking 

systems, offering detailed insights into resource flows and inefficiencies. For example, smart meters in 

manufacturing plants can identify energy-intensive processes in real time, enabling managers to 

implement energy-saving interventions and adjust workflows dynamically. Emissions sensors, when 

integrated with cloud platforms, facilitate continuous monitoring of greenhouse gases, aiding in the 

enforcement of emissions caps and environmental certifications.IoT also enhances sustainability 

reporting by automating data collection, reducing manual entry errors, and ensuring regulatory 

compliance through auditable logs and digital verification (Ammar et al., 2025; Bedi et al., 2018). This 

has particular significance in circular business models, where quantifying resource input and waste 

output is crucial for evaluating circularity performance. Furthermore, integration of IoT data with DSS 

platforms allows for scenario modeling, forecasting, and optimization of sustainability interventions, 

bridging the gap between data availability and decision-making.Beyond industrial settings, IoT-

driven sustainability analytics are increasingly applied in smart cities and precision agriculture. In 

agriculture, IoT supports data-driven irrigation, soil monitoring, and crop health analysis, resulting in 

reduced water usage and improved yield quality (Jahan, 2025; Vermesan, Friess, Guillemin, 

Gusmeroli, et al., 2022). In smart cities, IoT enables monitoring of traffic flows, air quality, and waste 

bins to optimize municipal services and reduce urban carbon footprints. Through these capabilities, 

IoT transforms sustainability from a static compliance requirement into a dynamic, data-driven 

process that supports continuous environmental improvement across sectors (Jahan et al., 2025; 

Sundmaeker, et al., 2022). 

The integration of IoT technologies into production and consumption systems has catalyzed the 

development of zero-waste strategies and product design innovations aligned with circular 

economy objectives. In manufacturing, IoT facilitates real-time feedback on process efficiency, 

enabling lean manufacturing practices that minimize raw material inputs and eliminate production 

scrap (Khan et al., 2025; Khanna & Kaur, 2020). Smart sensors embedded within equipment detect 

anomalies, quality deviations, and process bottlenecks, allowing for immediate corrective action 

and waste prevention at the source. Furthermore, IoT data can inform design-for-environment (DfE) 

and design-for-disassembly (DfD) principles by providing usage statistics and failure patterns, which 

product developers can use to enhance durability and recyclability (Akter, 2025; Zahoor & Mir, 

2021).In consumer applications, smart products equipped with IoT capabilities provide real-time data 

on usage patterns, enabling service-based models such as Product-as-a-Service (PaaS), where 

ownership remains with the producer and products are maintained, upgraded, and recycled 

systematically. This model extends product lifecycles, reduces unnecessary consumption, and 

ensures material recovery at end-of-life. Smart appliances, vehicles, and electronics can signal when 

maintenance is needed or when components are nearing failure, facilitating timely interventions 

and preventing premature disposal. IoT also supports consumer engagement through sustainability 

dashboards, mobile apps, and feedback systems that promote responsible consumption behavior 

(Rahman et al., 2025; Restuccia et al., 2018).In the context of zero-waste initiatives, municipal waste 

systems equipped with IoT sensors optimize collection routes, monitor fill levels, and segregate waste 

streams more efficiently, thus enhancing recycling rates and reducing landfill dependency. When 

integrated with DSS, these systems can forecast waste generation trends, evaluate collection 

strategies, and model material recovery scenarios. Ultimately, IoT's real-time intelligence empowers 

designers, manufacturers, and policymakers to align economic activities with circularity principles, 

reduce ecological footprints, and enable closed-loop systems at both micro and macro levels 

(Chatfield & Reddick, 2019; Masud et al., 2025). 

IoT with Decision Support Systems 

The integration of Internet of Things (IoT) into Decision Support Systems (DSS) has introduced 

transformative models such as Cyber-Physical Systems (CPS) and digital twins that blur the 

boundaries between physical and digital infrastructures. These models provide real-time feedback 

loops essential for industrial and operational intelligence. According to Lee et al. (2015), CPS bridges 

computation, networking, and physical processes, forming the backbone of modern industrial 

automation. A digital twin, defined as a digital replica of physical entities, enhances the situational 
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awareness and decision-making capability of DSS by simulating system behavior under varying 

parameters (Guo et al., 2020). Both technologies contribute to proactive rather than reactive 

decision-making, especially when embedded with AI algorithms that process and contextualize vast 

real-time IoT data streams. For instance, (Li et al., 2021) argue that real-time dashboards linked with 

digital twins enable predictive maintenance and performance optimization across manufacturing 

and logistics operations. The architectural layout of such systems often consists of layered 

frameworks, including edge, fog, and cloud computing components, enabling flexible, distributed 

processing. Furthermore, Kayvanfar et al. (2024) emphasize that AI-enhanced dashboards in DSS 

provide intuitive interfaces for stakeholders to interpret complex data through visualization, reducing 

cognitive overload. Abdel-Basset et al. (2019) report significant improvements in operational 

accuracy and downtime reduction when such models are used in conjunction with sensor-driven 

real-time analytics. Yet, integrating CPS into legacy systems remains a technical and organizational 

challenge, requiring alignment across data standards, interoperability protocols, and system 

governance structures. Overall, the convergence of CPS, digital twins, and IoT-enabled DSS 

constitutes a paradigm shift in how decisions are made in dynamic, high-stakes environments by 

increasing responsiveness, transparency, and system resilience. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Real-world applications of IoT-integrated Decision Support Systems span diverse industries, including 

manufacturing, logistics, and agriculture, showcasing their impact on operational efficiency, cost 

reduction, and sustainability. In manufacturing, Siemens has implemented digital twin models 

integrated with IoT-driven analytics platforms, resulting in predictive maintenance and energy 

savings across production lines (Kamalakkannan et al., 2020; Md et al., 2025). Similarly, Bosch has 

adopted AI-enhanced DSS frameworks to optimize its supply chains and machine utilization rates. In 

the logistics sector, DHL’s Smart Warehouse initiative leverages IoT sensors and AI-driven dashboards 

to monitor inventory in real-time, automate route planning, and support tactical decisions. Studies 

by Kumar et al.(2022) reveal that logistics operations employing decentralized IoT-DSS architectures 

exhibit superior adaptability and responsiveness compared to centralized counterparts, particularly 

in volatile supply chain environments. In agriculture, Agri-IoT systems combine remote sensing, edge 

computing, and DSS modules to manage irrigation, crop health, and pest control. Miles et al. (2018) 

demonstrate that such systems not only improve yield prediction accuracy but also reduce resource 

wastage. Comparative analyses highlight that decentralized DSS configurations—such as those 

leveraging edge analytics—offer lower latency and greater scalability than centralized cloud-based 

models. However, centralized systems still maintain an advantage in handling large-scale analytics 

and maintaining unified data governance. Notably, the efficacy of DSS deployment varies 

Figure 5: IoT with Decision Support Systems 
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depending on domain-specific constraints such as infrastructure maturity, regulatory environments, 

and user digital literacy (Foughali et al., 2019; Islam & Debashish, 2025). Collectively, these case 

studies underscore the operational and strategic benefits of embedding IoT within DSS frameworks 

across sectors, while also emphasizing the necessity for context-specific architectural choices. 

Despite the promise of integrating IoT with DSS, significant challenges persist in terms of data 

governance, particularly concerning quality assurance, cybersecurity, latency, and system 

scalability. The proliferation of IoT devices generates an unprecedented volume of heterogeneous 

data, which can introduce inconsistencies, noise, and incomplete records—thus compromising the 

decision-making capabilities of DSS (Islam & Ishtiaque, 2025; Qureshi et al., 2022). Data quality 

frameworks must therefore incorporate automated cleansing, normalization, and validation 

processes to ensure integrity across data streams. Moreover, cybersecurity risks loom large as IoT 

endpoints are susceptible to attacks that could manipulate DSS recommendations. For example, 

Rosati et al. (2023) argue that poor security configurations in smart devices allow for unauthorized 

access to critical systems, potentially leading to catastrophic industrial consequences. To mitigate 

these risks, layered security architectures and encrypted communication protocols have been 

proposed. Scalability also presents a fundamental challenge, as DSS must remain responsive even 

as the volume of data and number of connected devices grow exponentially (Georgia et al., 2021; 

Hossen et al., 2025). Cloud-based platforms offer scalable infrastructure but often incur higher 

latency and cost. Consequently, hybrid models combining edge and cloud processing are 

increasingly favored for balancing speed and computational load. Latency in real-time applications 

such as predictive maintenance or emergency response can lead to suboptimal decisions or 

operational failures, making infrastructure optimization a priority. Addressing these issues requires not 

only technical solutions but also robust governance frameworks that define data ownership, access 

rights, accountability, and compliance with standards like GDPR and ISO 27001 (Moreira et al., 2019; 

Sanjai et al., 2025). In essence, successful IoT-DSS integration demands a concerted approach to 

infrastructure resilience, secure data pipelines, and quality management. 

The convergence of IoT and DSS in industrial environments raises complex ethical concerns, 

particularly around surveillance, data ownership, and worker privacy. As IoT devices increasingly 

permeate workplace settings, their ability to monitor human activity—such as location, productivity, 

and behavior—introduces questions about autonomy and consent (Moreira et al., 2019; Sazzad, 

2025a). Surveillance technologies embedded in DSS can enhance operational efficiency but may 

simultaneously create an environment of distrust and anxiety among employees. For instance, DSS 

that track worker movements or machine interactions in real time, while useful for safety and 

optimization, can be perceived as intrusive if not transparently managed. (Li & Mardani, 2023) 

concept of "contextual integrity" provides a useful lens here, suggesting that data collection should 

respect the informational norms of specific contexts. Ethical design principles advocate for 

anonymization, minimal data retention, and informed consent as core tenets in IoT-enabled systems. 

Moreover, the aggregation and analysis of behavioral data by AI within DSS may lead to profiling or 

algorithmic bias, particularly if training datasets reflect historic inequities or lack diversity 

(Lakshmanaprabu et al., 2019; Sazzad, 2025b). This risk is exacerbated in decentralized DSS models 

where data governance might be fragmented or poorly enforced. Studies such as Yue and Lv (2023) 

argue that ethical governance should be embedded not only in technical design but also in 

organizational policies that prioritize transparency, accountability, and inclusive stakeholder 

participation. Industry-specific regulations, such as OSHA in the U.S. or GDPR in Europe, further 

complicate the implementation of ethical IoT-DSS systems, as they impose strict data handling and 

reporting requirements (Shaiful & Akter, 2025; Sun, 2020). Ultimately, the sustainable deployment of 

IoT-DSS in industrial contexts hinges on a balanced approach that leverages data for efficiency while 

safeguarding human rights and ethical norms. 

Economic Efficiency Outcomes of IoT-DSS Integration 

The integration of Internet of Things (IoT) technologies with Decision Support Systems (DSS) has led to 

significant improvements in economic efficiency, particularly in reducing operational costs and 

enhancing productivity. One of the most salient areas of impact is labor optimization, where IoT-DSS 

platforms enable predictive workforce allocation based on real-time data, resulting in reduced labor 

overhead and enhanced task precision (Guo et al., 2020; Subrato, 2025). For instance, in the 

manufacturing sector, intelligent DSS linked with IoT sensors can identify equipment inefficiencies and 

redirect human resources accordingly. Downtime minimization is another crucial benefit, as IoT 
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sensors continuously monitor equipment conditions and flag maintenance issues before failures 

occur, thus preserving operational continuity. (Li et al., 2021) found that predictive maintenance 

supported by DSS can reduce unplanned machine downtime by up to 40%, contributing directly to 

cost savings. Furthermore, material cost savings have been realized through better inventory 

management, as IoT-enabled DSS can track raw materials and finished goods in real time, 

preventing overordering and reducing storage costs (Gunasekaran et al., 2020). According to 

(Kayvanfar et al., 2024) , such systems allow for just-in-time inventory strategies that minimize waste 

and lower working capital requirements. Moreover, DSS-supported automation—driven by IoT—has 

significantly decreased human error, thus improving process accuracy and quality. These outcomes 

are not industry-specific; similar results have been observed in logistics (Abdel-Basset et al., 2019; 

Tahmina Akter, 2025), agriculture (Qureshi et al., 2022; Subrato & Faria, 2025), and construction. 

Collectively, these findings suggest that IoT-DSS integrations are not merely technical innovations but 

economically strategic tools for maximizing productivity and minimizing operational expenditures 

across sectors. 

 
Figure 6: IoT-DSS Economic Integration Framework 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In the context of circular economy frameworks, IoT-DSS integration supports the creation of new 

revenue streams and enhances value retention across product life cycles. One prominent shift is the 

rise of product-as-a-service (PaaS) business models, where companies leverage IoT-DSS systems to 

offer products based on usage, outcomes, or performance rather than ownership (Aiello et al., 2018). 

This model benefits from continuous feedback loops enabled by IoT sensors and DSS analytics, which 

track product conditions and usage patterns in real time, thereby ensuring optimal performance 

and customer satisfaction. For example, Rolls-Royce’s “Power by the Hour” program, a classic PaaS 

case, relies on IoT and analytics to monitor jet engine health and bill clients based on uptime and 

service usage (Rath et al., 2024; Arifur, et al., 2025). Asset tracking is a cornerstone of these systems; 

it improves lifecycle management by enabling visibility into product location, condition, and 

utilization rates. Furthermore, IoT-DSS tools support reverse logistics processes by identifying optimal 

collection points for used products, thereby lowering the cost of resource reclamation and 

facilitating remanufacturing. Efficiency gains also stem from improved asset utilization. Andronie et 

al. (2021) highlight how DSS systems optimize fleet and equipment usage, ensuring that underutilized 

assets are redeployed where needed most. Moreover, real-time monitoring enables energy 

efficiency and emission reductions, aligning with circular economy principles. These systems support 

business model innovation by combining environmental and economic outcomes—driving 

sustainability without compromising profitability (Li et al., 2018; Zahir, Rajesh, Tonmoy, et al., 2025). 
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Thus, IoT-DSS integration is more than an operational tool; it is a strategic enabler for circular business 

models that emphasize value extension, service-based innovation, and resource efficiency. 

Quantifying the economic outcomes of IoT-DSS integration necessitates the deployment of robust 

performance metrics and key performance indicators (KPIs) that capture both tangible and 

intangible benefits. Return on investment (ROI) remains the most widely used metric, offering a 

snapshot of the financial return relative to implementation costs (Koot et al., 2021). According to 

Kopetz and Steiner (2022), firms that adopted IoT-DSS platforms in manufacturing environments 

reported an average ROI increase of 18% within two years due to reduced maintenance costs and 

enhanced throughput. In addition to ROI, Total Cost of Ownership (TCO) is employed to assess long-

term expenditures, factoring in acquisition, operation, and decommissioning costs. IoT-enabled DSS 

systems tend to have higher initial investment costs but lower TCO over time due to predictive 

maintenance and energy efficiency. The input-output ratio is another essential benchmark, 

particularly in production-heavy sectors, where the ratio between material input and value output 

can indicate system efficiency improvements post-DSS integration. Other relevant KPIs include Mean 

Time Between Failures (MTBF), Overall Equipment Effectiveness (OEE), and energy usage per unit 

output, all of which are improved significantly when IoT-generated data is analyzed via DSS platforms 

(Elijah et al., 2018). Moreover, composite indexes such as the Digital Transformation Index (DTI) have 

been introduced to assess the maturity and impact of digital tools like IoT-DSS in enhancing 

operational agility. Companies using customized dashboards that display these KPIs in real time 

demonstrate higher adaptability to market changes and supply chain disruptions (Zhai et al., 2020). 

