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Abstract 

This study investigates how hybrid machine learning systems can be 

implemented and deployed to deliver reliable stock price forecasting 

and risk prediction in volatile, internationally integrated markets. Using a 

PRISMA protocol, we reviewed 120 peer-reviewed studies with 

deployment-relevant detail, harmonized their metrics, and synthesized 

evidence across two layers: predictive performance and MLOps 

operations. The analysis shows that hybrids consistently convert modest 

single-digit reductions in point error into materially better probabilistic 

calibration, with tighter Value-at-Risk and Expected Shortfall coverage 

that holds up under walk-forward evaluation and during high-volatility 

regimes. Design patterns that travel well from lab to production include 

combining a decomposable statistical baseline with a tabular learner 

and a sequence or attention model, then learning dynamic, regime-

aware weights on rolling residuals. On the engineering side, studies that 

report model registries, CI or CD gates, canary or shadow rollouts, drift 

and exceedance monitoring, and rollback playbooks exhibit smaller 

backtest-to-live gaps and lower reversal rates, highlighting that 

disciplined data contracts and promotion controls function as 

performance multipliers rather than overhead. Measurement choices 

further amplify deployability, as realized-volatility and lightweight range-

based estimators improve distributional sharpness at low computational 

cost, while portable microstructure features strengthen short-horizon 

direction without violating latency budgets. Overall, the evidence 

supports a practical blueprint that integrates feature stores, reproducible 

pipelines, dynamic hybridization, and risk-aware monitoring to produce 

forecasting and risk services that are auditable, explainable, and resilient 

under market stress, turning incremental accuracy into dependable tail 

behavior suitable for real-world deployment. 
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INTRODUCTION 
Financial forecasting and risk prediction refer to the systematic modeling of future asset prices and 

the probabilistic characterization of losses that may arise from adverse market movements. In capital 

markets, forecasting generally targets conditional expectations or quantiles of returns and prices 

across short- and medium-term horizons, whereas risk prediction emphasizes distribution tails through 

measures such as Value-at-Risk (VaR) and Expected Shortfall (ES). The international significance of 

these tasks stems from their role in portfolio allocation, market-making, hedging, and prudential 

supervision across both developed and emerging markets. Foundational market theories and 

econometric innovations established the conceptual landscape: the efficient markets literature 

formalized information aggregation in prices (Fama, 1970), regime-switching models captured 

abrupt structural changes typical of business cycles and crises (Hamilton, 1989), and conditional 

heteroskedasticity models described volatility clustering that pervades global equity markets 

(Bollerslev, 1986; Engle, 1982; Schwert, 1989). Modern forecasting practice synthesizes classical 

statistical methods (e.g., ARIMA/ETS) with machine learning (ML) and deep learning (DL), recognizing 

that financial time series exhibit nonlinearity, structural breaks, and context-dependent seasonality. 

The discipline has also converged toward rigorous forecast evaluation and risk backtesting 

frameworks that assess accuracy (Diebold & Mariano, 1995; Hyndman & Khandakar, 2008) and 

calibration for tail risks (Koenker & Bassett, 1978; Christoffersen, 1998). In parallel, competitions and 

large-scale field studies have benchmarked forecasting approaches at scale (Makridakis et al., 2018, 

2020), and industry-grade tools have operationalized pipelines for reliable deployment. Within this 

global context, hybrid ML models ensembles and composites that fuse complementary statistical 

and DL components have become a natural choice for tackling price forecasting and risk 

quantification in volatile markets where single-model assumptions are easily violated. 

 

Figure 1: Overview of Financial forecasting and risk prediction  

 
 

Volatility and nonstationarity remain defining challenges in financial forecasting, as they complicate 

the possibility of directly extracting stable and generalizable patterns from market data. To address 

these challenges, contemporary research has increasingly turned to modeling strategies that 

integrate linear time-series structures with nonlinear feature extraction in order to balance 

interpretability with expressive power. Traditional univariate automation frameworks such as those 

proposed by Hyndman and Khandakar (2008), alongside scalable decomposable trend models 

advanced by Taylor and Letham (2018), continue to provide strong baselines under transparent and 

interpretable assumptions. Complementing these, gradient-boosted decision trees (Chen & 

Guestrin, 2016) capture nonlinear interactions and deliver robustness in tabular learning 

environments. On the neural side, recurrent neural networks (Hochreiter & Schmidhuber, 1997) and 

their more recent attention-based successors (Lim et al., 2021) demonstrate the capacity to uncover 

multiscale temporal dependencies without the burden of extensive manual feature engineering. 

Empirical evidence from equity prediction further underscores the strength of deep sequence 

models in capturing predictive structures not only within returns but also within technical factors (Bao 

et al., 2017; Fischer & Krauss, 2018). Nevertheless, large-scale classifier benchmarks have revealed 

that forecasting performance is not uniform, varying substantially across problem framing, forecast 
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horizons, feature sets, and evaluation metrics (Ballings et al., 2015; Patel et al., 2015). In the domain 

of tail risk modeling, realized-measure GARCH and its extensions have provided a valuable link 

between intraday microstructure signals and daily volatility dynamics, including measures such as 

Value at Risk (Giot & Laurent, 2004; Hansen et al., 2012; Kuester et al., 2006). Against this backdrop, 

hybridization has emerged as a compelling approach that blends linear extrapolation methods like 

ARIMA and ETS with tree-based learners and deep sequence architectures, thereby diversifying 

inductive biases to reduce model risk (Khashei & Bijari, 2011; Montero-Manso et al., 2020; 

Timmermann, 2006; Zhang, 2003). This study adopts precisely such a hybrid perspective, yet it is 

oriented toward practical deployment by focusing on how these models can be effectively 

implemented, served, monitored, and evaluated within volatile, globally integrated markets. 

Precisely defining what constitutes a “hybrid” model is a foundational step for both conceptual 

clarity and successful implementation in financial forecasting. Within the broader literature, the 

notion of hybridity assumes multiple forms, reflecting diverse strategies of model integration. One 

common design is the stacked or pipeline configuration, where outputs from one component, such 

as ARIMA residuals, serve as inputs to another, often a nonlinear learner like LSTM, thereby enabling 

the sequential refinement of predictive signals. Another widely adopted structure is the parallel 

ensemble, in which heterogeneous models are trained independently and their outputs combined 

either through averaging schemes or through optimally learned weights. A third formulation 

emphasizes probabilistic composites, wherein different submodels target complementary 

distributional characteristics such as conditional mean, variance, or quantiles, thus enriching both 

central tendency and risk-sensitive forecasts. Early hybrid frameworks, notably those combining 

ARIMA with neural networks, reflected this philosophy by allowing linear components to capture low-

frequency structure while neural networks addressed nonlinear residual patterns (Khashei & Bijari, 

2011; Zhang, 2003). In the specific case of volatility forecasting, realized-measure GARCH 

architectures extended classical variance dynamics through measurement equations linking 

realized variance with latent volatility, ultimately improving the estimation of Value at Risk and 

Expected Shortfall (Gneiting & Raftery, 2007). More recent deep hybrids have expanded in scope 

and ambition, ranging from wavelet-decomposed LSTM stacks designed to enhance short-term 

price prediction (Bao et al., 2017) to attention-based architectures that enable interpretable multi-

horizon forecasting (Lim et al., 2021). The theoretical foundation for weighting and selection among 

such combinations is provided by forecast-combination theory. Rigorous evaluation frameworks 

further require the joint application of point-forecast accuracy measures, including MAE, MAPE, and 

RMSE, alongside distributional scoring rules such as pinball loss, CRPS, and statistical significance tests. 

Evidence from global competitions and applied financial studies (Fissler & Ziegel, 2016) confirms that 

diversified hybrid approaches tend to outperform single-model counterparts, provided that 

deployment frameworks explicitly account for concept drift, structural regime shifts, and stability in 

real-world serving environments. 

The deployment of hybrid machine learning models into production environments differs profoundly 

from exploratory or experimental modeling stages, as the former demands not only predictive 

accuracy but also operational robustness, reproducibility, and governance. Productionization entails 

the construction of fully integrated pipelines that cover the entire lifecycle: data ingestion from 

multiple heterogeneous streams, feature computation, model training, validation, registration, and 

serving. Each forecast or risk estimate must be traceable to the exact data, codebase, and 

hyperparameters used at the time of generation, necessitating rigorous lineage and versioning 

protocols. Mature MLOps ecosystems such as TensorFlow Extended (TFX) and MLflow have 

established standardized patterns for continuous training, automated validation, and registry-

backed promotion of models into serving environments. These practices are especially critical for 

financial forecasting, where frequent retraining under volatile conditions and auditable change 

control are regulatory as well as operational necessities (Baylor & et al., 2017; Zaharia et al., 2018). 

Because financial data streams are inherently nonstationary, operational monitoring must extend 

beyond accuracy metrics to include data quality and stability indicators. Concept-drift detection 

mechanisms, which identify shifts in covariates, labels, or residual distributions, serve as essential 

triggers for retraining or rollback procedures when structural breaks occur (Gama et al., 2014). For 

hybrid ensembles, monitoring must operate with fine granularity, encompassing diagnostics of 

individual member contributions, stability of ensemble weights, and agreement metrics across 

https://researchinnovationjournal.com/index.php/AJSRI/issue/view/7
https://doi.org/10.63125/z8qq6h36


American Journal of Scholarly Research and Innovation 
Volume 04, Issue 01 (2025) 

Page No:  287-319 

eISSN: 3067-5146 

Doi: 10.63125/z8qq6h36 

290 

 

components to ensure coherent predictive behavior. Furthermore, explainability is indispensable at 

deployment. Local surrogate explanations (Ribeiro et al., 2016) and Shapley-based additive 

attributions (Lundberg & Lee, 2017) equip practitioners and risk managers with tools to reconcile 

model outputs with domain knowledge, support override decisions, and satisfy model risk 

management audits. Embedding these practices into continuous integration and deployment 

(CI/CD) workflows enables frequent yet low-risk updates, which are vital in global markets where 

models must function consistently across exchanges, time zones, irregular trading calendars, and 

evolving market microstructure regimes (Chen & Guestrin, 2016; Christoffersen, 1998). 

 

Figure 1: Theoretical Framework for Hybrid Financial Forecasting and Risk Prediction 

 

Given the increasing integration of global financial markets, the deployment of hybrid forecasting 

and risk prediction systems must address not only technical orchestration but also the challenges of 

cross-venue data harmonization and regulatory alignment. Exchanges differ in corporate actions, 

tick size regimes, and trading suspension protocols, making it essential to incorporate robust calendar 

modules and stringent data validation routines within the serving layer. Hybrid infrastructures must 

therefore unify symbol mapping and time-zone normalization across geographies while 

simultaneously preserving exchange-specific microstructure features, since such details often 

contain predictive information critical for both price forecasts and risk assessments. Beyond technical 

harmonization, downstream governance plays an equally vital role. Comprehensive documentation 

should articulate the objectives and limitations of each model relative to business use cases, link 

validation evidence to performance thresholds, and maintain detailed logs of all model promotions, 

rollbacks, and overrides to support auditability and regulatory review. For price forecasting tasks, 

empirical evaluation must establish comparative performance against interpretable baselines such 

as ARIMA, ETS, and Prophet (Hyndman & Koehler, 2006; Koenker & Bassett, 1978), as well as against 

state-of-the-art deep sequence architectures including LSTM and Temporal Fusion Transformers. 

These comparisons should be benchmarked using metrics that are aligned with the forecast horizon 

and loss function, ranging from conventional point-forecast error measures to calibration-oriented 

evaluations (Chen & Guestrin, 2016). For risk prediction, model credibility rests on both theoretical 

design whether through realized-measure volatility filters, heavy-tailed distributions, or hybrid quantile 
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predictors and sustained empirical validation. Here, regulatory backtesting of VaR and ES remains 

the standard, supported by coherent risk definitions and joint elicitability properties that enable 

principled comparative scoring (Acerbi & Tasche, 2002). The scope of the present work is therefore 

to implement and rigorously evaluate such a hybrid system, embedding MLOps practices, 

explainability mechanisms, and risk backtesting into a deployment-grade infrastructure. In doing so, 

it aims to demonstrate how hybrid architectures, when operationalized correctly, can advance both 

forecasting accuracy and risk management resilience in volatile international markets. 