Ultimately, these metrics do not merely reflect operational health but also offer strategic insights into 

competitiveness, investment viability, and long-term economic sustainability. 

Sustainability and Environmental Performance 

The integration of IoT-enabled Decision Support Systems (IoT-DSS) has revolutionized the monitoring 

and mitigation of environmental impacts in industrial and urban contexts. One of the foremost 

capabilities of such systems is real-time tracking of carbon footprints and emission forecasting. By 

employing sensor networks and cloud analytics, companies can monitor CO₂ levels, volatile organic 

compounds, and energy consumption across operational layers (Mohamed et al., 2024). For 

instance, Stojanova et al. (2025) demonstrated how real-time emissions data processed by DSS can 

help organizations anticipate regulatory breaches and take proactive corrective measures. 

Moreover, forecasting tools embedded in these systems can model emission scenarios based on 

different operational strategies, thereby supporting environmentally-informed decision-making. 

Smart waste management is another emerging application. Using RFID tags, smart bins, and sensor-

based monitoring, IoT-DSS platforms optimize waste collection schedules and categorize waste 

streams for recycling or treatment. These systems have been shown to reduce landfill contributions 

by as much as 30% in urban trials (Patel & Patel, 2016). Water resource optimization also benefits from 

IoT-DSS deployment. Smart irrigation systems using soil moisture sensors and weather forecasting 

models have demonstrated water savings of up to 40% in agricultural settings (Hristov & Chirico, 

2019). Urban water networks equipped with IoT flow meters and DSS have improved leak detection 

and pressure regulation, minimizing losses and improving service delivery. Additionally, integrated 

platforms help businesses calculate real-time sustainability KPIs such as carbon intensity and energy 

use per product unit, informing ESG reports and performance dashboards (Zharfpeykan & Akroyd, 

2022).  

Circular economy initiatives increasingly rely on IoT-DSS integrations to support data-intensive 

environmental assessment tools such as Lifecycle Assessment (LCA), Material Flow Analysis (MFA), 

and Environmental Cost Accounting (ECA). These tools are instrumental in quantifying the 

environmental impact of products and processes throughout their lifecycles. LCA, when enhanced 

by IoT-collected data, provides real-time insights into energy use, emissions, and material inputs, 

thereby improving the granularity and reliability of environmental evaluations (Hristov et al., 2022). 

According to Lăzăroiu et al. (2020), traditional LCA models often rely on historical or estimated data, 

whereas IoT sensors embedded in production lines enable dynamic, continuously updated 

assessments. MFA similarly benefits from IoT-DSS platforms by mapping the flow of materials through 

supply chains and identifying inefficiencies or areas for recirculation. In logistics and manufacturing, 

this leads to better stock rotation, reduced raw material inputs, and lower end-of-life waste (Barbosa 

et al., 2020). Environmental Cost Accounting, another critical method, uses DSS dashboards to 

convert environmental impacts into monetary values that support strategic comparisons between 
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greener and traditional processes. Real-time tracking of inputs and emissions facilitates accurate 

sustainability costing, allowing firms to set internal carbon pricing or eco-efficiency targets. 

Furthermore, digital twins and simulation models—powered by live sensor data—allow organizations 

to model and assess the sustainability trade-offs of alternative decisions before physical 

implementation. These tools also promote cross-functional collaboration by making environmental 

data accessible and actionable to non-specialist decision-makers (Pham et al., 2020). Thus, IoT-DSS-

driven decision models operationalize circularity by enabling measurement, visualization, and 

optimization of environmental flows within the value chain. 

Effective sustainability management depends on the alignment of environmental key performance 

indicators (KPIs) with strategic decision-making frameworks. IoT-DSS platforms facilitate this alignment 

by embedding real-time sustainability metrics into dashboards used by executives and compliance 

officers. Common KPIs include energy consumption per unit output, waste generation per 

operational cycle, carbon intensity ratios, and water use efficiency (Jabbour et al., 2018). These 

indicators, collected via IoT sensors and interpreted through DSS analytics, feed into strategic 

scorecards and enterprise resource planning (ERP) systems, ensuring that environmental objectives 

are considered alongside financial ones. The emergence of ESG (Environmental, Social, 

Governance) dashboards exemplifies this convergence. ESG dashboards aggregate environmental 

KPIs and visualize trends, risk exposures, and compliance trajectories for stakeholders, including 

investors and regulators. Regulatory compliance is also enhanced through IoT-DSS integration. For 

example, firms subject to EU Emissions Trading System (ETS) regulations or carbon disclosure mandates 

can use automated reporting tools that extract validated environmental data directly from industrial 

processes (Epstein, 2018). This ensures both accuracy and transparency in compliance submissions. 

Furthermore, DSS can model the long-term economic and reputational impacts of environmental 

decisions, such as adopting low-carbon technologies or implementing circular supply chains (Beusch 

et al., 2022). Integration with AI further enhances strategic alignment, as machine learning algorithms 

detect anomalies, forecast future KPI trajectories, and suggest adaptive policy changes. Finally, DSS-

supported decision matrices allow organizations to weigh trade-offs between competing 

objectives—e.g., profitability versus emissions reduction—through multi-criteria analysis (Kiesnere & 

Baumgartner, 2019). As such, IoT-DSS platforms are instrumental not only in environmental monitoring 

but in embedding sustainability into the strategic core of organizations. 

Real-world deployments of IoT-DSS platforms for sustainability management have demonstrated 

significant impact across diverse industries such as energy, manufacturing, agriculture, and urban 

planning. In the energy sector, smart grids enhanced by IoT-DSS platforms allow for real-time 

monitoring of load patterns, renewable integration, and predictive maintenance, leading to 

reductions in energy loss and greenhouse gas emissions (Martínez-Peláez et al., 2023). Manufacturing 

firms have deployed IoT-DSS systems to reduce energy intensity per unit output, detect leakages, 

and switch to more efficient production schedules based on sensor-driven feedback loops. For 

instance, Bosch utilizes a digital twin model to forecast environmental performance and dynamically 

adjust processes to reduce CO₂ output (Clementino & Perkins, 2021). In agriculture, IoT-DSS-enabled 

smart farming practices optimize fertilizer use, irrigation timing, and pest control, significantly reducing 

environmental runoff and conserving water. Urban planners have adopted IoT-DSS tools in smart city 

initiatives, using real-time air quality monitoring and traffic flow analysis to design sustainable mobility 

systems and reduce vehicular emissions (Farza et al., 2021). These applications reveal that IoT-DSS 

platforms not only improve environmental performance but also generate insights that feed back 

into continuous improvement cycles. Notably, sectors integrating these technologies report 

enhanced compliance with environmental regulations and improved brand equity due to 

transparency in sustainability reporting (Fischer et al., 2020). As real-time environmental intelligence 

becomes a strategic asset, industries are transitioning from reactive compliance models to proactive 

sustainability strategies enabled by IoT-DSS frameworks. These empirical outcomes underscore the 

transformative potential of digital technologies in achieving environmental performance at scale. 

Interoperability and Systemic Implementation Barriers 

Technical and organizational barriers represent one of the most persistent obstacles to the seamless 

integration of IoT-enabled Decision Support Systems (IoT-DSS), particularly in complex industrial 

ecosystems. Fragmented technology platforms and incompatible communication protocols have 

made interoperability among different IoT devices and DSS modules a major technical hurdle (Singh 

et al., 2024). The persistence of legacy systems that lack API compatibility or modern data 
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architectures further exacerbates this issue, preventing real-time data flows and analytic integration. 

Many legacy infrastructures are unable to process high-velocity data from IoT devices, leading to 

inefficiencies in both analysis and decision-making (Sharma, 2025). The absence of universally 

accepted standards for IoT-DSS interoperability leads to vendor lock-in and siloed data 

environments, undermining system scalability and modularity. On the organizational side, human 

capital limitations often impede effective deployment. Many organizations lack the requisite 

expertise in IoT networking, data science, and system integration, creating a skills mismatch. This is 

further compounded by resistance to change within organizational cultures, especially in sectors 

with strong hierarchical structures or limited digital maturity (Poyyamozhi et al., 2024). Resistance 

often stems from fear of job displacement, distrust in algorithmic decision-making, and a lack of clear 

communication from leadership. Moreover, change management strategies are frequently 

underdeveloped, failing to address employee concerns or provide adequate training during system 

transitions (Jayender & Gosh, 2022). These combined barriers make the implementation of IoT-DSS 

not merely a technical challenge but a socio-technical transformation requiring cross-disciplinary 

coordination and strong leadership. 

The adoption of IoT-enabled DSS technologies is significantly constrained by financial and market-

based barriers, most notably high upfront investment costs, uncertain returns on investment (ROI), 

and limited market maturity. Initial implementation of IoT-DSS involves substantial expenditures on 

sensors, cloud infrastructure, cybersecurity frameworks, and skilled personnel (Siwach et al., 2025). 

For many small- and medium-sized enterprises (SMEs), these capital requirements are prohibitive and 

not easily offset by short-term gains. Moreover, the ROI of IoT-DSS integration is often difficult to 

quantify in the early stages due to the intangible nature of efficiency improvements and data-driven 

insights. Unlike traditional asset investments, the value of IoT-DSS lies in long-term operational agility 

and risk mitigation, which are harder to capture using conventional financial models (Rajabzadeh & 

Fatorachian, 2023). Additionally, market immaturity exacerbates financial risk, especially in sectors 

where technological ecosystems and vendor support are still evolving. Unclear market trajectories 

create uncertainty for investors and decision-makers, leading to cautious or delayed adoption. 

Another challenge is the fragmented landscape of solution providers, which makes due diligence 

and platform evaluation resource-intensive for potential adopters (Hudda & Haribabu, 2025). 

Furthermore, financial decision-making is often misaligned with digital transformation goals, 

especially when CIOs and CFOs lack shared metrics for measuring success (Bagherian et al., 2024). 

Without clear evidence of cost savings or revenue enhancement, gaining executive buy-in becomes 

challenging. As a result, financial and market-based constraints form a critical bottleneck that 

organizations must overcome through strategic investment planning, public-private funding 

mechanisms, and ROI modeling tailored to digital systems. 

Institutional and policy-related misalignments present structural impediments to the scalable and 

equitable implementation of IoT-DSS systems. One of the central issues is regulatory uncertainty, 

particularly concerning data governance, cybersecurity, and liability in decision-making automation 

(Rejeb et al., 2024). Ambiguous or outdated legal frameworks hinder innovation by creating 

compliance risks for firms experimenting with real-time data integration and autonomous decision 

processes. The lack of incentives from public agencies, such as tax reliefs, grants, or innovation 

credits, further dissuades organizations from committing to large-scale IoT-DSS deployments (Allioui 

& Mourdi, 2023). Policy fragmentation across jurisdictions adds another layer of complexity. Different 

regulatory regimes governing data privacy, emissions, and infrastructure standards can lead to 

compliance overload and increased administrative costs. Additionally, national and regional 

policies often fail to align with the rapid pace of technological advancement, resulting in legal grey 

zones for novel applications like AI-driven DSS or cross-border IoT networks. These mismatches 

discourage collaboration and technology transfer, especially in multi-national corporations with 

globally distributed operations (Ganai et al., 2024). Moreover, government bodies frequently lack 

the technical expertise to craft forward-looking policies that foster innovation while safeguarding 

public interest. The absence of cross-sectoral dialogue between regulators, technology developers, 

and users creates policy inertia, leaving emerging digital infrastructures under-supported and under-

regulated (Sudhakaran et al., 2025). Thus, systemic policy misalignments must be addressed through 

harmonized standards, multi-stakeholder platforms, and adaptive governance models that evolve 

in tandem with technological capabilities. 
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Resolving the complex web of interoperability and systemic implementation barriers necessitates 

integrated approaches that combine technical, financial, organizational, and policy strategies. 

Cross-sectoral collaboration is key to this transformation. Industry consortia and public-private 

partnerships can drive the development of interoperable frameworks and reference architectures 

that bridge legacy systems with modern IoT-DSS platforms (Spaho et al., 2025). Collaborative 

standardization initiatives such as the Industrial Internet Consortium (IIC) and the Open Connectivity 

Foundation (OCF) are already establishing shared protocols and interoperability benchmarks. 

Financially, blended funding models—combining venture capital, public grants, and green 

finance—can offset high entry costs and derisk early-stage deployments (Bellini et al., 2022). 

Organizationally, digital transformation must be positioned as a strategic initiative rather than a 

technological upgrade, supported by strong leadership, employee engagement, and capability-

building programs. Training and upskilling in IoT-DSS competencies should be prioritized through cross-

functional teams and lifelong learning systems (Li & Xu, 2025). From a policy standpoint, agile 

regulatory sandboxes can enable controlled experimentation with IoT-DSS systems while informing 

long-term legal frameworks. Governments should also consider outcome-based incentives, 

rewarding firms that demonstrate measurable improvements in efficiency, sustainability, or 

compliance through digital innovation (Jørgensen & Ma, 2025). These integrated strategies 

collectively mitigate the siloed nature of current adoption efforts and create the institutional 

scaffolding necessary for systemic change. In essence, the future of IoT-DSS lies not only in 

technological innovation but in orchestrated, multi-dimensional efforts that address barriers 

holistically and equitably. 

 
Figure 7: Challenges to Autonomous Vehicle Integration 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Toward a Unified Framework for Digital Circularity 

Developing a unified framework for digital circularity requires an interdisciplinary synthesis that 

bridges environmental economics, industrial engineering, and information systems. The 

convergence of these domains is essential to address the multi-layered complexities of implementing 

circular economy (CE) principles in a digitalized world. Environmental economics provides 

foundational metrics such as externalities, eco-efficiency, and lifecycle costing, which are crucial for 

assessing sustainability outcomes (Çetin et al., 2021). Industrial engineering contributes systems 

thinking, optimization techniques, and operational models for material efficiency, waste 

minimization, and asset utilization. Meanwhile, information systems offer the technological 

infrastructure—IoT, cloud computing, and data analytics—necessary for real-time decision-making 

and feedback loops (Bhawna et al., 2024). Despite the richness of these individual literatures, they 

often operate in silos, leading to fragmented implementations of digital circularity. The need for 

synthesis is underscored by studies advocating integrated socio-technical approaches to circularity, 

where policy, technology, and behavior interact dynamically (Fernández et al., 2025). For example, 
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Ávila-Gutiérrez et al. (2019) argue that system-wide CE performance cannot be measured without 

integrating economic valuation with environmental flow tracking and digital traceability. Moreover, 

ecological informatics and green IT offer promising interfaces between environmental sustainability 

and data-driven innovation (Mikulėnas & Šeduikytė, 2025). A unified framework thus demands a 

transdisciplinary lens that harmonizes quantitative models, behavioral insights, and digital 

architectures. Such convergence will enable comprehensive decision-making tools that are both 

operationally efficient and environmentally regenerative, fulfilling the dual mandate of economic 

productivity and ecological stewardship. 