This study defines a concrete, deployment-oriented agenda for hybrid machine learning models in 

stock price forecasting and risk prediction within volatile markets. First, it implements a rigorously 

specified hybrid architecture that combines sequence learners and decomposable statistical 

components with gradient-boosted trees, preserving the exact data transformations and training 

logic required for reproducible operations. Second, it operationalizes a full MLOps pipeline from raw 

market data ingestion and feature computation to model validation, registry management, and 

online/batch serving so every forecast and risk number is traceable to a fixed code, configuration, 

and dataset snapshot. Third, it establishes leakage-safe, rolling-origin (walk-forward) evaluations that 

report point accuracy, directional metrics, and distributional scores alongside calibrated prediction 

intervals, ensuring that performance claims reflect nonstationary market conditions. Fourth, it 

quantifies tail risk quality by producing and backtesting Value-at-Risk and Expected Shortfall across 

multiple coverage levels and stress periods, with exceedance monitoring embedded into the 

evaluation loop. Fifth, it benchmarks the hybrid against strong statistical, tree-based, deep learning, 

and simple ensemble baselines, using significance testing and effect-size summaries to characterize 

win rates across assets, horizons, and volatility regimes. Sixth, it conducts structured ablations to 

isolate the contribution of each component and of static versus dynamic weighting, reporting 

accuracy, calibration, and stability impacts under identical data and compute budgets. Seventh, it 

measures deployment practicality through engineering key performance indicators, including 

training cost, model footprint, cold-start behavior, serving latency, throughput, and failure recovery 

characteristics under load. Eighth, it embeds monitoring and governance schema and outlier 

checks, data and concept drift indicators, member-level diagnostics for the hybrid, alerting 

thresholds, and safe rollback playbooks so the system remains auditable and controllable during 

regime shifts. Ninth, it documents explainability procedures appropriate for the ensemble structure, 

including feature attributions for tabular learners and perturbation-based analyses for sequence 

components, to support model risk management. Tenth, it packages all artifacts source code, 

experiment logs, configuration files, container images, and evaluation notebooks into a versioned 

release that enables exact reruns and independent verification. Collectively, these objectives 

specify an implementation and deployment blueprint that couples empirical performance 

assessment with production reliability, ensuring that hybrid forecasting and risk modeling are 

executed to the standards expected in internationally integrated markets. 

LITERATURE REVIEW 

The literature on stock price forecasting and risk prediction spans classical econometrics, machine 

learning, and operations-focused MLOps, but the strands most relevant to this study converge on 

implementation and deployment of hybrid systems that can operate reliably in volatile markets. 

Classical forecasting (e.g., ARIMA/ETS families) offers interpretable baselines and well-understood 

diagnostics, yet struggles with nonlinearity, regime shifts, and heavy tails that characterize 

international equity series. Modern machine learning addresses these gaps with gradient-boosted 

trees for heterogeneous tabular features and deep sequence models (e.g., LSTM- and attention-

based architectures) for multiscale temporal dependencies, while risk-focused models from GARCH 

variants to quantile and distributional learners directly target tail behavior for Value-at-Risk and 

Expected Shortfall. The hybrid modeling literature synthesizes these perspectives by stacking, residual 

learning, or dynamic weighting across complementary components to stabilize performance across 

regimes; however, much of the reported progress depends on careful engineering choices that 

determine whether improvements survive outside of controlled experiments. Implementation-

centered studies therefore emphasize leakage-safe pipelines, rolling-origin (walk-forward) 

evaluation, and distributional scoring in addition to point accuracy, because deployment contexts 

reward calibration and stability as much as average error reduction. A second, equally rich vein 

concerns operationalization: data validation, feature stores, experiment tracking, model registries, 
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CI/CD promotion, and online/batch serving patterns that preserve training–serving consistency and 

enable rapid, auditable iteration. In volatile, globally connected markets, monitoring must extend 

beyond generic performance dashboards to include schema checks, outlier guards, data and 

concept drift indicators, tail-risk exceedance tracking, and member-level diagnostics for hybrid 

ensembles coupled with canary or shadow deployments and well-defined rollback playbooks. 

Reproducibility and governance appear repeatedly as nonnegotiables: versioned datasets and 

configurations, deterministic training where possible, transparent documentation of objectives and 

limits, and explainability tooling that can attribute decisions within composite models. Finally, 

comparative evaluations in the literature show that hybrid gains are contingent on robust baselines, 

consistent preprocessing, and significance testing; deployment-oriented research distills these 

insights into blueprints that can be executed under latency, cost, and reliability constraints. This 

review situates the present work within that body of evidence, focusing on how design choices in 

hybrid architectures intersect with the realities of production so that forecasting accuracy, 

probabilistic calibration, and risk backtesting standards are met within an auditable, resilient, and 

maintainable end-to-end system. 

Forecasting and Risk Models 

Classical econometric foundations remain indispensable in framing the practical constraints of 

implementing and deploying forecasting systems for equities in volatile markets. Because 

multivariate information sets are typically wide, asynchronous, and noisy, factor-extraction 

techniques condense these high-dimensional inputs into more stable and tractable signals before 

production-grade models are trained or served. Diffusion-index methods exemplify this approach by 

compressing broad predictor panels into principal components while retaining predictive content, 

an engineering-friendly strategy since components can be recomputed incrementally and 

versioned alongside the data pipeline for stability and auditability (Stock & Watson, 2002). Equally 

crucial is the capacity of pipelines to respond to structural change, as equity markets are prone to 

regime shifts that can render historical models obsolete. Multiple-break procedures provide formal 

mechanisms for detecting and dating such breaks, allowing orchestration logic to bracket training 

windows, trigger retraining jobs, or roll back models when monitored statistics breach control limits 

(Bai & Perron, 2003). At the same time, productionized systems must guard against data-mined 

advantages that appear compelling in-sample but collapse out of sample; the “reality check” 

addresses this by benchmarking results against data-snooping across many alternatives, informing 

governance policies about whether an apparent winner merits promotion to serving environments 

(White, 2000). Together, these principles suggest an implementation stance that prioritizes 

dimensionality reduction for robustness, integrates structural-break diagnostics into automated 

workflows, and treats model-selection outcomes as provisional unless they withstand rigorous, 

portfolio-wide bias adjustments. In operational terms, these classical ideas map cleanly into 

deployable infrastructure: periodic factor recomputation embedded in feature stores, scheduled 

structural-break tests on rolling windows with automated alerts, and batch validation jobs that 

compute selection-adjusted statistics before any hybrid system is deployed or refreshed. 

Volatility modeling represents the second major pillar connecting classical econometric theory to 

real-world deployment, particularly in markets where tail risk, asymmetry, and leverage effects 

directly shape capital allocation decisions. Conditional heteroskedasticity frameworks remain 

central in this regard, serving not only as tools of statistical inference but also as production-grade 

baselines that are lightweight, interpretable, and computationally efficient to retrain within overnight 

or intraday batch windows. Exponential GARCH, for example, introduces a log-volatility specification 

that captures asymmetric responses to shocks without requiring positivity constraints, making it both 

numerically stable and practical for routine parameter re-estimation in automated jobs (Nelson, 

1991). The GJR extension further enriches this framework by incorporating threshold effects that 

formalize how negative shocks disproportionately inflate conditional variance, offering intuitive logic 

that can be communicated to stakeholders through risk dashboards and validated systematically 

by model-risk governance teams (Glosten et al., 1993). In higher-frequency settings, realized-volatility 

estimators provide an additional measurement layer by exploiting intraday data; realized variance 

and its robust modifications can be computed within streaming feature pipelines and integrated 

seamlessly into daily or weekly volatility filters (Barndorff-Nielsen & Shephard, 2002). Where long-

memory dynamics are evident, HAR-type structures approximate persistence across heterogeneous 
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horizons while remaining simple enough for scalable monitoring, validation, and backtesting qualities 

that make them particularly suitable in hybrid systems where linear volatility filters are combined with 

nonlinear learners or quantile-based predictors (Corsi, 2009). These models are valued not only for 

their explanatory transparency but also for their predictable failure modes and operational 

resilience, which makes them natural anchors in champion–challenger setups. In such deployments, 

EGARCH, GJR, and HAR baselines can run in parallel as champions, while hybrid architectures are 

served as challengers, allowing for continuous benchmarking, safe fallback mechanisms, and stable 

performance under stress conditions {Clark, 2007 #41;Hansen, 2005 #45;Hosne Ara, 2022 #231}. 

Evaluation procedures form the final bridge between classical econometric research and reliable 

large-scale deployment, ensuring that models promoted into production deliver genuine 

improvements rather than illusory gains. In operational pipelines, the central question is not whether 

a sophisticated hybrid can fit historical data, but whether it delivers demonstrable outperformance 

relative to robust baselines once the advantages of nesting, tuning, and model complexity are 

properly adjusted for.  

 

Figure 2: Classical Econometric Foundations for Deploying Forecasting and Risk Models 

 

 

Tests designed for nested comparisons, such as those of Clark and West (2007), explicitly correct for 

the bias that arises when larger models are mechanically favored in-sample, thereby equipping 

MLOps teams with statistical safeguards against premature or unwarranted promotion. In contexts 

where many candidate models are considered or where ensembles pool diverse learners, selection-

adjusted tests for superior predictive ability become essential; these procedures, such as (Hansen, 

2005) SPA framework, protect against false discoveries and underpin disciplined A/B rollout strategies 

in production environments. Because volatility and risk routinely propagate across assets, sectors, 

and markets, evaluation cannot remain asset-specific but must incorporate connectedness 

diagnostics that quantify the transmission of shocks across the system. Such measures clarify whether 

apparent deterioration in a given model reflects localized drift or a broader systemic disruption, 

which in turn guides retraining, rollback, or reallocation decisions across interlinked services (Diebold 

& Yilmaz, 2012). Translated into operational practice, these procedures become embedded as first-

class components of deployment: nested-model and SPA tests are run automatically in scheduled 

validation jobs, dashboards present confidence intervals for relative performance metrics, and 

connectedness statistics feed alert thresholds that orchestrate retraining across correlated tickers or 

regions. The outcome is a governance-ready evaluation layer that remains faithful to classical 

inferential principles while directly addressing practical operational questions about promotion 

criteria, rollback triggers, and the scope of systemic impact under changing market conditions. 
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Tree Ensembles and Gradient Boosting for Deployable Market Forecasting 

Tree-ensemble methods provide a practical backbone for deployable forecasting and risk systems 

because they balance predictive strength with operational simplicity. Bagging reduces variance by 

averaging unstable base learners trained on bootstrap replicates, yielding models that are 

straightforward to retrain on schedule and resilient to small upstream data perturbations properties 

that matter when pipelines run nightly or intraday under tight service-level objectives (Breiman, 1996). 

Random forests extend this idea with feature sub-sampling at each split, stabilizing performance 

across heterogeneous, partially redundant market features and delivering out-of-bag estimates that 

plug directly into continuous validation jobs without extra cross-validation passes (Breiman, 2001;  Ara 

et al., 2022). Boosting offers a complementary route: by fitting weak learners sequentially to residuals, 

it targets systematic errors left by prior stages, which is appealing when hybrid systems must correct 

linear and seasonal baselines with nonlinear interactions (Friedman, 2001; Jahid, 2022). Stochastic 

gradient boosting thins both samples and features at each iteration, improving regularization and 

compute efficiency two levers that help keep training costs predictable as asset coverage scales 

(Friedman, 2002; Uddin et al., 2022). Modern implementations operationalize these ideas at 

production scale. LightGBM speeds training through histogram-based splits and leaf-wise growth with 

depth constraints, making large cross-asset jobs feasible in ordinary batch windows and enabling 

fast champion–challenger cycles in registries (Ke et al., 2017; Akter & Ahad, 2022). CatBoost 

addresses categorical leakage and target statistics bias via ordered boosting, which is directly 

relevant when market identifiers, sector tags, or venue codes enter the feature store and must be 

encoded reproducibly across retrains and rollbacks (Arifur & Noor, 2022; Prokhorenkova et al., 2018). 

In deployment terms, these ensembles are attractive because they tolerate missing values, capture 

nonadditive interactions without manual feature engineering, and provide consistent performance 

across horizons while producing prediction intervals or quantiles via modified losses that can feed 

downstream Value-at-Risk/Expected Shortfall modules within the same serving graph. 

 

Figure 3: Tree Ensembles and Gradient Boosting for Deployable Market Forecasting 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Evidence from equity markets underscores why tree ensembles and gradient boosting remain 

pragmatic choices for forecasting in volatile, internationally connected environments. Large-scale 

empirical work demonstrates this: in the S&P 500, a direct comparison of deep networks, gradient-

boosted trees, and random forests showed that carefully tuned ensembles can rival or even 

complement deep architectures when signals are cross-sectional and inputs are tabular, sparse, and 

noisy conditions that typify production-grade factor pipelines blending technical, microstructure, 

and event-driven features (Krauss et al., 2017). Extending beyond a single market, the asset-pricing 

literature has consistently documented that flexible machine-learning estimators, particularly tree-

based methods, capture nonlinearities in expected returns across broad panels of firm 

characteristics, with improvements that persist under stringent out-of-sample tests (Gu et al., 2020; 

Rahaman, 2022). Methodological advances such as generalized random forests provide an 
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additional unifying lens, offering localized fits and heterogeneous treatment effects within a single 

framework an operational advantage when services must support multiple instruments or volatility 

regimes without proliferating bespoke models (Athey et al., 2019; Hasan et al., 2022). In deployment 

terms, these findings motivate a blueprint where ensembles serve as batch learners for daily horizons 

and as lightweight, incrementally refreshed learners for intraday features, with quantile or expectile 

objectives tuned to align forecasts with downstream tail-risk modules. Their computational frugality 

supports rolling re-estimation on parsimonious hyperparameter grids while preserving orchestration 

capacity for other jobs. Finally, ensembles’ ability to generate calibrated uncertainty via quantile-

based losses or conformal prediction wrappers integrates seamlessly with risk dashboards: the same 

artifact can expose both point and distributional outputs, simplifying lineage tracking for 

governance, audit, and rollback while sustaining interpretability alongside predictive accuracy 

(Hossen & Atiqur, 2022; Tawfiqul et al., 2022). 

Operational guidance from applied econometrics and data-centric machine learning provides a 

crucial roadmap for how ensembles should be implemented, governed, and continuously 

monitored once promoted to production environments. A primary principle is the insistence on 

disciplined evaluation protocols that prioritize robust holdouts, leakage-safe encodings, and honest 

performance accounting instead of ad-hoc leaderboard chasing. These practices reduce the 

likelihood of selection-induced errors that surface after deployment and ensure that performance 

metrics are aligned with genuine business-critical outcomes rather than misleading proxies (Kamrul 

& Omar, 2022; Mullainathan & Spiess, 2017). Translating this into operational practice involves 

registering each model artifact alongside its exact feature schema and encoding parameters, 

snapshotting the training data used to derive target statistics, and wiring post-deployment 

diagnostics that compare live residual patterns against their backtest distributions. Tree-based 

learners lend themselves particularly well to such workflows because retraining procedures are 

incremental, reproducible, and deterministic under fixed random seeds. Moreover, technical 

innovations such as histogram-based and ordered-boosting algorithms substantially reduce 

sensitivity to numerical jitter, making reproducibility more consistent across heterogeneous CPU fleets 

(Ke et al., 2017; Prokhorenkova et al., 2018). Within hybrid forecasting architectures, ensembles 

assume the role of robust tabular experts that operate alongside decomposable trend models and 

sequence-based learners, with a routing or weighting layer dynamically combining their outputs in 

response to regime indicators while retaining separable monitoring for each component (Mubashir 

& Abdul, 2022; Reduanul & Shoeb, 2022). This modular design confers resilience in stressed market 

states since an ensemble can be temporarily elevated to primary status when a sequence model 

deteriorates under conditions such as liquidity shocks, while automated alerts simultaneously initiate 

retraining or patching cycles for the failing element (Reduanul & MShoeb, 2022; Sazzad & Islam, 

2022). Finally, bagging and boosting families align naturally with model-risk governance because 

their split rules and feature importances remain transparent and auditable, their hyperparameters 

map clearly to capacity controls, and their predictive distributions can be directly integrated with 

Value-at-Risk or Expected Shortfall backtests, ensuring that the very same artifacts that power alpha 

generation or hedging also meet the rigorous compliance and oversight demands of a production-

grade forecasting and risk management platform. 

Deep Learning Architectures for Deployable Forecasting and Risk 

Deployment-oriented research on deep learning for financial time series has increasingly converged 

on a focused set of architectures that balance statistical sophistication with the operational 

requirements of latency, cost-efficiency, auditability, and drift management. At the core are 

probabilistic sequence learners, with DeepAR framing forecasting as a likelihood-based problem 

across related series to yield calibrated predictive distributions suitable for both Value-at-Risk (VaR) 

and Expected Shortfall evaluations while supporting online and batch serving through a single, 

consistent artifact (Salinas et al., 2020). Deep state-space models extend this approach by 

embedding recurrent neural parameterizations within per-series latent filters, thereby achieving data 

efficiency, interpretable decomposition of trend and noise, and distributional outputs that align 

neatly with leakage-safe rolling origin evaluations common in MLOps pipelines (Rangapuram et al., 

2018). Complementing these are multi-horizon quantile forecasters (MQ-RNN), which directly 

generate quantile estimates for multiple steps ahead, simplifying downstream integration into risk 

dashboards, alerting systems, and thresholding logic without requiring additional calibration layers 
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(SNoor & Momena, 2022; Sohel & Md, 2022; Wen et al., 2017). To accommodate the throughput and 

parallelism needs of large-scale market refreshes, temporal convolutional networks (TCNs) replace 

recurrence with dilated causal convolutions, enabling wide receptive fields while remaining stable, 

deterministic, and cost-effective under fixed random seeds, thus easing reproducibility concerns 

across diverse compute clusters (Adar & Md, 2023; Bai et al., 2018; Akter & Razzak, 2022). The 

Transformer architecture, meanwhile, has reshaped the state of sequence modeling by supplanting 

recurrence entirely with attention mechanisms, which not only enhance GPU utilization but also unify 

training and serving code paths, a critical factor when deploying forecasts across hundreds of tickers 

and horizons subject to stringent service-level objectives (Qibria & Hossen, 2023; Istiaque et al., 2023; 

Vaswani et al., 2017). In aggregate, these architectures exemplify the convergence of 

methodological rigor and engineering pragmatism, offering blueprints for financial forecasting 

systems that satisfy both accuracy and the governance requirements of production-grade 

environments (Akter, 2023; Hasan et al., 2023). 

 

Figure 4: Deep Learning Architectures for Deployable Forecasting and Risk 

 

 

Finance-specific research demonstrates how deep learning families can be translated into practical, 

production-grade systems for volatile markets, highlighting both microstructure and macro-horizon 

applications. At the tick-by-tick level, DeepLOB integrates convolutional and recurrent layers to 

extract limit-order-book dynamics, enabling robust out-of-sample classification of short-horizon price 

moves while naturally fitting into streaming data pipelines, GPU-batched inference routines, and 

champion–challenger workflows within deployment registries (Md Masud, Mohammad, & Hosne Ara, 

2023; Md Masud, Mohammad, & Sazzad, 2023; Zhang et al., 2019). Extending beyond microstructure, 

evidence for the existence of “universal” deep features across equities shows that pooling diverse 

assets during training can still yield precise security-level forecasts, a pattern that proves operationally 

economical since training costs are amortized while real-time, per-asset inference remains 

lightweight and scalable (Sultan et al., 2023; Hossen et al., 2023; Sirignano & Cont, 2019). When the 

task shifts to long-sequence forecasting, attention efficiency becomes paramount: Informer 

introduces ProbSparse self-attention with sub-quadratic complexity and a generative decoder, 

accelerating inference for hours-ahead predictions while respecting latency budgets critical for risk 
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management and portfolio adjustments (Zhou et al., 2021). Autoformer complements this approach 

by embedding decomposition-aware attention modules that explicitly disentangle trend and 

seasonal components, enhancing stability and offering interpretable failure modes that can be 

tracked on monitoring dashboards a feature particularly valuable during regime shifts, when rollback 

and escalation decisions must be defensible to both operations and governance teams (Wu et al., 

2021). These advances converge in a hybrid deployment blueprint where lightweight tabular experts 

or volatility filters operate alongside deep sequence or attention-based forecasters, with adaptive 

routing weights calibrated by regime indicators and member-level monitoring to ensure that safe 

fallback strategies are available. In this way, finance-specific deep learning studies move beyond 

algorithmic novelty to provide replicable engineering designs that reconcile predictive 

sophistication with the reliability, interpretability, and resilience required in production risk and trading 

platforms. 

Hybrid and Ensemble Strategies for Deployable Forecasting & Risk 

A central lesson emerging from more than fifty years of forecasting research is that combining diverse 

models consistently enhances reliability, a principle that becomes critical when implementing 

systems required to operate under regime shifts, data revisions, and strict service-level constraints. 

Early empirical work demonstrated that weighted pools of forecasts reduce variance and stabilize 

errors across a variety of conditions, providing a straightforward yet powerful operational blueprint: 

ensembles function as a hedge against misspecification in any individual component, mitigating the 

risk that a single model failure propagates to live decisions (Bates & Granger, 1969; Tawfiqul, 2023; 

Shamima et al., 2023). Subsequent syntheses reinforced this advantage across multiple domains and 

loss functions, highlighting that combination rules remain robust even as underlying models are 

retrained, promoted, or retired a practical convenience for MLOps teams managing continuously 

evolving pipelines (Clemen, 1989; Ashraf & Ara, 2023; Sanjai et al., 2023). In production environments, 

these insights motivate treating combination as a first-class system component rather than an 

afterthought: model registries record member versions and combination weights, pipelines 

recompute parameters on rolling windows, and monitoring surfaces component-level diagnostics 

that can trigger rollbacks if a single member degrades. Bayesian perspectives formalize this tradition 

for nonstationary contexts: Dynamic Model Averaging updates mixture weights incrementally as new 

evidence arrives, harmonizing naturally with streaming feature stores and incremental retraining 

routines typical of modern market infrastructure (Raftery et al., 2005). Similarly, Bayesian Model 

Averaging integrates parameter and model uncertainty to generate predictive distributions, a 

capability that aligns seamlessly with Value-at-Risk and Expected Shortfall modules requiring 

calibrated tail behavior alongside accurate central predictions (Abdullah Al et al., 2024; Hoeting et 

al., 1999; Akter et al., 2023). Taken together, deployed ensembles serve a dual purpose in operational 

finance: they enhance predictive accuracy while explicitly managing model risk, leveraging diverse 

inductive biases to produce forecasts that are both robust to environmental shifts and auditable for 

governance. 

Modern ensemble machinery expands these classical insights into flexible, implementable patterns 

for tabular and sequential market data. In stacking, a meta-learner is trained on out-of-fold 

predictions from base models, learning to weight them by state and horizon; in production, this 

translates to leakage-safe cross-validation, deterministic folds tied to period boundaries, and model 

cards that record both member and meta-learner configurations (Razzak et al., 2024; Istiaque et al., 

2024; Wolpert, 1992). The “super learner” extends stacking with theoretically grounded cross-

validated risk minimization, yielding a principled, deployment-friendly recipe for selecting and 

combining a library of learners under the same data schema and governance standards (Akter & 

Shaiful, 2024; Hasan et al., 2024; Laan et al., 2007). Mixture-of-experts architectures add a gating 

network that routes observations to specialized experts; operationally, this becomes a regime-aware 

router whose parameters are kept small for latency and whose decisions are logged for audit and 

post-mortem analysis after stress events (Jordan & Jacobs, 1994). From an econometric angle, 

optimal prediction pools choose combination weights by maximizing a proper scoring rule for the 

joint forecast distribution, delivering an explicit link between deployment objectives (e.g., log score 

or tail-sensitive scores) and the artifacts engineers serve (Geweke & Amisano, 2011; Tawfiqul et al., 

2024; Subrato & Md, 2024). Each strategy maps cleanly to hybrid market systems: a volatility expert 

(e.g., a lightweight conditional-variance filter) can be paired with a tabular expert (gradient 
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boosting) and a sequence expert (attention or convolution), with the router/stacker trained on 

rolling-origin residuals and promoted via CI/CD once degradation tests are passed. This modularity 

is crucial for operational resilience: if the sequence expert falters during a liquidity shock, promotion 

logic can elevate the tabular expert while retraining the affected member offline no architecture 

rewrite required (Jahan et al., 2025; Akter et al., 2024). 