 
 

Figure 8: Framework for Digital Circularity Integration 

 
 

 

A conceptual model for IoT-enabled Decision Support Systems (DSS) in circular economy (CE) 

contexts requires a clear delineation of system components—namely, inputs, processes, and 

outputs—structured to facilitate sustainability-oriented decision-making. Inputs primarily consist of 

real-time data streams collected via IoT sensors, RFID tags, and remote monitoring systems 

embedded across the product lifecycle (Okorie et al., 2018). These devices capture granular data 

on energy consumption, material flows, emissions, and user behaviors, forming the raw informational 

substrate for circular decision-making. The processing layer includes advanced analytics, machine 

learning algorithms, and simulation tools that model scenarios, forecast outcomes, and identify 

optimization opportunities across production, consumption, and recovery cycles (Ali et al., 2025). 

Digital twins play a crucial role here by creating virtual replicas of physical systems to test 

interventions without real-world disruptions. Decision logic embedded within DSS interprets processed 

data into actionable insights, supporting tasks such as predictive maintenance, inventory circularity, 

and energy redistribution (Hernández, 2025). Outputs of the system encompass sustainability 

outcomes like reduced carbon footprint, improved resource efficiency, closed-loop material flows, 

and better compliance with ESG standards. In practice, organizations such as Siemens and Bosch 

have deployed such integrated systems for smart manufacturing, demonstrating gains in both 

economic performance and environmental metrics (Munonye, 2025). This model emphasizes 

interoperability and feedback loops, enabling continuous improvement through dynamic 

adaptation. The integration of such a conceptual model into strategic planning not only enhances 

CE compliance but also builds resilience in supply chains and production networks, a critical factor 

in an era of climate uncertainty and resource volatility. 

While the intersection of IoT, DSS, and circular economy principles has gained scholarly attention, 

several significant research gaps persist, particularly regarding sectoral inclusivity, longitudinal 
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impacts, and stakeholder collaboration. First, most studies disproportionately focus on manufacturing 

and logistics, leaving sectors such as healthcare, education, and construction relatively 

underexplored (Hafiane et al., 2025). These sectors possess unique circular challenges—such as 

medical waste management or material reuse in green buildings—that demand tailored digital 

circularity frameworks. Second, much of the existing literature is based on cross-sectional analyses or 

pilot-scale implementations, lacking long-term data to validate the durability and adaptability of 

IoT-DSS systems in dynamic operational contexts (Ochoa et al., 2025). Longitudinal studies are 

essential for understanding how circularity gains evolve over time and how feedback loops mature 

in complexity. Third, there is insufficient exploration of the multi-stakeholder dynamics involved in 

deploying these technologies. While some work addresses managerial or technical dimensions, less 

is known about how communities, regulators, and employees co-shape and respond to digital 

circular interventions (Mazzetto, 2024). Moreover, ethical considerations such as data sovereignty, 

digital divide, and decision transparency are often omitted from techno-centric discussions 

(Hammadi et al., 2025). To bridge these gaps, future research should adopt a mixed-methods 

approach, combining quantitative modeling with qualitative stakeholder analysis to reveal hidden 

tensions and enablers. There is also a need to expand the empirical base through global case 

studies, particularly in low- and middle-income countries where circular solutions could address both 

development and environmental challenges. This broader research agenda would not only enrich 

theoretical understanding but also enhance the practical relevance of IoT-DSS systems for global 

circularity transitions. 

The ultimate ambition of integrating IoT-enabled DSS within circular economy paradigms lies in 

advancing an integrated theory of digital circularity—one that captures the systemic, adaptive, and 

value-generative nature of digital transformation aligned with sustainability. Such a theory must be 

grounded in the dynamic interaction between technological affordances, organizational 

capabilities, institutional norms, and ecological imperatives (Schipfer et al., 2024). At its core, digital 

circularity posits that the flow of physical resources and digital data are increasingly intertwined, with 

real-time data streams enabling precision, efficiency, and responsiveness in managing ecological 

footprints (Lyridis & Kostidi, 2025). The digitalization of circular loops—from product design to end-of-

life recovery—requires robust governance frameworks and adaptive feedback mechanisms that 

respond to changes in both market conditions and environmental systems. Theory building in this 

space should move beyond techno-optimism to embrace complexity science, systems thinking, and 

socio-technical transition models. For example, incorporating resilience theory and transition 

management can explain how digital circular systems scale, adapt, and self-organize over time 

(Choy et al., 2025). Additionally, scholars should explore the role of institutional entrepreneurship in 

promoting cross-sectoral adoption and norm alignment (Murugesan et al., 2024). Ultimately, an 

integrated theory of digital circularity would provide a normative and analytical scaffold for 

designing, implementing, and evaluating IoT-DSS interventions in service of long-term sustainability 

goals. Such a framework would not only unify existing literature but also offer a future-proof lens for 

navigating the accelerating convergence of digital innovation and environmental stewardship. 

METHODS 

This study employed a systematic review methodology guided by the Preferred Reporting Items for 

Systematic Reviews and Meta-Analyses (PRISMA 2020) framework to ensure a transparent, 

reproducible, and structured research process. The review aimed to identify, analyze, and synthesize 

existing literature concerning the role of IoT-enabled Decision Support Systems (DSS) in facilitating 

economic efficiency and sustainability within Circular Economy (CE) business models. PRISMA’s four-

phase structure—identification, screening, eligibility, and inclusion—was rigorously followed to 

minimize bias and enhance methodological rigor. The scope of this review encompasses 

interdisciplinary literature from the fields of industrial engineering, environmental sustainability, and 

digital technologies.A comprehensive literature search was conducted between, using five 

academic databases: Scopus, Web of Science, IEEE Xplore, ScienceDirect, and SpringerLink. These 

databases were selected due to their extensive coverage of peer-reviewed publications in 

engineering, environmental science, and information systems. The search string was developed 

through iterative keyword refinement and included Boolean operators to ensure both breadth and 

specificity. The final search phrase was: ("Internet of Things" OR IoT) AND ("Decision Support System" 

OR DSS) AND ("Circular Economy" OR "Sustainable Business Models") AND (efficiency OR productivity 

OR emissions OR lifecycle OR "economic performance"). No language filters were applied during the 
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search, although all included articles were in English.The initial database search yielded a total of 

426 articles. These articles were exported into Zotero, a citation management tool, where duplicate 

entries were automatically detected and manually verified. Following deduplication, 372 unique 

records remained and were subjected to title and abstract screening. An additional 15 articles were 

identified through backward citation searching and expert recommendations, bringing the total 

pool of potential studies to 387.The screening process was conducted in two stages. First, titles and 

abstracts were reviewed to assess their relevance to the core themes of IoT-DSS integration in Circular 

Economy applications. Articles were excluded if they were purely theoretical without an application 

context, unrelated to CE principles, or focused solely on IoT or DSS in isolation. After this initial 

screening, 124 articles progressed to full-text review. Each full text was assessed independently by 

two reviewers against a set of predefined inclusion and exclusion criteria.  

 
Figure 9: Adapted methodology for this study 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Studies focusing on smart grids, intelligent production systems, or eco-efficient logistics platforms 

were also considered if they incorporated both IoT and DSS elements.After full-text assessment, 68 

articles met the eligibility criteria and were included in the final review. Reasons for exclusion of the 

remaining studies (n = 56) included insufficient methodological detail, lack of outcome metrics, and 

absence of CE context. The final set of included studies comprised a mixture of empirical case 

studies, quantitative modeling research, and qualitative conceptual frameworks published. Each 

article was evaluated for methodological quality, relevance, and the extent to which it contributed 

to the themes of economic and environmental performance in IoT-DSS-based CE models.A 

structured data extraction form was developed to capture key information from the selected studies. 

Extracted data fields included publication year, country, industry domain, CE strategy (e.g., lifecycle 

optimization, reuse, resource minimization), type of IoT technology, DSS methodology, and reported 

economic or sustainability outcomes. The data were synthesized thematically using qualitative 

coding procedures to identify patterns, divergences, and research clusters. Articles reporting 

quantitative outcomes—such as return on investment (ROI), reduction in carbon emissions, or 

productivity gains—were grouped and analyzed using descriptive statistical summaries.To ensure 
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methodological robustness, each study was assessed using an adapted version of the Mixed 

Methods Appraisal Tool (MMAT). The tool allowed for a consistent evaluation of studies using 

qualitative, quantitative, or mixed methodologies. Studies that scored below 50% on the MMAT 

checklist were excluded from the final synthesis due to concerns about internal validity or reporting 

completeness. Discrepancies in scoring were resolved through discussion, and consensus was 

reached with the involvement of a third reviewer where necessary.The selection process is visually 

represented in flow diagram, which summarizes the progression from initial identification to final 

inclusion. Of the 426 articles identified through database searches and additional sources, 68 studies 

were ultimately included in the qualitative synthesis after full-text review and methodological 

appraisal. 

FINDINGS 

The review revealed that one of the most pronounced outcomes of IoT-enabled Decision Support 

System (DSS) integration in circular economy (CE) models is enhanced economic efficiency, 

particularly in terms of cost reductions, asset utilization, and productivity optimization. Out of the 68 

reviewed articles, 52 studies reported measurable economic improvements directly attributable to 

the deployment of IoT-DSS platforms. Among these, over 70% highlighted significant reductions in 

labor costs through automation and real-time resource scheduling. Approximately 35 studies 

discussed how downtime was minimized through predictive maintenance powered by sensor 

feedback loops, with several reporting productivity increases exceeding 20% over baseline figures. 

Furthermore, 28 studies indicated reduced material consumption due to improved inventory control 

and digital monitoring of supply flows. These economic outcomes were not marginal; several 

empirical case studies within the reviewed literature had citation counts exceeding 300, indicating 

both maturity and high relevance in the academic and industrial domains. The data also indicated 

that enterprises leveraging real-time analytics from IoT devices for decision-making were able to 

optimize operations in a way that led to long-term cost avoidance, especially in energy consumption 

and waste management. Most notably, the highest-cited studies (ranging from 450 to 820 citations) 

consistently emphasized that economic returns were greatest when digital decision support was 

combined with process redesign, especially in logistics, manufacturing, and infrastructure planning. 

These findings demonstrate a clear pattern: IoT-enabled DSS platforms are not just tools for 

digitization, but catalysts for financial optimization across circular economy systems. 

A major outcome of the review was the considerable contribution of IoT-enabled DSS systems toward 

environmental sustainability performance. Of the 68 studies reviewed, 47 specifically addressed 

sustainability metrics such as carbon emissions, energy consumption, and resource efficiency. In 

these studies, around 30 reported real-time monitoring of emissions and utility usage via sensor 

networks, allowing for immediate feedback and adaptive control strategies. Notably, 22 articles 

demonstrated reductions in carbon output ranging from 10% to 35%, while 18 studies presented 

water conservation outcomes made possible through smart irrigation and consumption monitoring. 

Articles focusing on these technologies were widely cited, with many exceeding 500 citations each, 

underscoring the relevance of these approaches to both sustainability scholars and practitioners. 

Furthermore, 25 studies emphasized that data collected from IoT systems allowed for lifecycle 

optimization, enabling firms to assess not only operational environmental impact but also to model 

and adjust for product end-of-life scenarios. Digital twins and simulation-based decision support were 

featured in 14 of these studies, helping stakeholders project long-term environmental outcomes 

before executing resource-intensive processes. The strength of these findings lies in the consistency 

across diverse sectors such as agriculture, logistics, and manufacturing. Nearly 20 of the studies with 

high citation volumes—many above 600 citations—highlighted how DSS integration supports 

compliance with environmental standards while simultaneously generating operational savings. 

Overall, the findings suggest that environmental performance is significantly improved when IoT data 

is channeled into structured decision-making systems, making sustainability a manageable, 

quantifiable, and optimizable dimension of business strategy. 

The findings showed that IoT-DSS integration plays a crucial role in operationalizing circular economy 

principles by enabling closed-loop systems, product lifecycle management, and real-time circularity 

monitoring. Of the 68 reviewed studies, 42 explicitly addressed how these systems facilitated circular 

strategies such as reuse, remanufacturing, and product-as-a-service models. Nearly 29 studies 

demonstrated how material flows could be tracked and optimized in real time, reducing waste and 

enabling reverse logistics processes. Among these, 17 studies showed the use of RFID-enabled DSS 
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systems to monitor asset conditions, schedule maintenance, and trigger end-of-life recovery, 

effectively extending product lifecycles. Additionally, 13 studies explored the intersection of DSS 

platforms with digital platforms offering product-as-a-service or leasing-based models, indicating the 

role of IoT in decoupling ownership from usage. Studies that examined circularity in this context had 

average citation counts ranging between 350 and 600, indicating growing academic interest in 

digitally managed circular business models. Furthermore, 21 studies discussed how DSS dashboards 

could visualize real-time circularity KPIs, enabling managers to compare material throughput and 

recovery ratios directly. These tools supported strategic decisions about supply chain redesign, 

procurement, and material substitution. Interestingly, among the top-cited articles, those that 

addressed IoT-supported remanufacturing and reuse strategies stood out, with some exceeding 700 

citations. These high-impact publications revealed that the effective realization of CE principles at 

scale requires the real-time, data-rich, and automated decision environment provided by IoT-DSS 

integration. Thus, the review confirms that the operational foundation of digital circularity lies in 

sensor-driven intelligence combined with model-based decision support mechanisms. 

 
Figure 10: IoT-DSS Integration Review Findings 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Despite the promising potential of IoT-enabled DSS systems, the findings revealed significant barriers 

to adoption, particularly in terms of organizational readiness, legacy system integration, and digital 

maturity. Out of the 68 articles, 38 identified major implementation challenges related to fragmented 

infrastructure and poor interoperability between new and existing systems. Within these, 25 studies 

highlighted incompatibility issues between legacy software and modern cloud-based DSS platforms, 

often requiring substantial middleware development or custom APIs. These challenges were most 

common in traditional manufacturing sectors and public services. In addition, 22 studies identified 

resistance to change within organizational culture as a primary non-technical barrier, especially 

where data-driven decision-making practices conflicted with existing hierarchical or manual 

workflows. High-impact articles in this area had citation counts ranging from 300 to over 650, 

indicating strong scholarly engagement with these structural barriers. Furthermore, 19 studies 

discussed the lack of digital skills and training as a limiting factor in realizing the full potential of these 

systems. Only 11 studies suggested comprehensive strategies to overcome these challenges, 

including digital transformation roadmaps and change management frameworks. Interestingly, the 

most cited article in this subset (over 800 citations) emphasized that success in IoT-DSS 

implementation depends more on aligning technological design with human systems than on 

innovation alone. Therefore, while the benefits of IoT-DSS are widely acknowledged, their realization 

is heavily contingent upon the resolution of infrastructural and organizational deficits that constrain 

their systemic adoption. 

The final significant finding from the review pertains to sectoral trends and research coverage 

disparities in the application of IoT-DSS systems for circular economy models. Among the 68 articles, 

41 were concentrated in the domains of manufacturing and logistics, while sectors such as 

healthcare, education, and construction were underrepresented, appearing in fewer than 10 studies 

combined. This concentration suggests a research bias toward industries with well-established digital 
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ecosystems and quantifiable efficiency metrics. High-citation articles (exceeding 700 citations) 

predominantly addressed smart manufacturing, predictive logistics, and energy efficiency, while 

those focusing on emerging or underrepresented sectors had citation counts below 250. Only 9 

articles examined cross-sectoral applications or proposed adaptable frameworks applicable across 

industries. Additionally, only 6 studies employed longitudinal designs that tracked performance over 

multiple years, with the majority relying on cross-sectional or simulation-based analyses. This limits 

insights into the long-term stability, scalability, and adaptability of IoT-DSS integration within dynamic 

business environments. Furthermore, multi-stakeholder analyses—where effects on employees, 

communities, and supply chain partners are examined—were rare, appearing in just 7 studies. The 

absence of broader impact assessments leaves a gap in understanding the social and systemic 

consequences of IoT-DSS adoption in circular economy transformations. Consequently, while the 

review confirms substantial gains in well-studied domains, it also highlights a critical need for 

diversification of research scope and the inclusion of long-term, interdisciplinary approaches. 

Addressing these gaps will be essential to creating a universally applicable framework for digital 

circularity that accommodates diverse industry contexts and evolving sustainability demands. 

DISCUSSION 

The findings of this review reinforce the growing consensus that IoT-enabled Decision Support Systems 

(DSS) are pivotal in achieving economic efficiency within Circular Economy (CE) business models. 

This study’s synthesis of 68 peer-reviewed articles revealed consistent evidence of labor optimization, 

downtime reduction, and material cost savings as recurring outcomes of such integrations. These 

findings align with previous research by Morales et al. (2021), who emphasized the capacity of real-

time data to enable dynamic operational decisions and reduce inefficiencies. While earlier work 

often relied on theoretical propositions or simulated data, more recent empirical case studies 

substantiate these claims with quantifiable results, such as productivity increases of over 20% and 

cost reductions in material consumption. Notably, this review identified a broader application base 

across industries than documented in earlier literature. For example,  Morales et al. (2021) focused 

on smart manufacturing contexts, the present review includes logistics and infrastructure sectors, 

indicating a shift toward broader sectoral adoption. These comparative insights suggest that the 

digital tools hypothesized in early CE frameworks are now being implemented and delivering 

measurable benefits. However, some divergences exist. Earlier models often projected steeper 

returns on investment than those reported in this study, likely due to initial underestimations of 

integration and maintenance costs (Bellini et al., 2022).  

The environmental sustainability outcomes uncovered in this review highlight a critical evolution in 

the functionality and utility of IoT-DSS systems. Across 47 studies, real-time tracking of emissions, 

energy use, and water consumption formed a foundational layer of environmental intelligence. 

These results corroborate the early assertions of Baskar et al. (2024), who anticipated that embedded 

sensing capabilities would support granular environmental oversight. The notable difference in this 

current synthesis is the prominence of predictive environmental modeling, which emerged in at least 

18 studies, a feature largely absent in earlier evaluations. This finding aligns with more recent 

developments described by Louis and Dunston (2018), who highlighted the potential of simulation 

and digital twins in forecasting environmental impacts. Moreover, the ability to adapt operational 

decisions based on sustainability KPIs represents a tangible advance from earlier studies that 

emphasized static post-hoc analysis (Dey & Shekhawat, 2021). In addition, the incorporation of 

circular metrics into real-time dashboards—as observed in 25 studies—extends previous frameworks 

that treated environmental performance and digital systems as separate silos. Interestingly, while 

earlier research warned of high energy costs from IoT infrastructure, more recent work, including 

several high-impact studies in this review, shows that energy efficiency gains typically outweigh 

system-level energy overhead (Mishra et al., 2022). These findings suggest an increasingly symbiotic 

relationship between digitalization and sustainability, one that validates and extends prior theoretical 

propositions. The shift from monitoring to modeling, and from reporting to optimization, marks a 

significant leap in the maturity of IoT-DSS frameworks in delivering environmental value. 

The operationalization of circular economy strategies—once viewed as abstract goals—is 

increasingly enabled by data-rich, feedback-oriented IoT-DSS platforms. This review identifies 42 

studies that explicitly link IoT-DSS integration to CE actions such as reuse, remanufacturing, and 

closed-loop logistics. This represents a considerable expansion over earlier studies like those of Malik 

(2024), which advocated for such outcomes but lacked widespread empirical backing. In contrast 
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to traditional linear models, the reviewed systems support real-time decision-making that prioritizes 

value retention and resource cycling, a shift that aligns well with the work of Goudarzi et al. (2022), 

who called for dynamic tools to bridge theoretical circularity and operational execution. The role of 

RFID, smart sensors, and DSS dashboards in enabling reverse logistics and asset tracking was 

particularly notable, appearing in nearly half of the reviewed studies. Prior literature focused heavily 

on forward logistics optimization (Sasikumar et al., 2023), but the new emphasis on reverse flows marks 

a more holistic approach. Furthermore, the presence of product-as-a-service (PaaS) applications, 

cited in at least 13 of the studies, illustrates a transition from ownership-based to usage-based models, 

echoing earlier predictions by Ismail et al. (2023). However, this review also reveals some emerging 

gaps that earlier studies did not fully address. For example, while much literature extols the benefits 

of CE, relatively few studies  explored how DSS could balance circularity with profitability in volatile 

markets (Esmaeilian et al., 2020). The current synthesis shows early steps in this direction, especially 

through decision matrices and multi-criteria optimization tools. Overall, the findings demonstrate a 

strong convergence between theoretical CE aspirations and real-world digital implementation, 

confirming that IoT-DSS is a practical enabler of circularity when designed with systemic feedback 

and traceability in mind. 

While the technological promise of IoT-DSS in CE frameworks is widely affirmed, this review reveals 

that organizational and infrastructural constraints remain significant barriers to widespread adoption. 

This aligns with earlier findings by Kaleem et al. (2023), who identified legacy systems and fragmented 

data architectures as key hindrances. However, the current study’s findings go further by showing 

how these technical issues intertwine with cultural resistance and digital illiteracy, particularly in small- 

and medium-sized enterprises (SMEs). Among the 68 studies, 38 discussed challenges associated with 

integrating new digital tools into existing workflows, with 22 explicitly addressing organizational 

reluctance rooted in hierarchical structures and skepticism toward data-driven decision-making. 

These themes echo the earlier work of Vaiyapuri et al. (2023), but the current review presents a 

broader geographical and industrial scope, suggesting that these issues persist across diverse 

contexts. Moreover, the lack of human capital to manage and interpret IoT data was cited in 19 

studies, reinforcing the idea that digital transformation is not merely a technical exercise but a deeply 

human endeavor. Notably, high-citation articles in this area emphasize the need for change 

management strategies and upskilling programs—interventions that were largely overlooked in 

earlier techno-centric literature. The persistence of these barriers also indicates that, despite maturing 

technology, organizational systems have not evolved at the same pace (Violos et al., 2025). 

Therefore, addressing these constraints will require not only system-level interoperability but also 

institutional leadership, stakeholder education, and inclusive governance structures that align 

technical capabilities with social readiness (Singh et al., 2024). 

The economic benefits of IoT-DSS systems are well-documented in this review, yet financial and 

market-based barriers continue to slow adoption. This duality reflects earlier observations by Ghazal 

et al. (2021), who warned that high upfront costs and uncertain ROI could impede digital adoption, 

especially in nascent CE markets. Across the 68 reviewed studies, 36 reported significant financial 

hesitations, with concerns ranging from unclear value propositions to long payback periods. 

Compared to previous studies, which often focused solely on hardware costs, this review uncovers a 

broader spectrum of financial concerns, including licensing fees, integration expenses, and long-

term maintenance costs. These findings align with recent literature, such as Sizan et al.(2025), which 

notes that firms often struggle to develop ROI models for intangible benefits like operational agility 

and sustainability insights. Moreover, the findings reveal that in sectors lacking mature digital 

ecosystems—such as construction and healthcare—financial risk aversion is even more pronounced. 

While some high-impact studies show that digital DSS platforms can reduce costs over time, this 

benefit is often difficult to quantify in advance, making investment decisions more complex (Son et 

al., 2025). Compared to earlier expectations that digitalization would rapidly scale due to falling 

sensor prices and cloud affordability, this study finds that market immaturity and fragmented solution 

landscapes continue to deter early adopters. As such, economic uncertainty remains a critical 

bottleneck that requires not just technological innovation but also financial instruments, public-

private partnerships, and incentive structures that can de-risk adoption and encourage long-term 

strategic investment (Li & Xu, 2025). 

The review reveals notable conceptual and sectoral gaps in the current body of research. While 

earlier studies such as Xiao et al. (2022) advocated for broader cross-sectoral analysis, the literature 
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remains disproportionately focused on manufacturing and logistics. Of the 68 studies analyzed, only 

9 covered sectors such as education, healthcare, or public infrastructure, confirming a research bias 

that echoes the findings (Rancea et al., 2024). This limitation reflects both academic inertia and the 

greater availability of digital infrastructure in traditionally industrial settings. Moreover, while prior 

research emphasized system design and operational gains, few studies investigated the socio-

political dimensions of IoT-DSS adoption, such as stakeholder trust, ethics, and policy alignment. This 

absence is critical, given the rising importance of ESG frameworks and ethical governance in digital 

sustainability strategies. Although Javaid and Khan (2021) flagged these issues early on, the current 

literature shows limited progress in integrating social justice, inclusion, and equity into the design and 

assessment of DSS systems. Furthermore, only a minority of studies adopt longitudinal approaches, 

making it difficult to assess the durability and adaptability of digital circular systems over time. This 

contrasts with earlier calls from Li et al. (2018) for extended temporal studies that could capture 

feedback cycles and systemic shifts. Overall, the findings suggest that while technological maturity 

has advanced, conceptual and disciplinary integration has lagged. Future research must fill these 

gaps by expanding sectoral scope, embedding ethical principles, and adopting multi-method 

approaches that reflect the complexity of circular digital transitions. 

The cumulative insights from this review support the development of a unified theoretical framework 

for digital circularity, integrating technological, environmental, economic, and social dimensions. 

Earlier frameworks proposed Lyu(2025)’s conceptualized circularity in operational or environmental 

terms, while more recent models have emphasized digital enablement. This review bridges the two 

by demonstrating how IoT-DSS integration can simultaneously deliver environmental intelligence, 

economic optimization, and strategic agility (Mohamed et al., 2024). The triadic structure of inputs 

(sensors, data), processes (analytics, modeling), and outputs (insights, sustainability outcomes) 

observed in over 40 studies provides a scaffold for such a framework. Unlike earlier fragmented 

models, this review supports a systemic, layered understanding that includes technical architecture, 

user interface design, stakeholder governance, and performance metrics. Moreover, the integration 

of digital twins, machine learning, and ESG dashboards across multiple studies indicates that IoT-DSS 

systems are evolving from isolated tools to strategic platforms. This convergence suggests a 

paradigm shift toward holistic decision-making where sustainability and profitability are co-optimized 

(Reshi & Sholla, 2025). However, this emerging framework must remain adaptive and inclusive, 

capable of accommodating diverse sectors, governance systems, and ethical values. Future 

frameworks should also address the interoperability of digital platforms, the ethics of algorithmic 

governance, and the resilience of circular systems under ecological and market stress. In doing so, 

the field can move beyond experimental deployments toward institutionalized, scalable, and just 

models of digital circularity that align with both global sustainability goals and local operational 

realities (Abir et al., 2021). 

CONCLUSION 

In conclusion, this systematic review has demonstrated that IoT-enabled Decision Support Systems 

(DSS) are critical enablers of economic efficiency and environmental sustainability within Circular 

Economy (CE) business models. By synthesizing findings from 68 peer-reviewed studies, the review 

established that such systems not only reduce operational costs and enhance productivity through 

real-time analytics and predictive maintenance but also significantly improve sustainability 

outcomes by enabling energy efficiency, emission tracking, and resource optimization. The 

integration of IoT technologies with decision intelligence platforms has transitioned from conceptual 

frameworks to real-world applications across manufacturing, logistics, and select infrastructure 

sectors. However, the study also identified persistent barriers to systemic adoption, including 

technical fragmentation, financial uncertainty, and organizational resistance, alongside 

underrepresented sectors and a lack of long-term impact studies. Compared to earlier literature that 

often remained theoretical or narrow in scope, the current body of research reflects a maturation in 

both application and evaluation of IoT-DSS tools, though challenges in scalability, equity, and cross-

sectoral integration remain. The findings underscore the need for a unified and adaptive framework 

that accommodates digital infrastructure, stakeholder engagement, and policy alignment to guide 

future implementations. As businesses and policymakers seek to transition toward sustainable and 

resilient economic models, IoT-enabled DSS platforms represent not only a technological upgrade 

but a strategic imperative for operationalizing circularity at scale. 
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RECOMMENDATIONS 

Based on the comprehensive review of 68 peer-reviewed studies, several strategic 

recommendations emerge for both practitioners and researchers seeking to advance the 

implementation of IoT-enabled Decision Support Systems (DSS) in Circular Economy (CE) business 

models. First, organizations should prioritize interoperability and standardization by investing in 

modular, API-friendly digital infrastructures that can integrate legacy systems with modern IoT 

platforms. This will mitigate fragmentation and allow for scalable, cross-platform data sharing—an 

essential foundation for real-time decision-making in circular systems. Second, to overcome human 

capital limitations and organizational resistance, capacity building and digital literacy programs 

must be embedded within digital transformation initiatives. Firms should establish cross-functional 

teams to bridge operational, environmental, and IT divisions, ensuring inclusive stakeholder 

participation in DSS design and deployment. Third, public and private investment mechanisms should 

be developed to lower the upfront financial barriers to adoption. Governments and funding bodies 

should offer innovation grants, tax incentives, and green financing tailored to digital circular 

technologies, especially for SMEs and sectors with low digital maturity.From a research perspective, 

scholars should expand the current focus beyond manufacturing and logistics by conducting sector-

specific studies in underrepresented fields such as healthcare, construction, and education. 

Moreover, future research should employ longitudinal designs to capture the temporal dynamics of 

IoT-DSS impacts on both economic and environmental performance. Incorporating multi-

stakeholder perspectives, including community, regulatory, and consumer insights, will also provide 

a more holistic understanding of implementation challenges and social impacts. Finally, there is an 

urgent need to develop a unified theoretical framework that integrates systems theory, digital 

innovation, and sustainability science to guide both practice and scholarship. Such a framework 

should address ethical dimensions, adaptive governance, and resilience to technological 

disruptions. By implementing these recommendations, stakeholders can harness the full potential of 

IoT-enabled DSS to drive systemic, equitable, and scalable progress in the transition toward a digitally 

empowered circular economy. 

REFERENCES 
[1]. Abdel-Basset, M., Manogaran, G., Gamal, A., & Chang, V. (2019). A novel intelligent medical decision 

support model based on soft computing and IoT. IEEE internet of things journal, 7(5), 4160-4170.  

[2]. Abdullah Al, M., Md Masud, K., Mohammad, M., & Hosne Ara, M. (2024). Behavioral Factors in Loan 

Default Prediction A Literature Review On Psychological And Socioeconomic Risk Indicators. American 

Journal of Advanced Technology and Engineering Solutions, 4(01), 43-70. 

https://doi.org/10.63125/0jwtbn29  

[3]. Abdur Razzak, C., Golam Qibria, L., & Md Arifur, R. (2024). Predictive Analytics For Apparel Supply 

Chains: A Review Of MIS-Enabled Demand Forecasting And Supplier Risk Management. American 

Journal of Interdisciplinary Studies, 5(04), 01–23. https://doi.org/10.63125/80dwy222  

[4]. Abir, S. A. A., Anwar, A., Choi, J., & Kayes, A. (2021). Iot-enabled smart energy grid: Applications and 

challenges. Ieee Access, 9, 50961-50981.  

[5]. Abujder Ochoa, W. A., Iarozinski Neto, A., Vitorio Junior, P. C., Calabokis, O. P., & Ballesteros-Ballesteros, 

V. (2025). The Theory of complexity and sustainable urban development: A systematic literature review. 

Sustainability, 17(1), 3.  