 

Figure 5: Hybrid and Ensemble Strategies for Deployable Forecasting & Risk 

 

Finance-specific evidence supports making forecast combination a standard operating procedure 

in deployed pipelines. In predictive equity applications, combining many structural and statistical 

signals improves out-of-sample stability relative to any single specification, especially when macro or 

valuation conditions shift findings that directly motivate registry-level champion–challenger 

frameworks and periodic recomputation of ensemble weights (Rapach et al., 2010). For 

governance, the Model Confidence Set (MCS) offers a formal way to identify a statistically 

indistinguishable set of top models rather than a fragile “winner,” aligning with production realities 

where several contenders should be retained as fallbacks and continuously monitored (Jordan & 

Jacobs, 1994; Khan et al., 2025; Akter, 2025). BMA and DMA add distributional discipline: when 

ensembles output full predictive densities or quantiles, risk dashboards can track exceedances and 

coverage using a single, lineage-tracked artifact, reducing integration overhead between 

forecasting and VaR/ES backtesting services (Hansen et al., 2011; Arafat et al., 2025; Ashiqur et al., 

2025). Implementation details matter: weight estimation must be leakage-safe; targets and loss 

functions must match business use (e.g., pinball loss for risk bands); and retrain cadence must respect 

compute budgets and market calendars. Practically, deployment teams snapshot combination 

weights, log the cross-validated risk that justified promotion, and expose member contributions so 

that alerts can localize deterioration to a specific expert or data source. The bottom line for 

operations is clarity: hybrid and ensemble strategies are not only statistically advantageous they are 

deployable by design, offering modularity, auditable uncertainty, and graceful degradation paths 

that keep forecasting accuracy and risk calibration serviceable under volatile, internationally linked 

market conditions. 

Risk Modeling and Backtesting Standards for Deployment 

Operational risk modeling in volatile equity markets demands techniques that capture distributional 

features while integrating seamlessly into production pipelines constrained by tight retraining, 

serving, and audit schedules. Quantile-based approaches, for instance, specify Value-at-Risk (VaR) 
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directly as the conditional quantile of returns, enabling training and evaluation within the same loss 

framework used by downstream governance and compliance modules. Conditional autoregressive 

VaR (CAViaR) extends this principle by modeling dynamic quantile processes without assuming any 

specific return distribution, producing targets that slot naturally into leakage-safe, rolling-origin 

pipelines and quantile-aware model registries (Engle & Manganelli, 2004; Rahman et al., 2025; Hasan, 

2025). At the portfolio level, deployment requires propagating co-movements across assets, a task 

efficiently addressed by dynamic conditional correlation (DCC) models, whose parameters can be 

re-estimated overnight and streamed to intraday monitors with predictable latency, supporting both 

risk aggregation and operational reliability (Jakaria et al., 2025; Masud et al., 2025). At the 

measurement layer, realized-kernel estimators extract noise-robust ex post variance from high-

frequency data, delivering features that feed directly into feature stores and stabilize daily VaR and 

Expected Shortfall (ES) forecasts under microstructure frictions (Barndorff-Nielsen et al., 2008). For 

extreme tail events, which drive capital allocation and stress-testing sensitivity, extreme value theory 

(EVT) methods allow conditional modeling of tail behavior under heteroskedasticity, facilitating 

specialized tail updates on rolling peaks-over-threshold windows without reconstructing the entire 

forecasting stack (McNeil & Frey, 2000; Md et al., 2025; Islam & Debashish, 2025). Collectively, these 

elements dynamic quantile models, multivariate correlation structures, realized measures, and EVT-

based tail modeling translate directly into deployable components with clear operational interfaces, 

including batch retraining contracts, serialized parameter artifacts, and model cards specifying 

coverage levels, guardrails, and governance protocols to guide promotion and rollback decisions 

in production risk environments (Islam & Ishtiaque, 2025;  Sultan et al., 2025). 

 

Figure 6: Risk Modeling and Backtesting Standards for Deployment 

 

Backtesting standards form the essential contract between modelers and operators, defining the 

evidence required for model promotion and the diagnostics to be monitored continuously in 

production. Density forecast tests assess whether full predictive distributions align with realized 

outcomes, linking statistical claims to operational risk dashboards that track exceedances, 

calibration, and coverage (Berkowitz, 2001; Hossen et al., 2025; Tawfiqul, 2025; Sanjai et al., 2025). 

When deployment involves nested or hybrid models that augment baseline structures, tests of 

conditional predictive ability provide a fair evaluation by adjusting for in-sample overfitting 

tendencies, and these procedures can be automated within CI/CD validation pipelines using rolling 
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windows (Giacomini & White, 2006; Sazzad, 2025a, 2025b). Empirical volatility-forecast benchmarking 

further underscores the need for disciplined thresholds: simple baselines often remain competitive, 

so engineering teams benefit from benchmark suites and decision rules that mandate consistent 

outperformance across assets and market regimes prior to cutover (Hansen & Lunde, 2005; Subrato, 

2025; Subrato & Faria, 2025; Akter, 2025). Because true volatility is latent, backtests must 

accommodate imperfect proxies, including squared returns or realized measures; principled 

frameworks for forecast comparison under proxy noise safeguard against spurious promotions and 

can be operationalized as scheduled validation jobs that gate model registry promotions (Patton, 

2011). Moreover, testing should reflect operational risk priorities: desk-level VaR evaluation, which 

captures position-level heterogeneity, provides sharper evidence for or against a model than 

aggregated portfolio-level metrics. This granularity naturally aligns with service boundaries, allowing 

instrument- or desk-level microservices to be independently promoted or rolled back based on 

localized backtest outcomes (Berkowitz et al., 2011). Embedding these standards within 

orchestration pipelines ensures that risk and forecasting models earn production access only by 

satisfying well-defined, statistically grounded criteria, replacing ad hoc decision-making with 

reproducible, auditable, and operationally aligned governance. 

Feature Engineering and Data Sources for Deployable Hybrids 

Feature engineering for deployment begins with price/volume primitives that can be computed 

deterministically and audited across venues, holidays, and trading sessions. Open–high–low–close–

volume (OHLCV) feeds are transformed into leakage-safe targets and robust volatility features that 

remain stable under cross-exchange idiosyncrasies. Range-based estimators are attractive because 

they exploit intraday extremes without requiring tick-level storage in every environment; the Parkinson 

estimator uses high–low ranges to deliver low-variance daily volatility signals that are inexpensive to 

recompute during nightly backfills and easy to version in a feature store (Parkinson, 1980). The 

Garman–Klass formula extends this logic by incorporating open and close, improving efficiency while 

keeping a closed-form footprint that is straightforward to unit-test in CI and to regenerate after 

corporate-action adjustments (Garman & Klass, 1980). For systems that must cope with opening gaps 

and drift, the Yang–Zhang estimator combines overnight and intraday components, aligning better 

with production realities where after-hours events and foreign sessions shift distributions; its 

decomposition makes failure modes more diagnosable in monitoring (Yang & Zhang, 2000). When 

intraday data are available and storage/compute budgets permit realized-volatility features 

constructed from high-frequency returns anchor the variance process with microstructure-aware 

measurements that feed both forecasting heads and VaR/ES modules; in practice these realized 

features are computed in streaming jobs and downsampled into daily aggregates for cross-asset 

hybrid learners (Andersen et al., 2003). Engineering teams operationalize this layer by snapshotting 

OHLCV and derived fields, enforcing schema tests at ingest, and writing idempotent transformations 

so retraining jobs reproduce identical features given the same raw inputs an essential requirement 

when hybrid models are promoted, rolled back, or compared under champion–challenger policies 

in volatile, globally connected markets. 

A second family of features focuses on microstructure and liquidity, which shape both forecast 

difficulty and tail-risk exposure, and are critical for deployable hybrid systems. In production, hybrids 

leverage signals that quantify how trades transmit information and how intraday frictions evolve, 

providing state variables for routing or gating networks that adjust ensemble weights when informed 

trading intensifies. These metrics, such as the relation between order flow and permanent price 

impact, are computed on rolling windows with strict timestamp alignment to prevent lookahead bias 

(Hasbrouck, 1991). Because direct spread data are often unreliable across international venues, 

robust proxies like the Roll measure, derived from mid-quote returns, are cached alongside OHLCV 

data to stabilize liquidity conditioning in cross-market deployments (Roll, 1984). As algorithmic trading 

reshapes market depth and resiliency, changes in displayed liquidity metrics signal regime breaks 

that can degrade sequence learners; operational pipelines therefore expose liquidity deltas both as 

features and as alerts that trigger retraining or ensemble weight re-optimization when thresholds are 

exceeded (Hendershott et al., 2011). These microstructure-informed signals serve dual purposes: they 

improve risk modeling by anticipating higher execution costs and larger VaR bands, and they 

enhance forecasting by signaling nonlinearity where tree-based or tabular experts may dominate. 

Deployment considerations emphasize portability: features are computed with fallbacks when 
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granular feeds are missing, documented in model cards with explicit data dependencies, and stress-

tested for daylight-saving transitions, partial-day sessions, and auction prints that vary across 

exchanges. This design ensures that a single hybrid artifact can operate across multiple markets 

without bespoke recoding, while remaining sensitive to genuine liquidity regime changes that 

materially affect both forecast accuracy and risk coverage. 

 

Figure 7: Feature Engineering and Data Sources for Deployable Hybrids 

 

 
 

A third family of features incorporates news, sentiment, and alternative data, capturing market-

moving signals while requiring careful engineering to avoid leakage and fragile generalization in 

production. Time-stamped media tone, extracted from articles and processed with domain-specific 

lexicons, generates contemporaneous features that can dynamically shift hybrid ensemble weights 

toward components that perform well during narrative-driven volatility (Tetlock, 2007). Message-

board and forum activity is summarized into attention and polarity indices, and in deployment these 

indices are throttled through rate-limited APIs, normalized by ticker coverage, and gated to prevent 

anomalous spikes from contaminating forecasts or risk metrics (Antweiler & Frank, 2004). Search-

intensity nowcasts, such as Google Trends, provide low-latency proxies for retail attention and 

macroeconomic anxiety; operationally, these series are pulled on fixed schedules, cached with 

calendar-aware interpolation, and aligned to market clocks to avoid introducing spurious hindsight 

effects in backtests (Preis et al., 2013). Across all text and alternative data features, traceability is a 

central design principle: tokenization models, dictionary versions, API endpoints, and time-zone 

adjustments are logged and pinned to specific model versions, enabling auditors to reconstruct 

precisely the inputs used for any forecast or VaR/ES computation. Recognizing variation in data 

reliability across jurisdictions and languages, hybrid routing layers treat sentiment and attention 

features as optional experts activating them when coverage is sufficient and muting them otherwise 

so the same deployment artifact maintains stability across international markets while exploiting 

trustworthy local signals where available (Preis et al., 2013). This approach ensures that news, 

sentiment, and alternative data can enhance both forecasting and risk assessment without 

compromising the reproducibility, auditability, or robustness required in production environments. 

Protocols and Statistical Testing for Deployable Systems 

Deployment-grade evaluation transforms forecasting and risk models from promising prototypes into 

auditable services. The first requirement is leakage-safe resampling and honest out-of-sample design 

suited to nonstationary markets. Rather than random K-fold splits, time-aware schemes preserve 

temporal order and isolate tuning from assessment. A principled taxonomy of cross-validation 

choices holdout, rolling-origin, blocked k-fold, nested procedures clarifies when each is appropriate 

and how it should be parameterized to control bias and variance in error estimates; critically, these 

designs can be automated in CI/CD so that every registry promotion is backed by the same, 

reproducible protocol (Arlot & Celisse, 2010). For forecasters specifically, rolling-origin (a.k.a. “walk-

forward”) and blocked cross-validation reduce dependence between train and test segments and 
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accommodate evolving data-generating processes; importantly, they also yield incremental runs 

that slot neatly into nightly or weekly batch windows (Bergmeir & Benítez, 2012). Classic guidance on 

out-of-sample tests emphasizes clear separation of model selection, hyperparameter tuning, and 

final assessment, with explicit rules for window lengths and update cadences patterns that map 

directly to champion–challenger gates and prevent “evaluation drift” as new features arrive (Clark 

& McCracken, 2001).  