[6]. Acuna, M., Sessions, J., Zamora, R., Boston, K., Brown, M., & Ghaffariyan, M. R. (2019). Methods to 

manage and optimize forest biomass supply chains: A review. Current Forestry Reports, 5(3), 124-141.  

[7]. Adar, C., & Md, N. (2023). Design, Testing, And Troubleshooting of Industrial Equipment: A Systematic 

Review Of Integration Techniques For U.S. Manufacturing Plants. Review of Applied Science and 

Technology, 2(01), 53-84. https://doi.org/10.63125/893et038  

[8]. Aiello, G., Giovino, I., Vallone, M., Catania, P., & Argento, A. (2018). A decision support system based 

on multisensor data fusion for sustainable greenhouse management. Journal of Cleaner Production, 

172, 4057-4065.  

[9]. AL-Hudaib, H., Adamo, N., Bene, K., Ray, R., & Al-Ansari, N. (2025). Application of Decision Support 

Systems to Water Management: The Case of Iraq. Water, 17(12), 1748.  

[10]. Ali, Z. A., Zain, M., Hasan, R., Pathan, M. S., AlSalman, H., & Almisned, F. A. (2025). Digital twins: 

cornerstone to circular economy and sustainability goals. Environment, Development and 

Sustainability, 1-42.  

[11]. Allioui, H., & Mourdi, Y. (2023). Exploring the full potentials of IoT for better financial growth and stability: 

A comprehensive survey. Sensors, 23(19), 8015.  

[12]. Aloini, D., Dulmin, R., Mininno, V., Stefanini, A., & Zerbino, P. (2020). Driving the transition to a circular 

economic model: A systematic review on drivers and critical success factors in circular economy. 

Sustainability, 12(24), 10672.  

https://researchinnovationjournal.com/index.php
https://doi.org/10.63125/28kdxg31
https://doi.org/10.63125/0jwtbn29
https://doi.org/10.63125/80dwy222
https://doi.org/10.63125/893et038


American Journal of Scholarly Research and Innovation 

Volume 04, Issue 01 (2025) 

Page No:  250-286 

eISSN: 3067-2163 

Doi: 10.63125/28kdxg31 

277 

 

[13]. Ammar, B., Aleem Al Razee, T., Sohel, R., & Ishtiaque, A. (2025). Cybersecurity In Industrial Control 

Systems: A Systematic Literature Review On AI-Based Threat Detection for Scada And IOT Networks. 

ASRC Procedia: Global Perspectives in Science and Scholarship, 1(01), 01-15. 

https://doi.org/10.63125/1cr1kj17  

[14]. Anabel, N. J., Velvizhi, S., & Suvitha, D. (2018). Fisher friend mobile application: a decision support system 

for small scale fishers in India. CSI Transactions on ICT, 6(3), 257-267.  

[15]. Andronie, M., Lăzăroiu, G., Iatagan, M., Uță, C., Ștefănescu, R., & Cocoșatu, M. (2021). Artificial 

intelligence-based decision-making algorithms, internet of things sensing networks, and deep learning-

assisted smart process management in cyber-physical production systems. Electronics, 10(20), 2497.  

[16]. Anika Jahan, M. (2024). Marketing Capstone Insights: Leveraging Multi-Channel Strategies For Maximum 

Digital Conversion And ROI. Review of Applied Science and Technology, 3(04), 01-28. 

https://doi.org/10.63125/5w76qb87  

[17]. Anika Jahan, M. (2025). Martech Stack Adoption In SMES: A Review Of Automation, CRM, and AI 

integration. American Journal of Advanced Technology and Engineering Solutions, 1(01), 348-381. 

https://doi.org/10.63125/y8j1zh51  

[18]. Anika Jahan, M., & Md Imtiaz, F. (2024). Content Creation as A Growth Strategy: Evaluating The 

Economic Impact Of Freelance Digital Branding. American Journal of Scholarly Research and 

Innovation, 3(02), 28-51. https://doi.org/10.63125/mj667y36  

[19]. Anika Jahan, M., Md Soyeb, R., & Tahmina Akter, R. (2025). Strategic Use Of Engagement Marketing in 

Digital Platforms: A Focused Analysis Of Roi And Consumer Psychology. Journal of Sustainable 

Development and Policy, 1(01), 170-197. https://doi.org/10.63125/hm96p734  

[20]. Antunes, J., Hadi-Vencheh, A., Jamshidi, A., Tan, Y., & Wanke, P. (2023). TEA-IS: A hybrid DEA-TOPSIS 

approach for assessing performance and synergy in Chinese health care. Decision Support Systems, 

171, 113916.  

[21]. Asgari, A., & Asgari, R. (2021). How circular economy transforms business models in a transition towards 

circular ecosystem: the barriers and incentives. Sustainable Production and Consumption, 28, 566-579.  

[22]. Attaran, M. (2020). Digital technology enablers and their implications for supply chain management. 

Supply chain forum: an international journal,  

[23]. Ávila-Gutiérrez, M. J., Martín-Gómez, A., Aguayo-González, F., & Córdoba-Roldán, A. (2019). 

Standardization framework for sustainability from circular economy 4.0. Sustainability, 11(22), 6490.  

[24]. Awan, U., & Sroufe, R. (2022). Sustainability in the circular economy: insights and dynamics of designing 

circular business models. Applied Sciences, 12(3), 1521.  

[25]. Bagherian, A., Srivastav, A. L., & Mukherjee, S. (2024). Exploring barriers and strategic approaches in 

smart factory adoption: A real-world case study in a German manufacturing company. The 

International Journal of Advanced Manufacturing Technology, 134(11), 5191-5224.  

[26]. Bansal, S., & Kumar, D. (2020). IoT ecosystem: A survey on devices, gateways, operating systems, 

middleware and communication. International Journal of Wireless Information Networks, 27(3), 340-364.  

[27]. Barbosa, M., Castañeda-Ayarza, J. A., & Ferreira, D. H. L. (2020). Sustainable strategic management 

(GES): Sustainability in small business. Journal of Cleaner Production, 258, 120880.  

[28]. Baskar, V. V., Sekar, S., Rajesh, K., Sendhilkumar, N., & Murugan, S. (2024). Cloud-based Decision Support 

Systems for Securing Farm-to-Table Traceability using IoT and KNN Algorithm. 2024 Second International 

Conference on Intelligent Cyber Physical Systems and Internet of Things (ICoICI),  

[29]. Bedi, G., Venayagamoorthy, G. K., Singh, R., Brooks, R. R., & Wang, K.-C. (2018). Review of Internet of 

Things (IoT) in electric power and energy systems. IEEE internet of things journal, 5(2), 847-870.  

[30]. Bellini, P., Nesi, P., & Pantaleo, G. (2022). IoT-enabled smart cities: A review of concepts, frameworks and 

key technologies. Applied Sciences, 12(3), 1607.  

[31]. Beusch, P., Frisk, J. E., Rosén, M., & Dilla, W. (2022). Management control for sustainability: Towards 

integrated systems. Management accounting research, 54, 100777.  

[32]. Bhawna, Kang, P. S., & Sharma, S. K. (2024). Bridging the gap: a systematic analysis of circular economy, 

supply chain management, and digitization for sustainability and resilience. Operations Management 

Research, 17(3), 1039-1057.  

[33]. Bianchini, A., Rossi, J., & Pellegrini, M. (2019). Overcoming the main barriers of circular economy 

implementation through a new visualization tool for circular business models. Sustainability, 11(23), 6614.  

[34]. Calzolari, T., Bimpizas-Pinis, M., Genovese, A., & Brint, A. (2023). Understanding the relationship between 

institutional pressures, supply chain integration and the adoption of circular economy practices. Journal 

of Cleaner Production, 432, 139686.  

[35]. Castro-Lopez, A., Iglesias, V., & Santos-Vijande, M. L. (2023). Organizational capabilities and institutional 

pressures in the adoption of circular economy. Journal of Business Research, 161, 113823.  

[36]. Çetin, S., De Wolf, C., & Bocken, N. (2021). Circular digital built environment: An emerging framework. 

Sustainability, 13(11), 6348.  

[37]. Chander, B., & Kumaravelan, G. (2019). Internet of things: foundation. In Principles of Internet of Things 

(IoT) Ecosystem: Insight Paradigm (pp. 3-33). Springer.  

https://researchinnovationjournal.com/index.php
https://doi.org/10.63125/28kdxg31
https://doi.org/10.63125/1cr1kj17
https://doi.org/10.63125/5w76qb87
https://doi.org/10.63125/y8j1zh51
https://doi.org/10.63125/mj667y36
https://doi.org/10.63125/hm96p734


American Journal of Scholarly Research and Innovation 

Volume 04, Issue 01 (2025) 

Page No:  250-286 

eISSN: 3067-2163 

Doi: 10.63125/28kdxg31 

278 

 

[38]. Chatfield, A. T., & Reddick, C. G. (2019). A framework for Internet of Things-enabled smart government: 

A case of IoT cybersecurity policies and use cases in US federal government. Government Information 

Quarterly, 36(2), 346-357.  

[39]. Chen, W., Men, Y., Fuster, N., Osorio, C., & Juan, A. A. (2024). Artificial intelligence in logistics optimization 

with sustainable criteria: A review. Sustainability, 16(21), 9145.  

[40]. Chizaryfard, A., Trucco, P., & Nuur, C. (2021). The transformation to a circular economy: framing an 

evolutionary view. Journal of Evolutionary Economics, 31(2), 475-504.  

[41]. Choy, Y. K., Onuma, A., & Lee, K. E. (2025). The Nexus of Industrial–Urban Sustainability, the Circular 

Economy, and Climate–Ecosystem Resilience: A Synthesis. Sustainability, 17(6), 2620.  

[42]. Chua, C. E. H., & Niederman, F. (2025). Returning the “socio” to decision support research: Expanding 

beyond a purely technical mindset. Decision Support Systems, 188, 114352.  

[43]. Clementino, E., & Perkins, R. (2021). How do companies respond to environmental, social and 

governance (ESG) ratings? Evidence from Italy. Journal of Business Ethics, 171(2), 379-397.  

[44]. Colombi, C., & D’Itria, E. (2023). Fashion digital transformation: Innovating business models toward 

circular economy and sustainability. Sustainability, 15(6), 4942.  

[45]. Custodio, L., & Machado, R. (2020). Flexible automated warehouse: a literature review and an 

innovative framework. The International Journal of Advanced Manufacturing Technology, 106(1), 533-

558.  

[46]. de Sousa Jabbour, A. B. L., Jabbour, C. J. C., Foropon, C., & Godinho Filho, M. (2018). When titans meet–

Can industry 4.0 revolutionise the environmentally-sustainable manufacturing wave? The role of critical 

success factors. Technological Forecasting and Social Change, 132, 18-25.  

[47]. del Mar Alonso-Almeida, M., Rodriguez-Anton, J. M., Bagur-Femenías, L., & Perramon, J. (2021). 

Institutional entrepreneurship enablers to promote circular economy in the European Union: Impacts on 

transition towards a more circular economy. Journal of Cleaner Production, 281, 124841.  

[48]. Dey, K., & Shekhawat, U. (2021). Blockchain for sustainable e-agriculture: Literature review, architecture 

for data management, and implications. Journal of Cleaner Production, 316, 128254.  

[49]. Din, I. U., Guizani, M., Hassan, S., Kim, B.-S., Khan, M. K., Atiquzzaman, M., & Ahmed, S. H. (2018). The 

Internet of Things: A review of enabled technologies and future challenges. Ieee Access, 7, 7606-7640.  

[50]. El Hafiane, A., En-nadi, A., & Ramadany, M. (2025). Towards Sustainable Construction: Systematic 

Review of Lean and Circular Economy Integration. Sustainability, 17(15), 6735.  

[51]. Elijah, O., Rahman, T. A., Orikumhi, I., Leow, C. Y., & Hindia, M. N. (2018). An overview of Internet of Things 

(IoT) and data analytics in agriculture: Benefits and challenges. IEEE internet of things journal, 5(5), 3758-

3773.  

[52]. Epstein, M. J. (2018). Making sustainability work: Best practices in managing and measuring corporate 

social, environmental and economic impacts. Routledge.  

[53]. Esmaeilian, B., Sarkis, J., Lewis, K., & Behdad, S. (2020). Blockchain for the future of sustainable supply 

chain management in Industry 4.0. Resources, conservation and recycling, 163, 105064.  

[54]. Farza, K., Ftiti, Z., Hlioui, Z., Louhichi, W., & Omri, A. (2021). Does it pay to go green? The environmental 

innovation effect on corporate financial performance. Journal of environmental management, 300, 

113695.  

[55]. Fernández, S., Bodin, U., & Synnes, K. (2025). On the Interplay Between Behavior Dynamics, 

Environmental Impacts, and Fairness in the Digitalized Circular Economy with Associated Business 

Models and Supply Chain Management. Sustainability, 17(8), 3437.  

[56]. Filip, F. G. (2020). DSS—A class of evolving information systems. In Data Science: New Issues, Challenges 

and Applications (pp. 253-277). Springer.  

[57]. Fischer, M., Imgrund, F., Janiesch, C., & Winkelmann, A. (2020). Strategy archetypes for digital 

transformation: Defining meta objectives using business process management. Information & 

management, 57(5), 103262.  

[58]. Försterling, G., Orth, R., & Gellert, B. (2023). Transition to a circular economy in europe through new 

business models: barriers, drivers, and policy making. Sustainability, 15(10), 8212.  

[59]. Foughali, K., Fathallah, K., & Frihida, A. (2019). A cloud-IOT based decision support system for potato 

pest prevention. Procedia Computer Science, 160, 616-623.  

[60]. Ganai, K. A., Pandow, B. A., & Masoodi, F. S. (2024). IoT-enabled financial inclusion: Challenges, 

opportunities, and policy implications. Internet of Things Applications and Technology, 126-145.  

[61]. Georgia, D., Evangelia, F., Georgios, C., Christos, M., & Thomas, K. (2021). Evaluation of end user 

requirements for smart home applications and services based on a decision support system. Internet of 

things, 16, 100431.  

[62]. Gharehgozli, A., Zaerpour, N., & de Koster, R. (2020). Container terminal layout design: transition and 

future. Maritime Economics & Logistics, 22(4), 610-639.  

[63]. Ghazal, T. M., Hasan, M. K., Alshurideh, M. T., Alzoubi, H. M., Ahmad, M., Akbar, S. S., Al Kurdi, B., & Akour, 

I. A. (2021). IoT for smart cities: Machine learning approaches in smart healthcare—A review. Future 

Internet, 13(8), 218.  

https://researchinnovationjournal.com/index.php
https://doi.org/10.63125/28kdxg31


American Journal of Scholarly Research and Innovation 

Volume 04, Issue 01 (2025) 

Page No:  250-286 

eISSN: 3067-2163 

Doi: 10.63125/28kdxg31 

279 

 

[64]. Golam Qibria, L., & Takbir Hossen, S. (2023). Lean Manufacturing And ERP Integration: A Systematic 

Review Of Process Efficiency Tools In The Apparel Sector. American Journal of Scholarly Research and 

Innovation, 2(01), 104-129. https://doi.org/10.63125/mx7j4p06  

[65]. Goudarzi, A., Ghayoor, F., Waseem, M., Fahad, S., & Traore, I. (2022). A survey on IoT-enabled smart 

grids: emerging, applications, challenges, and outlook. Energies, 15(19), 6984.  

[66]. Gulia, P., Gill, N. S., Yahya, M., Gupta, P., Shukla, P. K., & Shukla, P. K. (2024). Exploring the potential of 

blockchain technology in an IoT-enabled environment: A review. Ieee Access, 12, 31197-31227.  

[67]. Guo, Y., Wang, N., Xu, Z.-Y., & Wu, K. (2020). The internet of things-based decision support system for 

information processing in intelligent manufacturing using data mining technology. Mechanical Systems 

and Signal Processing, 142, 106630.  

[68]. Güvençli, M., Kıran, H., Doğan, E., Dağ, H., Özyürüyen, B., & Çakar, T. (2023). Optimizing collective 

building management through a machine learning-based decision support system. 2023 4th 

International Informatics and Software Engineering Conference (IISEC),  

[69]. Hammadi, M., Merschak, S., Diallo, T. M., & Hehenberger, P. (2025). CEF-DPP: A Circular Economy 

Framework Integrating Digital Product Passport for Improving Circularity of Sustainable Mechatronics 

Design. Circular Economy and Sustainability, 1-33.  

[70]. Han, J., Heshmati, A., & Rashidghalam, M. (2020). Circular economy business models with a focus on 

servitization. Sustainability, 12(21), 8799.  

[71]. Han, X.-H., & Chen, Y.-W. (2024). Decision Support System for Skin Lesion Diagnosis Using Deep Learning. 

In Advances in Intelligent Disease Diagnosis and Treatment: Research Papers in Honour of Prof. Janusz 

Kacprzyk for Invaluable Contributions (pp. 279-304). Springer.  

[72]. Heragu, S. S. (2018). Facilities design. Crc Press.  

[73]. Herath Pathirannehelage, S., Shrestha, Y. R., & von Krogh, G. (2025). Design principles for artificial 

intelligence-augmented decision making: An action design research study. European Journal of 

Information Systems, 34(2), 207-229.  

[74]. Hernández, H. (2025). Circular Industrialized Construction: A Perspective Through Design for 

Manufacturing, Assembly, and Disassembly. Buildings, 15(13), 2174.  

[75]. Hosne Ara, M., Tonmoy, B., Mohammad, M., & Md Mostafizur, R. (2022). AI-ready data engineering 

pipelines: a review of medallion architecture and cloud-based integration models. American Journal 

of Scholarly Research and Innovation, 1(01), 319-350. https://doi.org/10.63125/51kxtf08  

[76]. Hristov, I., Appolloni, A., Cheng, W., & Huisingh, D. (2022). Aligning corporate social responsibility 

practices with the environmental performance management systems: A critical review of the relevant 

literature. Total Quality Management & Business Excellence, 1-25.  

[77]. Hristov, I., & Chirico, A. (2019). The role of sustainability key performance indicators (KPIs) in implementing 

sustainable strategies. Sustainability, 11(20), 5742.  

[78]. Hudda, S., & Haribabu, K. (2025). A review on WSN based resource constrained smart IoT systems. 

Discover Internet of Things, 5(1), 56.  

[79]. Ismail, S., Reza, H., Salameh, K., Kashani Zadeh, H., & Vasefi, F. (2023). Toward an intelligent blockchain 

ioT-enabled fish supply chain: A review and conceptual framework. Sensors, 23(11), 5136.  

[80]. Istiaque, M., Dipon Das, R., Hasan, A., Samia, A., & Sayer Bin, S. (2024). Quantifying The Impact Of 

Network Science And Social Network Analysis In Business Contexts: A Meta-Analysis Of Applications In 

Consumer Behavior, Connectivity. International Journal of Scientific Interdisciplinary Research, 5(2), 58-

89. https://doi.org/10.63125/vgkwe938  

[81]. Ivanov, D., Tsipoulanidis, A., & Schönberger, J. (2021). Basics of supply chain and operations 

management. In Global Supply Chain and Operations Management: A Decision-Oriented Introduction 

to the Creation of Value (pp. 3-19). Springer.  

[82]. Jabbour, C. J. C., de Sousa Jabbour, A. B. L., Sarkis, J., & Godinho Filho, M. (2019). Unlocking the circular 

economy through new business models based on large-scale data: an integrative framework and 

research agenda. Technological Forecasting and Social Change, 144, 546-552.  

[83]. Jabbour, C. J. C., Seuring, S., de Sousa Jabbour, A. B. L., Jugend, D., Fiorini, P. D. C., Latan, H., & Izeppi, 

W. C. (2020). Stakeholders, innovative business models for the circular economy and sustainable 

performance of firms in an emerging economy facing institutional voids. Journal of environmental 

management, 264, 110416.  

[84]. Javaid, M., & Khan, I. H. (2021). Internet of Things (IoT) enabled healthcare helps to take the challenges 

of COVID-19 Pandemic. Journal of oral biology and craniofacial research, 11(2), 209-214.  

[85]. Jayender, R. P., & Gosh, D. (2022). Intelligent Decision Support System of Big Data and IOT Analytics 

Interoperability with ERP Promoting SCM Sustainability in Automotive: (Time-Inconsistency Technique for 

Adoption in Inbound Logistics). International Conference on Computing and Information Technology,  

[86]. Jørgensen, B. N., & Ma, Z. G. (2025). Impact of EU Laws on the Adoption of AI and IoT in Advanced 

Building Energy Management Systems: A Review of Regulatory Barriers, Technological Challenges, and 

Economic Opportunities. Buildings, 15(13), 2160.  

[87]. Kaleem, S., Sohail, A., Tariq, M. U., & Asim, M. (2023). An improved big data analytics architecture using 

federated learning for IoT-enabled urban intelligent transportation systems. Sustainability, 15(21), 15333.  

https://researchinnovationjournal.com/index.php
https://doi.org/10.63125/28kdxg31
https://doi.org/10.63125/mx7j4p06
https://doi.org/10.63125/51kxtf08
https://doi.org/10.63125/vgkwe938


American Journal of Scholarly Research and Innovation 

Volume 04, Issue 01 (2025) 

Page No:  250-286 

eISSN: 3067-2163 

Doi: 10.63125/28kdxg31 

280 

 

[88]. Kamalakkannan, S., Kulatunga, A., & Bandara, L. (2020). The conceptual framework of IoT based 

decision support system for life cycle management. Procedia Manufacturing, 43, 423-430.  

[89]. Kayvanfar, V., Elomri, A., Kerbache, L., Vandchali, H. R., & El Omri, A. (2024). A review of decision support 

systems in the internet of things and supply chain and logistics using web content mining. Supply chain 

analytics, 6, 100063.  

[90]. Khan, A. S., Akter, M., Enni, M. A., & Khan, S. F. (2025). An in silico approach for the identification of 

detrimental missense SNPs and their potential impacts on human CRY2 protein. Journal of Bangladesh 

Academy of Sciences, 49(1), 57-72. https://doi.org/10.3329/jbas.v49i1.71914  

[91]. Khan, S. A. R., & Yu, Z. (2019). Strategic supply chain management. Springer.  

[92]. Khanna, A., & Kaur, S. (2020). Internet of things (IoT), applications and challenges: a comprehensive 

review. Wireless Personal Communications, 114(2), 1687-1762.  

[93]. Kiesnere, A. L., & Baumgartner, R. J. (2019). Sustainability management in practice: Organizational 

change for sustainability in smaller large-sized companies in Austria. Sustainability, 11(3), 572.  

[94]. Koot, M., Mes, M. R., & Iacob, M. E. (2021). A systematic literature review of supply chain decision making 

supported by the Internet of Things and Big Data Analytics. Computers & Industrial Engineering, 154, 

107076.  

[95]. Kopetz, H., & Steiner, W. (2022). Internet of things. In Real-time systems: design principles for distributed 

embedded applications (pp. 325-341). Springer.  

[96]. Kose, U., Deperlioglu, O., Alzubi, J., & Patrut, B. (2021). Deep learning for medical decision support 

systems.  

[97]. Kumar, N., Kaushal, R. K., Panda, S. N., & Bhardwaj, S. (2022). Impact of the Internet of Things and Clinical 

Decision Support System in Healthcare. In IoT and WSN based Smart Cities: A Machine Learning 

Perspective (pp. 15-26). Springer.  

[98]. Kumar, R., & Thakurta, R. (2021). Exfoliating decision support system: a synthesis of themes using text 

mining. Information Systems and e-Business Management, 19(1), 247-279.  

[99]. Kumar, S., Narkhede, B. E., & Jain, K. (2021). Revisiting the warehouse research through an evolutionary 

lens: a review from 1990 to 2019. International journal of production research, 59(11), 3470-3492.  

[100]. Kutub Uddin, A., Md Mostafizur, R., Afrin Binta, H., & Maniruzzaman, B. (2022). Forecasting Future 

Investment Value with Machine Learning, Neural Networks, And Ensemble Learning: A Meta-Analytic 

Study. Review of Applied Science and Technology, 1(02), 01-25. https://doi.org/10.63125/edxgjg56  

[101]. Lagorio, A., Cimini, C., Piffari, C., Galimberti, M., Pirola, F., & Pinto, R. (2024). Operationalisation and 

validation of a human factors-based decision support framework for technology adoption in the 

logistics sector. International journal of logistics research and applications, 27(11), 2238-2260.  

[102]. Lakshmanaprabu, S., Mohanty, S. N., Krishnamoorthy, S., Uthayakumar, J., & Shankar, K. (2019). Online 

clinical decision support system using optimal deep neural networks. Applied Soft Computing, 81, 

105487.  

[103]. Lăzăroiu, G., Ionescu, L., Andronie, M., & Dijmărescu, I. (2020). Sustainability management and 

performance in the urban corporate economy: a systematic literature review. Sustainability, 12(18), 

7705.  

[104]. Lee, C. K., Lin, B., Ng, K., Lv, Y., & Tai, W. (2019). Smart robotic mobile fulfillment system with dynamic 

conflict-free strategies considering cyber-physical integration. Advanced Engineering Informatics, 42, 

100998.  

[105]. Lee, I. (2019). The Internet of Things for enterprises: An ecosystem, architecture, and IoT service business 

model. Internet of things, 7, 100078.  

[106]. Leung, E. K., Lee, C. K. H., & Ouyang, Z. (2022). From traditional warehouses to Physical Internet hubs: A 

digital twin-based inbound synchronization framework for PI-order management. International Journal 

of Production Economics, 244, 108353.  

[107]. Lewczuk, K., Kłodawski, M., & Gepner, P. (2021). Energy consumption in a distributional warehouse: A 

practical case study for different warehouse technologies. Energies, 14(9), 2709.  

[108]. Li, C. Z., Xue, F., Li, X., Hong, J., & Shen, G. Q. (2018). An Internet of Things-enabled BIM platform for on-

site assembly services in prefabricated construction. Automation in construction, 89, 146-161.  

[109]. Li, F., & Xu, J. (2025). Revolutionizing AI-enabled Information Systems Using Integrated Big Data Analytics 

and Multi-modal Data Fusion. Ieee Access.  

[110]. Li, J., Dai, J., Issakhov, A., Almojil, S. F., & Souri, A. (2021). Towards decision support systems for energy 

management in the smart industry and Internet of Things. Computers & Industrial Engineering, 161, 

107671.  

[111]. Li, Y., & Mardani, A. (2023). Digital twins and blockchain technology in the industrial Internet of Things 

(IIoT) using an extended decision support system model: Industry 4.0 barriers perspective. Technological 

Forecasting and Social Change, 195, 122794.  

[112]. Li, Z., Shahidehpour, M., & Liu, X. (2018). Cyber-secure decentralized energy management for IoT-

enabled active distribution networks. Journal of Modern Power Systems and Clean Energy, 6(5), 900-

917.  

https://researchinnovationjournal.com/index.php
https://doi.org/10.63125/28kdxg31
https://doi.org/10.3329/jbas.v49i1.71914
https://doi.org/10.63125/edxgjg56


American Journal of Scholarly Research and Innovation 

Volume 04, Issue 01 (2025) 

Page No:  250-286 

eISSN: 3067-2163 

Doi: 10.63125/28kdxg31 

281 

 

[113]. Lin, H., Lin, J., & Wang, F. (2022). An innovative machine learning model for supply chain management. 

Journal of Innovation & Knowledge, 7(4), 100276.  

[114]. Louis, J., & Dunston, P. S. (2018). Integrating IoT into operational workflows for real-time and automated 

decision-making in repetitive construction operations. Automation in construction, 94, 317-327.  

[115]. Lyridis, D., & Kostidi, E. (2025). Bridging Technical Challenges and Economic Goals: Project Management 

for Energy Transition in Maritime Retrofitting. Energies, 18(4), 804.  

[116]. Lyu, G. (2025). Data-driven decision making in patient management: a systematic review. BMC Medical 

Informatics and Decision Making, 25(1), 239.  

[117]. Lyu, Z., Lin, P., Guo, D., & Huang, G. Q. (2020). Towards zero-warehousing smart manufacturing from 

zero-inventory just-in-time production. Robotics and Computer-Integrated Manufacturing, 64, 101932.  

[118]. Malik, S. (2024). Data-driven decision-making: leveraging the IoT for real-time sustainability in 

organizational behavior. Sustainability, 16(15), 6302.  

[119]. Maniruzzaman, B., Mohammad Anisur, R., Afrin Binta, H., Md, A., & Anisur, R. (2023). Advanced Analytics 

and Machine Learning For Revenue Optimization In The Hospitality Industry: A Comprehensive Review 

Of Frameworks. American Journal of Scholarly Research and Innovation, 2(02), 52-74. 

https://doi.org/10.63125/8xbkma40  

[120]. Mansura Akter, E. (2023). Applications Of Allele-Specific PCR In Early Detection of Hereditary Disorders: 

A Systematic Review Of Techniques And Outcomes. Review of Applied Science and Technology, 2(03), 

1-26. https://doi.org/10.63125/n4h7t156  

[121]. Mansura Akter, E. (2025). Bioinformatics-Driven Approaches in Public Health Genomics: A Review Of 

Computational SNP And Mutation Analysis. International Journal of Scientific Interdisciplinary Research, 

6(1), 88-118. https://doi.org/10.63125/e6pxkn12  

[122]. Mansura Akter, E., & Md Abdul Ahad, M. (2022). In Silico drug repurposing for inflammatory diseases: a 

systematic review of molecular docking and virtual screening studies. American Journal of Advanced 

Technology and Engineering Solutions, 2(04), 35-64. https://doi.org/10.63125/j1hbts51  

[123]. Mansura Akter, E., & Shaiful, M. (2024). A systematic review of SNP polymorphism studies in South Asian 

populations: implications for diabetes and autoimmune disorders. American Journal of Scholarly 

Research and Innovation, 3(01), 20-51. https://doi.org/10.63125/8nvxcb96  

[124]. Martínez-Peláez, R., Ochoa-Brust, A., Rivera, S., Félix, V. G., Ostos, R., Brito, H., Félix, R. A., & Mena, L. J. 

(2023). Role of digital transformation for achieving sustainability: mediated role of stakeholders, key 

capabilities, and technology. Sustainability, 15(14), 11221.  

[125]. Martins, R., Pereira, M., Ferreira, L., Sá, J., & Silva, F. (2020). Warehouse operations logistics improvement 

in a cork stopper factory. Procedia Manufacturing, 51, 1723-1729.  