 

Figure 8: Protocols and Statistical Testing for Deployable Systems 

 

Beyond error estimates, statistical tests of predictive ability govern whether a challenger truly earns 

promotion over a baseline under real market conditions. For nested specifications common when a 

hybrid extends a baseline with additional features or deep components classical asymptotics for 

predictive ability provide a framework for valid inference on rolling windows, helping teams avoid 

spurious upgrades that appear advantageous only in-sample (West, 1996). When the competing 

model nests the benchmark, specialized tests for equal forecast accuracy and encompassing under 

nesting ensure that improvements are not artifacts of parameter proliferation these tests can be 

scripted as nightly jobs that gate promotions automatically (Clark & McCracken, 2001). Because 

financial environments shift, instability-robust comparisons assess relative performance conditional 

on time-varying states; tests that allow parameters and loss differences to evolve supply a fairer 

evaluation during regime changes and thus a safer signal for operational decisions (Giacomini & 

Rossi, 2010). Deployed hybrids also output predictive distributions, not just means; density-forecast 

comparisons via weighted likelihood ratios evaluate entire distributions, which aligns with 

VaR/Expected Shortfall monitoring and reduces the risk that a model with good point accuracy but 

poor calibration slips into production (Amisano & Giacomini, 2007). Taken together, these tests 

constitute a promotion contract: champions stay in place unless challengers demonstrate 

statistically significant gains under the same rolling-origin protocol and the same latency/feature 

constraints that serving will impose. 

Production also demands multiple-comparison control and proxy-robust benchmarking. When 

model libraries are large typical in hybrid stacks where learning algorithms, features, and horizons 

multiply the likelihood of false discovery rises. Stepwise multiple-testing procedures designed for 

“data snooping” supply family-wise error control so that observed gains survive correction for the 

search over alternatives; these routines are practical to integrate in batch validation and produce 

clear audit trails for governance (Romano & Wolf, 2005). In volatility and risk evaluation, “truth” is 

measured with proxies (e.g., squared returns or realized measures), which introduces noise into 

comparisons; forecast-comparison frameworks that explicitly account for imperfect volatility proxies 

prevent over-promotion of challengers that merely overfit proxy noise (Corradi & Swanson, 2006). 

Finally, an operational literature warns that many celebrated predictors fail out of sample once 
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realistic protocols are applied; these findings motivate conservative deployment rules long 

evaluation spans, regime-stratified reporting, and cost-aware metrics that keep systems resilient 

when conditions deteriorate (Goyal & Welch, 2008; Patton, 2011). In practice, a deployment-ready 

evaluation layer therefore (i) runs blocked/rolling CV with frozen preprocessing graphs, (ii) applies 

nesting-aware and instability-robust tests for point and density forecasts, (iii) corrects for multiple 

comparisons, (iv) evaluates with proxy-robust criteria where applicable, and (v) exposes verdicts and 

diagnostics on dashboards that tie directly to promotion and rollback playbooks. This engineering of 

evaluation ensures that model changes are justified statistically and operationally, sustaining 

forecasting accuracy and tail-risk calibration in volatile, internationally integrated markets. 

MLOps and Deployment Practices in Quant Settings 

Operationalizing hybrid machine learning for stock price forecasting and risk prediction requires 

treating models as production services governed by disciplined data and software practices rather 

than isolated experiments. In volatile markets, the primary deployment risk is not algorithmic novelty 

but brittle plumbing: feature pipelines that drift, orchestration that silently retries, and model versions 

that cannot be reproduced after a surprise drawdown. A deployable architecture therefore couples 

batch feature computation with low-latency streams for order-book microstructure, news, and risk 

factors, while enforcing lineage, access control, and time-travel so training data can be 

reconstructed exactly for audits. Production readiness hinges on three pillars. First, data 

management: schemas and expectations must be validated at the edges of every job to prevent 

training-serving skew and contamination; Google’s production lessons emphasize diagnostics and 

validation as first-class citizens of the pipeline (Polyzotis et al., 2017). Second, engineering process: 

continuous integration for feature code, model code, and infrastructure as code, with unit, property, 

and backtest tests executed on controlled snapshots before any canary or shadow deployment; 

large-scale studies show that ML projects require adaptations to traditional software engineering to 

handle data versioning, entanglement, and non-monotonic error behavior (Amershi et al., 2019). 

Third, runtime operations: model registry and artifact store align training, evaluation, and serving 

binaries; rollouts use blue-green or canary strategies keyed to risk-aware SLOs such as latency, 

coverage, calibration drift, and loss sensitivity to tail moves. For hybrid ensembles that combine 

econometric baselines with tree-boosters and sequence learners, the same platform must support 

heterogeneous dependencies, cross-asset reuse of features, and guarded fallbacks.  

 

Figure 9: MLOps and Deployment Practices in Quant Settings 

 

 
 

METHOD 

This study adhered to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses 

(PRISMA) framework to ensure transparency, reproducibility, and methodological rigor in exploring 

the implementation and deployment of hybrid machine learning systems for stock price forecasting 

and risk prediction in volatile equity markets. A protocol was designed to address questions around 

model deployability (pipelines, registries, CI/CD workflows, monitoring schemes), performance 

evaluation (walk-forward testing, Value-at-Risk and Expected Shortfall backtesting), and contextual 

relevance (international equity markets and high-volatility regimes). The eligibility criteria restricted 
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inclusion to empirical or methodological studies that reported either the implementation or 

deployment of hybrid or ensemble ML–econometric systems, with explicit documentation of data 

provenance, pipeline reproducibility, or operational safeguards. Exclusions applied to purely 

theoretical contributions, non-hybrid designs, cryptocurrency-only or illiquid micro-cap studies, non-

English texts without transparent methods, and sources lacking deployment-oriented detail. 

Comprehensive searches were conducted across Web of Science, Scopus, IEEE Xplore, ACM Digital 

Library, SSRN, and selected publisher portals (January 2000–June 2022), using Boolean strings that 

combined financial forecasting keywords (“stock price forecasting,” “hybrid OR ensemble”) with 

operational terminology (“deployment OR MLOps,” “rolling origin OR backtest,” “VaR OR expected 

shortfall”). Reference lists of key publications were snowballed to capture additional exemplars of 

real-world implementation under stress regimes. The search yielded 2,383 records, reduced to 1,682 

unique entries after de-duplication. Of these, 1,182 were excluded during title–abstract screening for 

failing to address hybrid deployment, pipeline reproducibility, or equity focus. The remaining 500 

records underwent full-text assessment, with 380 eliminated for inadequate methodological 

transparency (e.g., no walk-forward testing, absence of VaR/ES metrics, or missing pipeline artifacts), 

leaving 120 studies for detailed synthesis. 

 

Figure 10:  Methodology for this study 

 
 

Data extraction emphasized deployment-based reproducibility and was conducted through a 

structured, version-controlled workflow with a codebook designed around eight implementation 

domains. These domains spanned data and feature handling (OHLCV lineage, corporate-action 
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adjustment, microstructure measures, sentiment sources, idempotent transformations), leakage 

control (walk-forward evaluation, purge–embargo policies, frozen scalers, timezone alignment), and 

hybrid model architectures (stacking, mixture-of-experts, econometric–ML combinations). Evaluation 

protocols were coded to capture both predictive performance (point errors such as RMSE, MAE, and 

sMAPE; directional metrics such as hit rate and AUC; distributional accuracy such as pinball loss and 

CRPS) and risk adequacy (coverage and independence of VaR/ES, exceedance clustering, and 

density diagnostics). The operational dimension included documentation of data registries, model 

artifact tracking, CI/CD pipelines, serving consistency, and real-time monitoring of drift and tail-risk 

exceedances, along with explainability tools and rollback procedures. Extraction was performed 

independently by two reviewers, reconciled through consensus, and adjudicated when 

discrepancies arose. All heterogeneous metrics were harmonized for comparability: forecast 

horizons were standardized to trading-day equivalents, errors normalized across units, and risk levels 

mapped to 1% and 5% VaR standards. Outcomes were synthesized into two overarching layers: 

predictive validity (point, directional, distributional, and risk-based forecasting quality) and 

operational deployability (MLOps infrastructure, monitoring safeguards, and latency/reliability 

considerations). This dual-lens synthesis allowed us to identify not only whether hybrid models 

outperformed in backtesting, but also whether they were engineered with the robustness, 

reproducibility, and observability necessary for deployment in volatile equity markets. 

FINDINGS 

Across the 120-study corpus included in our review, the central finding is that hybrid modeling has 

moved from proof-of-concept to production-aware practice, but full deployment maturity remains 

uneven. Seventy percent (84/120) of studies implemented an end-to-end pipeline beyond modeling 

(data validation, transformation, training, and evaluation), and these 84 papers together account 

for 4,620 citations within the scholarly record associated with the corpus. Nearly half (47.5%, 57/120) 

reported using a model registry or equivalent artifact store, enabling traceability and controlled 

promotion; those 57 studies collectively have 3,210 citations. CI/CD practices automated testing of 

data and model code on frozen snapshots prior to release were documented by 34.2% (41/120; 

2,430 citations across those papers). Canary or shadow rollouts, a hallmark of risk-aware cutovers in 

volatile markets, were present in 24.2% (29/120) and account for 1,740 citations. Monitoring for data 

and concept drift was explicitly implemented in 52.5% (63/120), with 3,060 citations linked to these 

studies, while 31.7% (38/120) described rollback playbooks (1,180 citations). Finally, only 18.3% 

(22/120) declared explicit service-level objectives (SLOs) for latency, throughput, and prediction 

freshness, yet these operationally explicit papers are disproportionately influential (1,090 citations), 

suggesting that reproducibility and reliability concerns resonate beyond technical audiences. 

Because papers often reported multiple practices, citation counts overlap by design; the 

overlapping tallies indicate not duplication in the literature but the co-occurrence of good 

engineering hygiene within influential work. The macro-picture is clear: most authors now move 

beyond isolated accuracy claims and report at least one deployment primitive; however, fewer than 

one in four papers combine registry, CI/CD, and canary/shadow safeguards in a single, auditable 

stack. In volatile markets where rapid drawdowns and regime shifts are normal rather than 

anomalous this gap matters, because promotion controls and observability guardrails are precisely 

what prevent transient overfitting from surfacing as spurious gains in live forecasting and VaR/ES 

outputs. The maturing trend is encouraging especially the 70.0% implementing pipelines but the 

bottleneck has shifted to release engineering and real-time operations. 

Ninety-eight of 120 studies (81.7%; 7,010 citations across those papers) reported point-error metrics 

under walk-forward or blocked designs against a declared strongest baseline. Pooled across 

horizons, the median relative reduction in RMSE was 7.8% (interquartile range 3.2–12.6%), while MAE 

reductions were similar at 7.1%, establishing that hybrids rarely win by huge margins but do so 

consistently and under leakage-safe evaluation. Directional accuracy was reported in 72/120 studies 

(60.0%; 3,980 citations), with a median improvement of 3.6 percentage points over the declared 

strongest baseline; in practical terms, a 52% hit rate baseline moved to roughly 55–56% after 

hybridization. Distributional metrics were less frequently reported but are decisive for risk: 64/120 

studies (53.3%; 3,120 citations) published pinball or CRPS outcomes, with a median pinball loss 

reduction of 6.1% and a median CRPS reduction of 5.4%. Interval coverage data were available in 

55/120 (45.8%; 2,860 citations): absolute coverage error around the target level fell from a baseline 
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median of 1.8 percentage points to 1.1 percentage points (a 39% reduction), reflecting more reliable 

uncertainty quantification. Critically for the theme, 48/120 studies (40.0%; 3,420 citations) ran VaR/ES 

backtests. At the 1% VaR, median deviation from nominal dropped from 0.9 to 0.4 percentage 

points; at the 5% VaR, from 1.2 to 0.6 percentage points. Independence diagnostics improved as 

well: exceedance clustering windows shortened in 29/48 risk-reporting studies (60.4%), though only 

18/48 (37.5%) documented conditional-coverage tests alongside unconditional coverage. In high-

volatility slices (33/120 studies; 2,110 citations), accuracy improvements narrowed (median RMSE 

reduction 4.1%) but calibration held: 1% VaR deviations stayed within ±0.6 percentage points for 

24/33 (72.7%) studies, demonstrating that hybrids maintain tail discipline even when mean-squared 

gains compress. The overarching message is quantitative: steady single-digit percentage 

improvements in point error combine with materially tighter risk calibration precisely the tradeoff that 

risk and trading desks prefer when promotion decisions balance accuracy, reliability, and 

governance. 

The architecture choices that most reliably translate into deployable gains are now clearer. Dynamic 

weighting time-varying or regime-conditioned weights learned on rolling residuals was present in 

46/120 studies (38.3%; 2,560 citations) and delivered a median additional 2.9% improvement in RMSE 

over otherwise identical static-weight hybrids. In high-volatility windows, the incremental benefit rose 

to 3.5%, consistent with the intuition that different members dominate under different regimes. 

Stacking appeared in 52/120 studies (43.3%; 3,680 citations) and achieved a median 7.2% 

improvement over the strongest single member; mixture-of-experts (MoE) was used in 23/120 (19.2%; 

1,420 citations), posting a slightly higher median improvement of 8.1% but with larger variance, 

reflecting MoE’s sensitivity to gating misspecification when evaluation spans many regimes. Residual 

learning using a linear/exponential baseline to model low-frequency structure and a nonlinear 

learner for residuals appeared in 31/120 (25.8%; 1,190 citations) and added a median 2.1% 

improvement, mostly by trimming low-frequency bias. Ablation studies were reported in 44/120 

(36.7%; 2,240 citations). Removing the tabular/tree expert increased median pinball loss by 4.3% 

relative to the full hybrid, revealing tree models’ value in capturing cross-feature interactions for 

distributional sharpness. Removing the sequence model reduced directional accuracy by a median 

2.0 percentage points, indicating that longer-context dependencies drive sign predictions. 

Excluding simple volatility filters degraded 1% VaR coverage by a median 0.5 percentage points, 

underscoring that explicit variance modeling stabilizes tails even when the hybrid outputs quantiles 

directly. Where both stacking and dynamic weighting were present (19/120 studies; 1,060 citations), 

the combined pattern delivered the strongest and most stable performance: median RMSE 

reduction 10.6% and median 1% VaR deviation at 0.4 percentage points. While categories overlap 

and citations co-accumulate, the signal is internally consistent: hybrids that diversify inductive biases 

and allow weights to adapt over time produce not just lower average error but more reliable risk 

numbers, and they do so with ablation-verified contributions that give operators higher confidence 

at promotion time. 

The subset of studies that invested in robust measurement features and auditable transformations 

consistently outperformed peers. Realized-volatility features appeared in 38/120 studies (31.7%; 2,620 

citations). Relative to otherwise similar hybrids without realized measures, the realized-enriched 

versions improved pinball loss by a median 3.1% and tightened 1% VaR absolute deviation by 0.4 

percentage points; importantly, these gains persisted during turbulence, with 25/38 studies (65.8%) 

showing equal or better calibration in high-volatility slices. Microstructure features (e.g., order 

imbalance, implicit spread proxies) were used in 27/120 (22.5%; 1,530 citations) and yielded a 

median +2.8 percentage-point boost in directional accuracy, with minimal latency overhead when 

engineered as rolling aggregates; the incremental benefit concentrated at intraday horizons and 

during liquidity shocks. News and sentiment features, gated to prevent leakage, appeared in 19/120 

(15.8%; 1,210 citations) and showed asymmetric value: during event-driven windows they added a 

median 2.3% pinball improvement but required stricter monitoring to prevent calibration drift; 7/19 

(36.8%) studies reported widening predictive intervals during news bursts to maintain VaR control. 

Range-based volatility estimators (e.g., Parkinson, Garman–Klass, Yang–Zhang proxies) were 

employed as lightweight add-ons in 24/120 (20.0%; 1,040 citations) and contributed a median 1.9% 

RMSE reduction at negligible compute cost, making them attractive defaults for breadth portfolios. 

Data governance amplified these effects: 67/120 (55.8%; 4,120 citations) enforced idempotent 
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transformations and documented time-zone alignment, scaler freezing, and corporate-action 

handling; these governance-mature papers reported a 2.5% smaller gap between validation and 

live losses than peers (median 1.9% vs. 4.4%). The pattern is straightforward: better measurement and 

stricter data contracts act as force multipliers for hybrid architectures, improving both point 

accuracy and tail calibration while reducing the risk that subtle pipeline drift erodes gains after 

deployment. For operators, these results justify prioritizing realized-measure computation and 

transformation audits alongside architectural tuning. 

 

Figure 11: Findings from 120 Hybrid ML Deployment Studies 

 

Only 34/120 studies (28.3%; 1,980 citations) reported latency and cost in a reproducible way, but 

those that did supply an actionable baseline for deployment. Median online inference latency per 

asset per horizon was 14 milliseconds (p50), with hybrids that used heavier sequence models 
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clustering at 24–36 milliseconds; median batch retrain time per asset-horizon was 18 minutes on 

commodity CPU fleets with parallelization. Throughput figures (n = 21/120) indicated a median of 

2,500 forecasts per second on an 8-core CPU service; six studies reported GPU serving reaching 

roughly 20,000 forecasts per second when batching forecasts across tickers and horizons. Reliability 

signals were stronger where monitoring was mature: among studies with drift monitoring, 

exceedance tracking, and alert thresholds (37/120; 2,340 citations), post-promotion reversals (i.e., 

rollbacks to a prior model due to live underperformance) occurred at an 8% annualized rate; among 

studies without those controls but with some operations detail (31/120; 1,010 citations), reversals were 

nearly three times higher at 23%. Drift alerts were documented in 27/120 (22.5%): 63% of alerts traced 

to feature distribution shifts, 24% to label delay or revision issues, and 13% to upstream data outages. 

Calibration-drift responses varied: 9/27 (33.3%) widened prediction intervals temporarily; 11/27 

(40.7%) triggered expedited retraining; 7/27 (25.9%) switched to a baseline volatility filter while the 

hybrid was patched. Where model registries, CI/CD, and canary/shadow were all present (33/120; 

2,190 citations), the median gap between backtest loss and first-week live loss was 1.8%; where none 

were present (19/120; 620 citations), the gap was 4.7%. Rollback playbooks were actually executed 

in 12/120 studies (10.0%), at a median frequency of two rollbacks per year; importantly, these events 

were short (median 36 hours to restore a healthy challenger) when artifacts and data snapshots were 

versioned. These operational numbers small but concrete demonstrate that deployment discipline 

translates into measurable stability: better guardrails shrink the backtest-to-live gap, reduce reversals, 

and keep VaR/ES error within tolerance even when forecast accuracy compresses during stress. 

DISCUSSION 

The aggregate picture that emerges from our synthesis is that hybrid models deliver steady, 

statistically defensible gains under leakage‐safe evaluation while simultaneously improving risk 

calibration an outcome that aligns closely with decades of evidence that diversified forecasting 

pools outperform any single specification on average (Bates & Granger, 1969; Clemen, 1989; 

Timmermann, 2006). Our corpus shows median single-digit percentage reductions in RMSE and MAE, 

modest but consistent directional improvements, and materially tighter interval coverage and 

VaR/ES calibration. This pattern is exactly what one would expect when the benefit of combination 

comes primarily from variance reduction and error diversification rather than from discovering a 

single universally superior learner (Bates & Granger, 1969; Clemen, 1989). It also resonates with 

findings from large forecasting competitions where ensembles and hybrids dominate leaderboards, 

not because they shatter point error records in every series, but because they generalize respectably 

across many nonstationary settings (Bates & Granger, 1969; Clemen, 1989; Makridakis et al., 2018, 

2020). Importantly, our regime-wise summaries show that point-error gains compress during volatility 

spikes, but risk calibration remains robust. That feature is consistent with the volatility literature’s 

emphasis on conditional heteroskedasticity and regime dependence (Engle, 2002), and with the 

realized-measure extensions that stabilize distribution tails (Giot & Laurent, 2004; Hansen et al., 2012). 

Earlier volatility benchmarking suggested that simple baselines can be hard to beat (Hansen & 

Lunde, 2005), and our results do not contradict that caution; rather, they show that carefully 

engineered hybrids achieve small, reliable mean-squared gains while delivering clearer wins on 

calibration and coverage attributes that matter more to risk control than to headline accuracy alone 

(Acerbi & Tasche, 2002; Christoffersen, 1998; Giot & Laurent, 2004; Hansen et al., 2012). 

Within the hybrid design space, the most consistent incremental advantage comes from adaptive 

weighting time-varying or regime-conditioned weights learned on rolling residuals. This observation is 

highly consonant with Bayesian and frequentist combination theory, where Dynamic Model 

Averaging and related sequential pooling methods update weights as evidence shifts (Hoeting et 

al., 1999; Raftery et al., 2005). In our ablations, dynamic weighting adds a few percentage points of 

improvement over static averages, especially in turbulent windows, echoing the logic that different 

components dominate under different states. Stacking appears particularly effective when the 

meta-learner is trained on out-of-fold predictions with strict temporal blocking, a practice that mirrors 

the “super learner” theory for cross-validated risk minimization (Laan et al., 2007; Wolpert, 1992). 

Mixture-of-experts architectures post slightly higher median gains but greater variance, a result 

consistent with their sensitivity to gating misspecification across regimes (Jordan & Jacobs, 1994). Our 

finding that hybrids should be evaluated and promoted as sets rather than as singular winners aligns 

with the Model Confidence Set framework: often several models are statistically indistinguishable at 
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acceptable risk thresholds, so operations should maintain a panel for champion–challenger rotation 

rather than enshrining a brittle winner (Hansen et al., 2011). Finally, instability-robust comparison tests 

underscore why some apparently superior challengers do not earn promotion under walk-forward 

testing; when loss differences vary through time, gains must persist conditionally, not just on average 

(Giacomini & Rossi, 2010; Koenker & Bassett, 1978). In short, our results extend earlier theoretical and 

empirical insights by showing that the operational expression of those insights rolling meta-weights, 

leakage-safe stacking, regime-aware routing, and set-based promotion yields the most dependable 

benefits for volatile markets. 

The synthesis also clarifies the role of measurement. Studies that invest in realized-volatility features 

and lightweight range estimators consistently report better distributional sharpness and tighter 

VaR/ES coverage, even when point-error gains are modest. This is consistent with prior evidence that 

realized measures provide noise-robust anchors for the latent variance process (Andersen et al., 

2003). Our corpus suggests that Parkinson, Garman–Klass, and Yang–Zhang estimators offer cost-

effective volatility signals that are easy to recompute and audit in production, complementing 

realized measures where tick data are unavailable (Parkinson, 1980; Patton, 2011; Ribeiro et al., 2016). 

Microstructure features order imbalance, implicit spreads improve directional performance and 

short-horizon calibration during liquidity shocks, in line with studies on information content of trades 

and the market impact of algorithmic activity (Hasbrouck, 1991). Text and attention signals provide 

asymmetric gains during event-driven episodes, a pattern that matches earlier findings that media 

tone and retail attention affect returns, but only under careful timing and leakage controls (Antweiler 

& Frank, 2004; Tetlock, 2007). The key addition our review makes is operational: the portability and 

traceability of these features determine their deployable value. Features that are explicitly 

idempotent, time-zone aligned, and corporate-action aware reduce evaluation–production drift, 

allowing hybrids to retain calibration when promoted a practical refinement to the measurement 

literature that historically emphasized statistical properties more than pipeline reproducibility. 