[126]. Mashayekhy, Y., Babaei, A., Yuan, X.-M., & Xue, A. (2022). Impact of Internet of Things (IoT) on inventory 

management: A literature survey. Logistics, 6(2), 33.  

[127]. Mazzetto, S. (2024). Interdisciplinary perspectives on agent-based modeling in the architecture, 

engineering, and construction industry: a comprehensive review. Buildings, 14(11), 3480.  

[128]. Md Atiqur Rahman, K., Md Abdur, R., Niger, S., & Mst Shamima, A. (2025). Development Of a Fog 

Computing-Based Real-Time Flood Prediction And Early Warning System Using Machine Learning And 

Remote Sensing Data. Journal of Sustainable Development and Policy, 1(01), 144-169. 

https://doi.org/10.63125/6y0qwr92  

[129]. Md Mahamudur Rahaman, S. (2022). Electrical And Mechanical Troubleshooting in Medical And 

Diagnostic Device Manufacturing: A Systematic Review Of Industry Safety And Performance Protocols. 

American Journal of Scholarly Research and Innovation, 1(01), 295-318. 

https://doi.org/10.63125/d68y3590  

[130]. Md Masud, K., Mohammad, M., & Hosne Ara, M. (2023). Credit decision automation in commercial 

banks: a review of AI and predictive analytics in loan assessment. American Journal of Interdisciplinary 

Studies, 4(04), 01-26. https://doi.org/10.63125/1hh4q770  

[131]. Md Masud, K., Mohammad, M., & Sazzad, I. (2023). Mathematics For Finance: A Review of Quantitative 

Methods In Loan Portfolio Optimization. International Journal of Scientific Interdisciplinary Research, 4(3), 

01-29. https://doi.org/10.63125/j43ayz68  

[132]. Md Masud, K., Sazzad, I., Mohammad, M., & Noor Alam, S. (2025). Digitization In Retail Banking: A Review 

of Customer Engagement And Financial Product Adoption In South Asia. ASRC Procedia: Global 

Perspectives in Science and Scholarship, 1(01), 42-46. https://doi.org/10.63125/cv50rf30  

[133]. Md, N., Golam Qibria, L., Abdur Razzak, C., & Khan, M. A. M. (2025). Predictive Maintenance In Power 

Transformers: A Systematic Review Of AI And IOT Applications. ASRC Procedia: Global Perspectives in 

Science and Scholarship, 1(01), 34-47. https://doi.org/10.63125/r72yd809  

[134]. Md Nazrul Islam, K., & Debashish, G. (2025). Cybercrime and contractual liability: a systematic review of 

legal precedents and risk mitigation frameworks. Journal of Sustainable Development and Policy, 1(01), 

01-24. https://doi.org/10.63125/x3cd4413  

[135]. Md Nazrul Islam, K., & Ishtiaque, A. (2025). A systematic review of judicial reforms and legal access 

strategies in the age of cybercrime and digital evidence. International Journal of Scientific 

Interdisciplinary Research, 5(2), 01-29. https://doi.org/10.63125/96ex9767  

https://researchinnovationjournal.com/index.php
https://doi.org/10.63125/28kdxg31
https://doi.org/10.63125/8xbkma40
https://doi.org/10.63125/n4h7t156
https://doi.org/10.63125/e6pxkn12
https://doi.org/10.63125/j1hbts51
https://doi.org/10.63125/8nvxcb96
https://doi.org/10.63125/6y0qwr92
https://doi.org/10.63125/d68y3590
https://doi.org/10.63125/1hh4q770
https://doi.org/10.63125/j43ayz68
https://doi.org/10.63125/cv50rf30
https://doi.org/10.63125/r72yd809
https://doi.org/10.63125/x3cd4413
https://doi.org/10.63125/96ex9767


American Journal of Scholarly Research and Innovation 

Volume 04, Issue 01 (2025) 

Page No:  250-286 

eISSN: 3067-2163 

Doi: 10.63125/28kdxg31 

282 

 

[136]. Md Nur Hasan, M., Md Musfiqur, R., & Debashish, G. (2022). Strategic Decision-Making in Digital Retail 

Supply Chains: Harnessing AI-Driven Business Intelligence From Customer Data. Review of Applied 

Science and Technology, 1(03), 01-31. https://doi.org/10.63125/6a7rpy62  

[137]. Md Takbir Hossen, S., Abdullah Al, M., Siful, I., & Md Mostafizur, R. (2025). Transformative applications of 

ai in emerging technology sectors: a comprehensive meta-analytical review of use cases in healthcare, 

retail, and cybersecurity. ASRC Procedia: Global Perspectives in Science and Scholarship, 1(01), 121-

141. https://doi.org/10.63125/45zpb481  

[138]. Md Takbir Hossen, S., Ishtiaque, A., & Md Atiqur, R. (2023). AI-Based Smart Textile Wearables For Remote 

Health Surveillance And Critical Emergency Alerts: A Systematic Literature Review. American Journal of 

Scholarly Research and Innovation, 2(02), 1-29. https://doi.org/10.63125/ceqapd08  

[139]. Md Takbir Hossen, S., & Md Atiqur, R. (2022). Advancements In 3d Printing Techniques For Polymer Fiber-

Reinforced Textile Composites: A Systematic Literature Review. American Journal of Interdisciplinary 

Studies, 3(04), 32-60. https://doi.org/10.63125/s4r5m391  

[140]. Md Tawfiqul, I., Meherun, N., Mahin, K., & Mahmudur Rahman, M. (2022). Systematic Review of 

Cybersecurity Threats In IOT Devices Focusing On Risk Vectors Vulnerabilities And Mitigation Strategies. 

American Journal of Scholarly Research and Innovation, 1(01), 108-136. 

https://doi.org/10.63125/wh17mf19  

[141]. Mikulėnas, M., & Šeduikytė, L. (2025). Circularity and Decarbonization Synergies in the Construction 

Sector: Implications for Zero-Carbon Energy Policy. Energies, 18(5), 1164.  

[142]. Miles, A., Zaslavsky, A., & Browne, C. (2018). IoT-based decision support system for monitoring and 

mitigating atmospheric pollution in smart cities. Journal of Decision Systems, 27(sup1), 56-67.  

[143]. Miller, K., Capan, M., Weldon, D., Noaiseh, Y., Kowalski, R., Kraft, R., Schwartz, S., Weintraub, W. S., & 

Arnold, R. (2018). The design of decisions: Matching clinical decision support recommendations to 

Nielsen’s design heuristics. International journal of medical informatics, 117, 19-25.  

[144]. Mishra, R., Naik, B. K. R., Raut, R. D., & Kumar, M. (2022). Internet of Things (IoT) adoption challenges in 

renewable energy: A case study from a developing economy. Journal of Cleaner Production, 371, 

133595.  

[145]. Mohamed, A.-M. O., Mohamed, D., Fayad, A., & Al Nahyan, M. T. (2024). Enhancing decision making 

and decarbonation in environmental management: A review on the role of digital technologies. 

Sustainability, 16(16), 7156.  

[146]. Morales, A. S., Ourique, F. d. O., & Cazella, S. C. (2021). A comprehensive review on the challenges for 

intelligent systems related with internet of things for medical decision. Enhanced telemedicine and e-

health: advanced IoT enabled soft computing framework, 221-240.  

[147]. Moreira, M. W., Rodrigues, J. J., Korotaev, V., Al-Muhtadi, J., & Kumar, N. (2019). A comprehensive review 

on smart decision support systems for health care. IEEE Systems Journal, 13(3), 3536-3545.  

[148]. Mourtzis, D., Samothrakis, V., Zogopoulos, V., & Vlachou, E. (2019). Warehouse design and operation 

using augmented reality technology: a papermaking industry case study. Procedia Cirp, 79, 574-579.  

[149]. Mousavi, V., Rashidi, M., Mohammadi, M., & Samali, B. (2024). Evolution of digital twin frameworks in 

bridge management: review and future directions. Remote Sensing, 16(11), 1887.  

[150]. Mst Shamima, A., Niger, S., Md Atiqur Rahman, K., & Mohammad, M. (2023). Business Intelligence-Driven 

Healthcare: Integrating Big Data And Machine Learning For Strategic Cost Reduction And Quality Care 

Delivery. American Journal of Interdisciplinary Studies, 4(02), 01-28. https://doi.org/10.63125/crv1xp27  

[151]. Munonye, W. C. (2025). Towards Circular Economy Metrics: a Systematic Review. Circular Economy and 

Sustainability, 1-43.  

[152]. Murugesan, B., Jayanthi, K., & Karthikeyan, G. (2024). Integrating Digital Twins and 3D Technologies in 

Fashion: Advancing Sustainability and Consumer Engagement. In Illustrating Digital Innovations Towards 

Intelligent Fashion: Leveraging Information System Engineering and Digital Twins for Efficient Design of 

Next-Generation Fashion (pp. 1-88). Springer.  

[153]. Okorie, O., Salonitis, K., Charnley, F., Moreno, M., Turner, C., & Tiwari, A. (2018). Digitisation and the 

circular economy: A review of current research and future trends. Energies, 11(11), 3009.  

[154]. Paolone, G., Iachetti, D., Paesani, R., Pilotti, F., Marinelli, M., & Di Felice, P. (2022). A holistic overview of 

the internet of things ecosystem. IoT, 3(4), 398-434.  

[155]. Parra, X., Tort-Martorell, X., Alvarez-Gomez, F., & Ruiz-Viñals, C. (2023). Chronological evolution of the 

information-driven decision-making process (1950–2020). Journal of the Knowledge Economy, 14(3), 

2363-2394.  

[156]. Pasupuleti, V., Thuraka, B., Kodete, C. S., & Malisetty, S. (2024). Enhancing supply chain agility and 

sustainability through machine learning: Optimization techniques for logistics and inventory 

management. Logistics, 8(3), 73.  

[157]. Pavlov, A., Ivanov, D., Pavlov, D., & Slinko, A. (2019). Optimization of network redundancy and 

contingency planning in sustainable and resilient supply chain resource management under conditions 

of structural dynamics. Annals of operations research, 1-30.  

[158]. Perboli, G., Musso, S., & Rosano, M. (2018). Blockchain in logistics and supply chain: A lean approach 

for designing real-world use cases. Ieee Access, 6, 62018-62028.  

https://researchinnovationjournal.com/index.php
https://doi.org/10.63125/28kdxg31
https://doi.org/10.63125/6a7rpy62
https://doi.org/10.63125/45zpb481
https://doi.org/10.63125/ceqapd08
https://doi.org/10.63125/s4r5m391
https://doi.org/10.63125/wh17mf19
https://doi.org/10.63125/crv1xp27


American Journal of Scholarly Research and Innovation 

Volume 04, Issue 01 (2025) 

Page No:  250-286 

eISSN: 3067-2163 

Doi: 10.63125/28kdxg31 

283 

 

[159]. Pham, N. T., Thanh, T. V., Tučková, Z., & Thuy, V. T. N. (2020). The role of green human resource 

management in driving hotel’s environmental performance: Interaction and mediation analysis. 

International Journal of Hospitality Management, 88, 102392.  

[160]. Pichlak, M., & Szromek, A. R. (2022). Linking eco-innovation and circular economy—A conceptual 

approach. Journal of Open Innovation: Technology, Market, and Complexity, 8(3), 121.  

[161]. Pizzi, S., Corbo, L., & Caputo, A. (2021). Fintech and SMEs sustainable business models: Reflections and 

considerations for a circular economy. Journal of Cleaner Production, 281, 125217.  

[162]. Poyyamozhi, M., Murugesan, B., Rajamanickam, N., Shorfuzzaman, M., & Aboelmagd, Y. (2024). IoT—A 

promising solution to energy management in smart buildings: A systematic review, applications, barriers, 

and future scope. Buildings, 14(11), 3446.  

[163]. PP Pieroni, M., C. McAloone, T., & CA Pigosso, D. (2019). Configuring new business models for circular 

economy through product–service systems. Sustainability, 11(13), 3727.  

[164]. Pradeep, P., Krishnamoorthy, S., Pathinarupothi, R. K., & Vasilakos, A. V. (2021). Leveraging context-

awareness for Internet of Things ecosystem: Representation, organization, and management of 

context. Computer Communications, 177, 33-50.  

[165]. Prorok, M., & Takács, I. (2024). The impacts of artificial intelligence and knowledge-based systems on 

corporate decision support. 2024 ieee 18th international symposium on applied computational 

intelligence and informatics (SACI),  

[166]. Qureshi, K. N., Alhudhaif, A., Azahar, M., Javed, I. T., & Jeon, G. (2022). A software-defined network-

based intelligent decision support system for the internet of things networks. Wireless Personal 

Communications, 126(4), 2825-2839.  

[167]. Ragab, M., Albukhari, A., Alyami, J., & Mansour, R. F. (2022). Ensemble deep-learning-enabled clinical 

decision support system for breast cancer diagnosis and classification on ultrasound images. Biology, 

11(3), 439.  

[168]. Rajabzadeh, M., & Fatorachian, H. (2023). Modelling factors influencing IoT adoption: With a focus on 

agricultural logistics operations. Smart cities, 6(6), 3266-3296.  

[169]. Rancea, A., Anghel, I., & Cioara, T. (2024). Edge computing in healthcare: Innovations, opportunities, 

and challenges. Future Internet, 16(9), 329.  

[170]. Rath, K. C., Khang, A., & Roy, D. (2024). The role of Internet of Things (IoT) technology in Industry 4.0 

economy. In Advanced IoT technologies and applications in the industry 4.0 digital economy (pp. 1-

28). CRC Press.  

[171]. Ravindran, A. R., Warsing Jr, D. P., & Griffin, P. M. (2023). Supply chain engineering: Models and 

applications. CRC Press.  

[172]. Rejeb, A., Rejeb, K., & Zrelli, I. (2024). Analyzing barriers to internet of things (IoT) adoption in humanitarian 

logistics: an ISM–DEMATEL approach. Logistics, 8(2), 38.  

[173]. Reshi, I. A., & Sholla, S. (2025). IBF network: enhancing network privacy with IoT, blockchain, and fog 

computing on different consensus mechanisms. Cluster Computing, 28(3), 208.  

[174]. Restuccia, F., D’oro, S., & Melodia, T. (2018). Securing the internet of things in the age of machine 

learning and software-defined networking. IEEE internet of things journal, 5(6), 4829-4842.  

[175]. Rezwanul Ashraf, R., & Hosne Ara, M. (2023). Visual communication in industrial safety systems: a review 

of UI/UX design for risk alerts and warnings. American Journal of Scholarly Research and Innovation, 

2(02), 217-245. https://doi.org/10.63125/wbv4z521  

[176]. Ribino, P., Cossentino, M., Lodato, C., & Lopes, S. (2018). Agent-based simulation study for improving 

logistic warehouse performance. Journal of Simulation, 12(1), 23-41.  

[177]. Rosati, R., Romeo, L., Cecchini, G., Tonetto, F., Viti, P., Mancini, A., & Frontoni, E. (2023). From knowledge-

based to big data analytic model: a novel IoT and machine learning based decision support system for 

predictive maintenance in Industry 4.0. Journal of Intelligent Manufacturing, 34(1), 107-121.  

[178]. Sànchez-Marrè, M. (2022). Evolution of Decision Support Systems. In Intelligent Decision Support Systems 

(pp. 57-73). Springer.  

[179]. Sanjai, V., Sanath Kumar, C., Maniruzzaman, B., & Farhana Zaman, R. (2023). Integrating Artificial 

Intelligence in Strategic Business Decision-Making: A Systematic Review Of Predictive Models. 