A second methodological contribution of the review is to link evaluation discipline to the magnitude 

and reliability of reported gains. Our walk-forward emphasis and the requirement to test against a 

“strongest” declared baseline reveal smaller but sturdier improvements than studies relying on 

random resampling or weak comparators, echoing long-standing guidance on time-series cross-

validation and honest holdout design (Arlot & Celisse, 2010; Taylor & Letham, 2018). Where earlier 

work warned about data snooping and the inflation of results when many alternatives are screened 

(White, 2000; Romano & Wolf, 2005), our use of nesting-aware and instability-robust tests shows 

precisely which challengers earn promotion under realistic constraints (West, 1996). In risk evaluation, 

we see clearer alignment with density-forecast and proxy-robust frameworks that penalize models 

which overfit noisy volatility proxies (Amisano & Giacomini, 2007; Patton, 2011). Taken together, the 

comparison with earlier methodology suggests that what sometimes appears to be “diminished” 

gains in modern studies is a sign of maturity, not failure: when the baseline is strong, resampling is 

leakage-safe, and tests acknowledge nesting and instability, residual improvements are necessarily 

modest but more actionable. This is precisely the standard required for live promotion in volatile 

markets, where even a 5–10% reduction in loss, paired with calibrated tails, can be economically 

meaningful once slippage, costs, and drawdown constraints are accounted for. 

On risk adequacy, our findings converge with and extend the VaR/ES literature in two ways. First, 

hybrids that explicitly integrate variance filters or realized-measure inputs show better tail calibration 

than those relying on quantile heads alone, an outcome that squares with the practice of modeling 

scale separately in heteroskedastic environments (Engle, 2002; McNeil & Frey, 2000). Second, studies 

that report both distributional scores (pinball, CRPS) and backtests demonstrate that calibrated 

forecasts at common quantile grids translate into VaR/ES that pass unconditional and, more 

importantly, conditional coverage diagnostics (Acerbi & Tasche, 2002; Christoffersen, 1998). This 

dual-head evidence mirrors theoretical progress on joint elicitability and proper scoring for risk 

functionals (Fissler & Ziegel, 2016; Gneiting & Raftery, 2007) and supports a single-artifact design in 

which the same model produces point forecasts and quantiles that power risk dashboards. Expectile-

based approaches, while less common, offer an attractive engineering path because they deliver 

VaR/ES within a single differentiable optimization, which eases integration with modern training loops 

and makes sensitivity analyses reproducible (Taylor, 2008). Relative to earlier volatility comparison 

papers that prioritized point accuracy or variance forecasts alone (Hansen & Lunde, 2005), the 
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present synthesis underscores that production-grade success rests as much on coverage stability 

and exceedance independence as on mean-squared error. In volatile, internationally connected 

markets, that emphasis is consistent with supervisory expectations and with internal model-risk 

standards that privilege coherent, auditable risk outputs over marginal accuracy gains. 

Our MLOps analysis complements the modeling picture by showing that adoption of registries, 

CI/CD, and canary/shadow rollouts is meaningful but incomplete. This observation dovetails with 

software-engineering case studies arguing that ML systems require adapted processes for data 

versioning, lineage, and continuous testing (Amershi et al., 2019). The documented benefit smaller 

backtest-to-live loss gaps and lower rollback rates when these practices are present matches 

industry guidance on data validation and pipeline hygiene (Polyzotis et al., 2017)and with large-

scale efforts to automate data quality checks as first-class tests (Schelter et al., 2018). Standardized 

documentation artifacts such as model cards and datasheets also appear in the higher-reliability 

subset of studies, aligning with proposals to institutionalize usage boundaries, assumptions, and 

evaluation slices (Gebru et al., 2021; Mitchell et al., 2019). The comparison with earlier engineering 

literature suggests a practical hierarchy: feature stores and registries reduce configuration drift; 

CI/CD enforces repeatable builds and evaluations; canary/shadow plus monitoring catches 

distribution shifts and tail calibration drift before full exposure. Our contribution is to tie those practices 

quantitatively to forecasting and risk outcomes, showing that operational discipline is not a 

compliance luxury but a performance multiplier especially when promotion decisions hinge on small 

but trustworthy gains. 

 

Figure 12: Hybrid Model for Stock Forecasting and Risk in Volatile Markets 
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CONCLUSION 

This research concludes that hybrid machine learning systems engineered and deployed with 

production discipline provide reliably better stock price forecasting and risk prediction under volatile, 

internationally integrated market conditions, transforming modest accuracy gains into materially 

improved uncertainty control and tail behavior. Synthesizing 120 PRISMA-screened studies, we found 

steady single-digit reductions in point error (median RMSE −7.8%, MAE −7.1%) and directional gains 

of roughly +3.6 percentage points, paired with distributional improvements (pinball −6.1%, CRPS 

−5.4%) and tighter Value-at-Risk coverage at both 1% and 5% levels (roughly halving nominal 

deviations). These results persist under leakage-safe, rolling evaluation and remain calibrationally 

robust when volatility rises, even as mean-squared gains compress, which is exactly the trade-off 

demanded by production risk controls. The evidence isolates design choices that travel well from lab 

to line: a decomposable statistical baseline to anchor low-frequency structure; a tabular expert to 

capture cross-feature interactions; and a sequence/attention expert to model temporal context 

combined through dynamic, regime-aware weighting that adds ≈+2.9% extra RMSE reduction over 

static weights overall and ≈+3.5% in turbulent windows. Measurement choices magnify these effects: 

realized-volatility features cut pinball by ≈3.1% and tighten 1% VaR by ≈0.4 percentage points; 

portable microstructure proxies boost short-horizon direction by ≈+2.8 percentage points; and 

lightweight range-based estimators deliver ≈−1.9% RMSE at negligible compute cost. Yet the decisive 

differentiator is operational discipline. While 70.0% of studies implemented full pipelines and 52.5% 

instrumented drift or exceedance monitoring, only 47.5% used registries, 34.2% documented CI/CD, 

24.2% used canary/shadow rollouts, and 18.3% declared explicit SLOs; where registry+CI/CD+canary 

co-occurred, the backtest-to-live loss gap shrank to ≈1.8% and rollback rates were markedly lower, 

demonstrating that reproducibility and gated promotion are performance multipliers, not mere 

governance niceties. The resulting deployment blueprint is clear and actionable: (i) a measurement 

layer producing realized and range-based volatility plus portable microstructure features via 

idempotent, time-aligned transformations; (ii) a hybrid modeling layer with statistical, tabular, and 

sequence experts; (iii) a meta-learner that sets dynamic, regime-aware weights from rolling residuals; 

(iv) a single probabilistic head emitting quantiles for forecasting and risk dashboards; and (v) a 

platform layer feature store, model registry, CI/CD gates, canary/shadow exposure, drift and 

exceedance monitoring, and rollback playbooks tied to SLOs for latency, throughput, freshness, and 

calibration. Limitations in the literature sparse latency and cost reporting, heterogeneous baselines, 

occasional gaps in conditional-coverage diagnostics reflect documentation more than feasibility 

and indicate where standardization would further reduce evaluation-to-production drift. Overall, the 

synthesis supports a practical claim: hybrids, when implemented with disciplined data contracts and 

promotion controls, reliably convert incremental accuracy into robust probabilistic calibration and 

risk adequacy, yielding forecasting and VaR/ES services that are reproducible, explainable, and safe 

to operate at the speed and stress levels of modern equity markets. 

RCOMMENDATIONS 

Building on the evidence from this review, we recommend that organizations treat hybrid 

forecasting-and-risk solutions as engineered, versioned products rather than one-off models, and 

implement them through a five-layer blueprint that converts modest accuracy gains into 

dependable calibration under volatility. First, harden the measurement layer: enforce idempotent, 

time-zone-aligned OHLCV pipelines with corporate-action adjustments, snapshot raw and derived 

fields, and compute low-cost range estimators (e.g., high–low, open–close composites) alongside 

realized-volatility measures where intraday data exist; standardize microstructure proxies (order 

imbalance, implicit spread) as portable features so the same artifact can serve across venues. 

Second, institutionalize leakage control: require rolling-origin (walk-forward) evaluation; freeze 

scalers and encoders on training windows; adopt purge/embargo around labels; and forbid random 

K-fold splits for any promotion decision. Third, assemble the hybrid modeling layer with components 

that specialize and complement: a decomposable statistical baseline to anchor trend/seasonality, 

a tabular expert (gradient-boosted trees or equivalent) to capture cross-feature interactions, and a 

sequence/attention expert for temporal dependencies; train a meta-learner that assigns dynamic, 

regime-aware weights using out-of-fold residuals, and keep ablation reports (−sequence, −tabular, 

−volatility filter) as a standing artifact to justify each member’s inclusion. Fourth, make probabilistic 

output first-class: predict quantiles directly for multiple horizons and drive VaR/ES from the same 
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head; wrap the model with lightweight calibration (e.g., rolling conformal or expectile alignment) to 

maintain target coverage when distributions shift. Fifth, elevate MLOps from optional to mandatory: 

register every model, feature graph, and config in a model registry; gate releases with CI/CD that 

replays the entire walk-forward suite and nesting-aware tests against a strong baseline; use canary 

or shadow exposure with explicit SLOs e.g., sub-25 ms median inference, freshness within one bar, 

and VaR deviation thresholds of ±0.5 pp at 1% and ±0.7 pp at 5% and declare rollback playbooks 

that specify when to widen intervals, freeze weights, or fall back to a volatility-only baseline. Add 

observability tuned to risk: schema and outlier checks at ingestion, live drift monitors on covariates 

and residuals, exceedance dashboards for VaR/ES with independence kernels, and alert budgets 

tied to business loss limits; require post-incident reviews that update tests and playbooks. For 

explainability and governance, publish model cards and dataset datasheets, expose SHAP or 

permutation attributions for the tabular expert, and localized explanations or example-based 

diagnostics for the sequence component; make all artifacts reproducible via pinned environments 

and checksums. Finally, run operations with cost discipline: default to CPU inference with batch pre-

computation for the heaviest horizons, reserve GPUs for retraining bursts, schedule daily/weekly 

retrains with regime-triggered fast paths, and enforce a “no-promote without backtest parity” rule 

that compares live residuals to backtest distributions for the first week of traffic. Teams that execute 

this blueprint measurement rigor, leakage-safe evaluation, adaptive hybridization, calibrated 

probabilistic outputs, and production-grade MLOps will deploy hybrids that are auditable, resilient, 

and economically useful when markets are most volatile. 

REFERENCES 
[1]. Abdullah Al, M., Md Masud, K., Mohammad, M., & Hosne Ara, M. (2024). Behavioral Factors in Loan 

Default Prediction A Literature Review On Psychological And Socioeconomic Risk Indicators. American 

Journal of Advanced Technology and Engineering Solutions, 4(01), 43-70. 

https://doi.org/10.63125/0jwtbn29  

[2]. Abdur Razzak, C., Golam Qibria, L., & Md Arifur, R. (2024). Predictive Analytics For Apparel Supply 

Chains: A Review Of MIS-Enabled Demand Forecasting And Supplier Risk Management. American 

Journal of Interdisciplinary Studies, 5(04), 01–23. https://doi.org/10.63125/80dwy222  

[3]. Acerbi, C., & Tasche, D. (2002). Expected shortfall: A natural coherent alternative to value at risk. Journal 

of Banking & Finance, 26(7), 1507-1533. https://doi.org/https://doi.org/10.1016/S0378-4266(02)00283-2  

[4]. Adar, C., & Md, N. (2023). Design, Testing, And Troubleshooting of Industrial Equipment: A Systematic 

Review Of Integration Techniques For U.S. Manufacturing Plants. Review of Applied Science and 

Technology, 2(01), 53-84. https://doi.org/10.63125/893et038  

[5]. Amershi, S., Begel, A., Bird, C., DeLine, R., Gall, H., Kamar, E., Nagappan, N., Nushi, B., & Zimmermann, T. 

(2019). Software engineering for machine learning: A case study. 2019 IEEE/ACM 41st International 

Conference on Software Engineering: Software Engineering in Practice (ICSE-SEIP),  

[6]. Amisano, G., & Giacomini, R. (2007). Comparing density forecasts via weighted likelihood ratio tests. 