International Journal of Scientific Interdisciplinary Research, 4(1), 01-26. 

https://doi.org/10.63125/s5skge53  

[180]. Sanjai, V., Sanath Kumar, C., Sadia, Z., & Rony, S. (2025). Ai And Quantum Computing For Carbon-

Neutral Supply Chains: A Systematic Review Of Innovations. American Journal of Interdisciplinary 

Studies, 6(1), 40-75. https://doi.org/10.63125/nrdx7d32  

[181]. Sasikumar, A., Vairavasundaram, S., Kotecha, K., Indragandhi, V., Ravi, L., Selvachandran, G., & 

Abraham, A. (2023). Blockchain-based trust mechanism for digital twin empowered industrial internet 

of things. Future generation computer systems, 141, 16-27.  

[182]. Sazzad, I. (2025a). Public Finance and Policy Effectiveness A Review Of Participatory Budgeting In Local 

Governance Systems. Journal of Sustainable Development and Policy, 1(01), 115-143. 

https://doi.org/10.63125/p3p09p46  

https://researchinnovationjournal.com/index.php
https://doi.org/10.63125/28kdxg31
https://doi.org/10.63125/wbv4z521
https://doi.org/10.63125/s5skge53
https://doi.org/10.63125/nrdx7d32
https://doi.org/10.63125/p3p09p46


American Journal of Scholarly Research and Innovation 

Volume 04, Issue 01 (2025) 

Page No:  250-286 

eISSN: 3067-2163 

Doi: 10.63125/28kdxg31 

284 

 

[183]. Sazzad, I. (2025b). A Systematic Review of Public Budgeting Strategies In Developing Economies: Tools 

For Transparent Fiscal Governance. American Journal of Advanced Technology and Engineering 

Solutions, 1(01), 602-635. https://doi.org/10.63125/wm547117  

[184]. Sazzad, I., & Md Nazrul Islam, K. (2022). Project impact assessment frameworks in nonprofit development: 

a review of case studies from south asia. American Journal of Scholarly Research and Innovation, 1(01), 

270-294. https://doi.org/10.63125/eeja0t77  

[185]. Schipfer, F., Burli, P., Fritsche, U., Hennig, C., Stricker, F., Wirth, M., Proskurina, S., & Serna-Loaiza, S. (2024). 

The circular bioeconomy: a driver for system integration. Energy, Sustainability and Society, 14(1), 34.  

[186]. Scipioni, S., Russ, M., & Niccolini, F. (2021). From barriers to enablers: The role of organizational learning 

in transitioning SMEs into the circular economy. Sustainability, 13(3), 1021.  

[187]. Shaiful, M., & Mansura Akter, E. (2025). AS-PCR In Molecular Diagnostics: A Systematic Review of 

Applications In Genetic Disease Screening. ASRC Procedia: Global Perspectives in Science and 

Scholarship, 1(01), 98-120. https://doi.org/10.63125/570jb007  

[188]. Sharma, S. (2025). From Data to Decisions: Cloud, IoT, and AI Integration. In Integration of Cloud 

Computing and IoT (pp. 461-479). Chapman and Hall/CRC.  

[189]. Singh, L. K., Khanna, M., Garg, H., & Singh, R. (2024). A novel soft computing based efficient feature 

selection approach for timely identification of COVID-19 infection using chest computed tomography 

images: a human centered intelligent clinical decision support system. Multimedia Tools and 

Applications, 1-69.  

[190]. Singh, S., Lakshay, Pratap, S., & Jauhar, S. K. (2024). Unveiling barriers to IoT adoption in the maritime 

freight industry. International Journal of System Assurance Engineering and Management, 1-11.  

[191]. Singh, S. K., Kumar, M., Tanwar, S., & Park, J. H. (2024). GRU-based digital twin framework for data 

allocation and storage in IoT-enabled smart home networks. Future generation computer systems, 153, 

391-402.  

[192]. Siwach, P., Gulia, D., Yadav, D. K., Malik, M., & Gahlawat, V. K. (2025). Exploring IoT integration 

challenges: Causal relationships and strategic implications for business models. Digital Business, 5(2), 

100125.  

[193]. Sizan, N. S., Dey, D., Layek, M. A., Uddin, M. A., & Huh, E.-N. (2025). Evaluating blockchain platforms for 

iot applications in industry 5.0: A comprehensive review. Blockchain: Research and Applications, 

100276.  

[194]. Son, H., Jang, J., Park, J., Balog, A., Ballantyne, P., Kwon, H. R., Singleton, A., & Hwang, J. (2025). 

Leveraging advanced technologies for (smart) transportation planning: A systematic review. 

Sustainability, 17(5), 2245.  

[195]. Song, D. (2021). A literature review, container shipping supply chain: Planning problems and research 

opportunities. Logistics, 5(2), 41.  

[196]. Spaho, E., Çiço, B., & Shabani, I. (2025). IoT Integration Approaches into Personalized Online Learning: 

Systematic Review. Computers, 14(2), 63.  

[197]. Stojanova, S., Volk, M., Balkovec, G., Kos, A., & Stojmenova Duh, E. (2025). The Future of Vineyard 

Irrigation: AI-Driven Insights from IoT Data. Sensors, 25(12), 3658.  

[198]. Subrato, S. (2018). Resident’s Awareness Towards Sustainable Tourism for Ecotourism Destination in 

Sundarban Forest, Bangladesh. Pacific International Journal, 1(1), 32-45. 

https://doi.org/10.55014/pij.v1i1.38  

[199]. Subrato, S. (2025). Role of management information systems in environmental risk assessment: a 

systematic review of geographic and ecological applications. American Journal of Interdisciplinary 

Studies, 6(1), 95–126. https://doi.org/10.63125/k27tnn83  

[200]. Subrato, S., & Faria, J. (2025). AI-driven MIS applications in environmental risk monitoring: a systematic 

review of predictive geographic information systems. ASRC Procedia: Global Perspectives in Science 

and Scholarship, 1(01), 81-97. https://doi.org/10.63125/pnx77873  

[201]. Subrato, S., & Md, N. (2024). The role of perceived environmental responsibility in artificial intelligence-

enabled risk management and sustainable decision-making. American Journal of Advanced 

Technology and Engineering Solutions, 4(04), 33-56. https://doi.org/10.63125/7tjw3767  

[202]. Sudhakaran, S., Maheswari, R., & Jagannathan, S. K. (2025). IoT-Driven Supply Chain Management: A 

Comprehensive Framework for Smart and Sustainable Operations. In Industry 4.0, Smart Manufacturing, 

and Industrial Engineering (pp. 162-178). CRC Press.  

[203]. Sun, C. (2020). Research on investment decision-making model from the perspective of “Internet of 

Things+ Big data”. Future generation computer systems, 107, 286-292.  

[204]. Tahmina Akter, R. (2025). AI-driven marketing analytics for retail strategy: a systematic review of data-

backed campaign optimization. International Journal of Scientific Interdisciplinary Research, 6(1), 28-

59. https://doi.org/10.63125/0k4k5585  

[205]. Tahmina Akter, R., & Abdur Razzak, C. (2022). The Role Of Artificial Intelligence In Vendor Performance 

Evaluation Within Digital Retail Supply Chains: A Review Of Strategic Decision-Making Models. American 

Journal of Scholarly Research and Innovation, 1(01), 220-248. https://doi.org/10.63125/96jj3j86  

https://researchinnovationjournal.com/index.php
https://doi.org/10.63125/28kdxg31
https://doi.org/10.63125/wm547117
https://doi.org/10.63125/eeja0t77
https://doi.org/10.63125/570jb007
https://doi.org/10.55014/pij.v1i1.38
https://doi.org/10.63125/k27tnn83
https://doi.org/10.63125/pnx77873
https://doi.org/10.63125/7tjw3767
https://doi.org/10.63125/0k4k5585
https://doi.org/10.63125/96jj3j86


American Journal of Scholarly Research and Innovation 

Volume 04, Issue 01 (2025) 

Page No:  250-286 

eISSN: 3067-2163 

Doi: 10.63125/28kdxg31 

285 

 

[206]. Tahmina Akter, R., Debashish, G., Md Soyeb, R., & Abdullah Al, M. (2023). A Systematic Review of AI-

Enhanced Decision Support Tools in Information Systems: Strategic Applications In Service-Oriented 

Enterprises And Enterprise Planning. Review of Applied Science and Technology, 2(01), 26-52. 

https://doi.org/10.63125/73djw422  

[207]. Tahmina Akter, R., Md Arifur, R., & Anika Jahan, M. (2024). Customer relationship management and 

data-driven decision-making in modern enterprises: a systematic literature review. American Journal of 

Advanced Technology and Engineering Solutions, 4(04), 57-82. https://doi.org/10.63125/jetvam38  

[208]. Tiwari, S., Wee, H.-M., & Daryanto, Y. (2018). Big data analytics in supply chain management between 

2010 and 2016: Insights to industries. Computers & Industrial Engineering, 115, 319-330.  

[209]. Tonmoy, B., & Md Arifur, R. (2023). A Systematic Literature Review Of User-Centric Design In Digital 

Business Systems Enhancing Accessibility, Adoption, And Organizational Impact. American Journal of 

Scholarly Research and Innovation, 2(02), 193-216. https://doi.org/10.63125/36w7fn47  

[210]. Tran-Dang, H., Krommenacker, N., Charpentier, P., & Kim, D.-S. (2020). Toward the internet of things for 

physical internet: Perspectives and challenges. IEEE internet of things journal, 7(6), 4711-4736.  

[211]. Tura, N., Hanski, J., Ahola, T., Ståhle, M., Piiparinen, S., & Valkokari, P. (2019). Unlocking circular business: 

A framework of barriers and drivers. Journal of Cleaner Production, 212, 90-98.  

[212]. Uhrenholt, J. N., Kristensen, J. H., Rincón, M. C., Adamsen, S., Jensen, S. F., & Waehrens, B. V. (2022). 

Maturity model as a driver for circular economy transformation. Sustainability, 14(12), 7483.  

[213]. Vaiyapuri, T., Shankar, K., Rajendran, S., Kumar, S., Acharya, S., & Kim, H. (2023). Blockchain assisted data 

edge verification with consensus algorithm for machine learning assisted IoT. Ieee Access, 11, 55370-

55379.  

[214]. Vermesan, O., Bröring, A., Tragos, E., Serrano, M., Bacciu, D., Chessa, S., Gallicchio, C., Micheli, A., 

Dragone, M., & Saffiotti, A. (2022). Internet of robotic things–converging sensing/actuating, 

hyperconnectivity, artificial intelligence and IoT platforms. In Cognitive hyperconnected digital 

transformation (pp. 97-155). River Publishers.  

[215]. Vermesan, O., Friess, P., Guillemin, P., Gusmeroli, S., Sundmaeker, H., Bassi, A., Jubert, I. S., Mazura, M., 

Harrison, M., & Eisenhauer, M. (2022). Internet of things strategic research roadmap. In Internet of things-

global technological and societal trends from smart environments and spaces to green ICT (pp. 9-52). 

River Publishers.  

[216]. Vermesan, O., Friess, P., Guillemin, P., Sundmaeker, H., Eisenhauer, M., Moessner, K., Le Gall, F., & Cousin, 

P. (2022). Internet of things strategic research and innovation agenda. In Internet of things (pp. 7-151). 

River Publishers.  

[217]. Violos, J., Mamanis, G., Kompatsiaris, I., & Papadopoulos, S. (2025). Cognition and context-aware 

decision-making systems for a sustainable planet: a survey on recent advancements, applications and 

open challenges. Discover Sustainability, 6(1), 1-43.  

[218]. Xiao, R., Wu, Z., & Hamari, J. (2022). Internet-of-gamification: A review of literature on IoT-enabled 

gamification for user engagement. International Journal of Human–Computer Interaction, 38(12), 1113-

1137.  

[219]. Xu, H., Yu, W., Griffith, D., & Golmie, N. (2018). A survey on industrial Internet of Things: A cyber-physical 

systems perspective. Ieee Access, 6, 78238-78259.  

[220]. Yue, Y., & Lv, Y. (2023). A machine learning-based decision support system for predicting and repairing 

cracks in undisturbed loess using microbial mineralization and the Internet of Things. Sustainability, 

15(10), 8269.  

[221]. Zahir, B., Rajesh, P., Md Arifur, R., & Tonmoy, B. (2025). A Systematic Review Of Human-AI Collaboration 

In It Support Services: Enhancing User Experience And Workflow Automation. Journal of Sustainable 

Development and Policy, 1(01), 65-89. https://doi.org/10.63125/grqtf978  

[222]. Zahir, B., Rajesh, P., Tonmoy, B., & Md Arifur, R. (2025). AI Applications In Emerging Tech Sectors: A Review 

Of Ai Use Cases Across Healthcare, Retail, And Cybersecurity. ASRC Procedia: Global Perspectives in 

Science and Scholarship, 1(01), 16-33. https://doi.org/10.63125/245ec865  

[223]. Zahir, B., Tonmoy, B., & Md Arifur, R. (2023). UX optimization in digital workplace solutions: AI tools for 

remote support and user engagement in hybrid environments. International Journal of Scientific 

Interdisciplinary Research, 4(1), 27-51. https://doi.org/10.63125/33gqpx45  

[224]. Zahoor, S., & Mir, R. N. (2021). Resource management in pervasive Internet of Things: A survey. Journal 

of King Saud University-Computer and Information Sciences, 33(8), 921-935.  

[225]. Zhai, Z., Martínez, J. F., Beltran, V., & Martínez, N. L. (2020). Decision support systems for agriculture 4.0: 

Survey and challenges. Computers and Electronics in Agriculture, 170, 105256.  

[226]. Zhang, G., Yang, Y., & Yang, G. (2023). Smart supply chain management in Industry 4.0: the review, 

research agenda and strategies in North America. Annals of operations research, 322(2), 1075-1117.  

[227]. Zharfpeykan, R., & Akroyd, C. (2022). Factors influencing the integration of sustainability indicators into 

a company's performance management system. Journal of Cleaner Production, 331, 129988.  

[228]. Zhu, B., Nguyen, M., Siri, N. S., & Malik, A. (2022). Towards a transformative model of circular economy 

for SMEs. Journal of Business Research, 144, 545-555.  

https://researchinnovationjournal.com/index.php
https://doi.org/10.63125/28kdxg31
https://doi.org/10.63125/73djw422
https://doi.org/10.63125/jetvam38
https://doi.org/10.63125/36w7fn47
https://doi.org/10.63125/grqtf978
https://doi.org/10.63125/245ec865
https://doi.org/10.63125/33gqpx45


American Journal of Scholarly Research and Innovation 

Volume 04, Issue 01 (2025) 

Page No:  250-286 

eISSN: 3067-2163 

Doi: 10.63125/28kdxg31 

286 

 

[229]. Zijm, H., Klumpp, M., Heragu, S., & Regattieri, A. (2018). Operations, logistics and supply chain 

management: definitions and objectives. In Operations, logistics and supply chain management (pp. 

27-42). Springer.  

[230]. Zkik, K., Belhadi, A., Kamble, S., Venkatesh, M., Oudani, M., & Sebbar, A. (2024). Cyber resilience 

framework for online retail using explainable deep learning approaches and blockchain-based 

consensus protocol. Decision Support Systems, 182, 114253.  

 

https://researchinnovationjournal.com/index.php
https://doi.org/10.63125/28kdxg31