Journal of the Royal Statistical Society: Series B (Statistical Methodology), 69(4), 627-646. 

https://doi.org/https://doi.org/10.1111/j.1467-9868.2007.00653.x  

[7]. Andersen, T. G., Bollerslev, T., Diebold, F. X., & Labys, P. (2003). Modeling and forecasting realized 

volatility. Econometrica, 71(2), 579-625. https://doi.org/https://doi.org/10.1111/1468-0262.00418  

[8]. Anika Jahan, M., Md Soyeb, R., & Tahmina Akter, R. (2025). Strategic Use Of Engagement Marketing in 

Digital Platforms: A Focused Analysis Of Roi And Consumer Psychology. Journal of Sustainable 

Development and Policy, 1(01), 170-197. https://doi.org/10.63125/hm96p734  

[9]. Antweiler, W., & Frank, M. Z. (2004). Is all that talk just noise? The information content of internet stock 

message boards. The Journal of Finance, 59(3), 1259-1294. 

https://doi.org/https://doi.org/10.1111/j.1540-6261.2004.00662.x  

[10]. Arlot, S., & Celisse, A. (2010). A survey of cross-validation procedures for model selection. Statistics 

Surveys, 4, 40-79. https://doi.org/https://doi.org/10.1214/09-SS054  

[11]. Athey, S., Tibshirani, J., & Wager, S. (2019). Generalized random forests. The Annals of Statistics, 47(2), 

1148-1178. https://doi.org/https://doi.org/10.1214/19-AOS1709  

[12]. Bai, J., & Perron, P. (2003). Computation and analysis of multiple structural change models. Journal of 

Applied Econometrics, 18(1), 1-22. https://doi.org/https://doi.org/10.1002/jae.659  

[13]. Bai, S., Kolter, J. Z., & Koltun, V. (2018). An empirical evaluation of generic convolutional and recurrent 

networks for sequence modeling. arXiv. https://doi.org/https://doi.org/10.48550/arXiv.1803.01271  

[14]. Ballings, M., Van den Poel, D., Hespeels, N., & Gryp, R. (2015). Evaluating multiple classifiers for stock 

price direction prediction. Expert Systems with Applications, 42(20), 7046-7056. 

https://doi.org/https://doi.org/10.1016/j.eswa.2015.05.013  

https://researchinnovationjournal.com/index.php/AJSRI/issue/view/7
https://doi.org/10.63125/z8qq6h36
https://doi.org/10.63125/0jwtbn29
https://doi.org/10.63125/80dwy222
https://doi.org/https:/doi.org/10.1016/S0378-4266(02)00283-2
https://doi.org/10.63125/893et038
https://doi.org/https:/doi.org/10.1111/j.1467-9868.2007.00653.x
https://doi.org/https:/doi.org/10.1111/1468-0262.00418
https://doi.org/10.63125/hm96p734
https://doi.org/https:/doi.org/10.1111/j.1540-6261.2004.00662.x
https://doi.org/https:/doi.org/10.1214/09-SS054
https://doi.org/https:/doi.org/10.1214/19-AOS1709
https://doi.org/https:/doi.org/10.1002/jae.659
https://doi.org/https:/doi.org/10.48550/arXiv.1803.01271
https://doi.org/https:/doi.org/10.1016/j.eswa.2015.05.013


American Journal of Scholarly Research and Innovation 
Volume 04, Issue 01 (2025) 

Page No:  287-319 

eISSN: 3067-5146 

Doi: 10.63125/z8qq6h36 

313 

 

[15]. Bao, W., Yue, J., & Rao, Y. (2017). A deep learning framework for financial time series using stacked 

autoencoders and long short-term memory. PLOS ONE, 12(7), e0180944. 

https://doi.org/https://doi.org/10.1371/journal.pone.0180944  

[16]. Barndorff-Nielsen, O. E., Hansen, P. R., Lunde, A., & Shephard, N. (2008). Designing realized kernels to 

measure ex post variation of equity prices. Econometrica, 76(6), 1481-1536. 

https://doi.org/https://doi.org/10.3982/ECTA6493  

[17]. Barndorff-Nielsen, O. E., & Shephard, N. (2002). Econometric analysis of realized volatility and its use in 

estimating stochastic volatility models. Journal of the Royal Statistical Society: Series B (Statistical 

Methodology), 64(2), 253-280. https://doi.org/https://doi.org/10.1111/1467-9868.00342  

[18]. Bates, J. M., & Granger, C. W. J. (1969). The combination of forecasts. Operational Research Quarterly, 

20(4), 451-468. https://doi.org/https://doi.org/10.2307/3008764  

[19]. Baylor, D., & et al. (2017). TFX: A TensorFlow-Based Production-Scale Machine Learning Platform. 

Proceedings of KDD,  

[20]. Bergmeir, C., & Benítez, J. M. (2012). On the use of cross-validation for time series predictor evaluation. 

Information Sciences, 191, 192-213. https://doi.org/https://doi.org/10.1016/j.ins.2011.12.028  

[21]. Berkowitz, J. (2001). Testing density forecasts with applications to risk management. Journal of Business 

& Economic Statistics, 19(4), 465-474. https://doi.org/https://doi.org/10.1198/07350010152596718  

[22]. Berkowitz, J., Christoffersen, P., & Pelletier, D. (2011). Evaluating value-at-risk models with desk-level data. 

Management Science, 57(12), 2213-2227. https://doi.org/https://doi.org/10.1287/mnsc.1110.1376  

[23]. Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics, 

31(3), 307-327. https://doi.org/https://doi.org/10.1016/0304-4076(86)90063-1  

[24]. Breiman, L. (1996). Bagging predictors. Machine Learning, 24(2), 123-140. 

https://doi.org/https://doi.org/10.1023/A:1018054314350  

[25]. Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5-32. 

https://doi.org/https://doi.org/10.1023/A:1010933404324  

[26]. Chen, T., & Guestrin, C. (2016). XGBoost: A scalable tree boosting system. Proceedings of KDD,  

[27]. Christoffersen, P. F. (1998). Evaluating interval forecasts. International Economic Review, 39(4), 841-862. 

https://doi.org/https://doi.org/10.2307/2527341  

[28]. Clark, T. E., & McCracken, M. W. (2001). Tests of equal forecast accuracy and encompassing for nested 

models. Journal of Econometrics, 105(1), 85-110. https://doi.org/https://doi.org/10.1016/S0304-

4076(01)00058-0  

[29]. Clark, T. E., & West, K. D. (2007). Approximately unbiased tests for equal predictive accuracy in nested 

models. Journal of Business & Economic Statistics, 25(4), 389-403. 

https://doi.org/https://doi.org/10.1198/073500107000000330  

[30]. Clemen, R. T. (1989). Combining forecasts: A review and annotated bibliography. International Journal 

of Forecasting, 5(4), 559-583. https://doi.org/https://doi.org/10.1016/0169-2070(89)90012-5  

[31]. Corradi, V., & Swanson, N. R. (2006). Predictive density evaluation. Journal of Econometrics, 135(1–2), 

125-154. https://doi.org/https://doi.org/10.1016/j.jeconom.2005.07.001  

[32]. Corsi, F. (2009). A simple approximate long-memory model of realized volatility. Journal of Financial 

Econometrics, 7(2), 174-196. https://doi.org/https://doi.org/10.1093/jjfinec/nbp001  

[33]. Diebold, F. X., & Mariano, R. S. (1995). Comparing predictive accuracy. Journal of Business & Economic 

Statistics, 13(3), 253-263. https://doi.org/https://doi.org/10.1080/07350015.1995.10524599  

[34]. Diebold, F. X., & Yilmaz, K. (2012). Better to give than to receive: Predictive directional measurement of 

volatility spillovers. International Journal of Forecasting, 28(1), 57-66. 

https://doi.org/https://doi.org/10.1016/j.ijforecast.2011.02.006  

[35]. Engle, R. (2002). Dynamic conditional correlation: A simple class of multivariate GARCH models. Journal 

of Business & Economic Statistics, 20(3), 339-350. 

https://doi.org/https://doi.org/10.1198/073500102288618487  

[36]. Engle, R. F. (1982). Autoregressive conditional heteroscedasticity with estimates of the variance of U.K. 

inflation. Econometrica, 50(4), 987-1007. https://doi.org/https://doi.org/10.2307/1912773  

[37]. Engle, R. F., & Manganelli, S. (2004). CAViaR: Conditional autoregressive value at risk by regression 

quantiles. Journal of Business & Economic Statistics, 22(4), 367-381. 

https://doi.org/https://doi.org/10.1198/073500104000000370  

[38]. Fama, E. F. (1970). Efficient capital markets: A review of theory and empirical work. The Journal of 

Finance, 25(2), 383-417. https://doi.org/https://doi.org/10.1111/j.1540-6261.1970.tb00518.x  

[39]. Fischer, T., & Krauss, C. (2018). Deep learning with long short-term memory networks for financial market 

predictions. European Journal of Operational Research, 270(2), 654-669. 

https://doi.org/https://doi.org/10.1016/j.ejor.2017.11.054  

[40]. Fissler, T., & Ziegel, J. F. (2016). Higher order elicitability and Osband’s principle. The Annals of Statistics, 

44(4), 1680-1707. https://doi.org/https://doi.org/10.1214/16-AOS1439  

https://researchinnovationjournal.com/index.php/AJSRI/issue/view/7
https://doi.org/10.63125/z8qq6h36
https://doi.org/https:/doi.org/10.1371/journal.pone.0180944
https://doi.org/https:/doi.org/10.3982/ECTA6493
https://doi.org/https:/doi.org/10.1111/1467-9868.00342
https://doi.org/https:/doi.org/10.2307/3008764
https://doi.org/https:/doi.org/10.1016/j.ins.2011.12.028
https://doi.org/https:/doi.org/10.1198/07350010152596718
https://doi.org/https:/doi.org/10.1287/mnsc.1110.1376
https://doi.org/https:/doi.org/10.1016/0304-4076(86)90063-1
https://doi.org/https:/doi.org/10.1023/A:1018054314350
https://doi.org/https:/doi.org/10.1023/A:1010933404324
https://doi.org/https:/doi.org/10.2307/2527341
https://doi.org/https:/doi.org/10.1016/S0304-4076(01)00058-0
https://doi.org/https:/doi.org/10.1016/S0304-4076(01)00058-0
https://doi.org/https:/doi.org/10.1198/073500107000000330
https://doi.org/https:/doi.org/10.1016/0169-2070(89)90012-5
https://doi.org/https:/doi.org/10.1016/j.jeconom.2005.07.001
https://doi.org/https:/doi.org/10.1093/jjfinec/nbp001
https://doi.org/https:/doi.org/10.1080/07350015.1995.10524599
https://doi.org/https:/doi.org/10.1016/j.ijforecast.2011.02.006
https://doi.org/https:/doi.org/10.1198/073500102288618487
https://doi.org/https:/doi.org/10.2307/1912773
https://doi.org/https:/doi.org/10.1198/073500104000000370
https://doi.org/https:/doi.org/10.1111/j.1540-6261.1970.tb00518.x
https://doi.org/https:/doi.org/10.1016/j.ejor.2017.11.054
https://doi.org/https:/doi.org/10.1214/16-AOS1439


American Journal of Scholarly Research and Innovation 
Volume 04, Issue 01 (2025) 

Page No:  287-319 

eISSN: 3067-5146 

Doi: 10.63125/z8qq6h36 

314 

 

[41]. Friedman, J. H. (2001). Greedy function approximation: A gradient boosting machine. The Annals of 

Statistics, 29(5), 1189-1232. https://doi.org/https://doi.org/10.1214/aos/1013203451  

[42]. Friedman, J. H. (2002). Stochastic gradient boosting. Computational Statistics & Data Analysis, 38(4), 

367-378. https://doi.org/https://doi.org/10.1016/S0167-9473(01)00065-2  

[43]. Gama, J., Žliobaitė, I., Bifet, A., Pechenizkiy, M., & Bouchachia, A. (2014). A survey on concept drift 

adaptation. ACM Computing Surveys, 46(4), 44. https://doi.org/https://doi.org/10.1145/2523813  

[44]. Garman, M. B., & Klass, M. J. (1980). On the estimation of security price volatilities from historical data. 

Journal of Business, 53(1), 67-78. https://doi.org/https://doi.org/10.1086/296093  

[45]. Gebru, T., Morgenstern, J., Vecchione, B., Wortman Vaughan, J., Wallach, H., Daumé III, H., & Crawford, 

K. (2021). Datasheets for datasets. Communications of the ACM, 64(12), 86-92. 

https://doi.org/https://doi.org/10.1145/3458723  

[46]. Geweke, J., & Amisano, G. (2011). Optimal prediction pools. Journal of Econometrics, 164(1), 130-141. 

https://doi.org/https://doi.org/10.1016/j.jeconom.2011.02.016  

[47]. Giacomini, R., & Rossi, B. (2010). Forecast comparisons in unstable environments. Journal of 

Econometrics, 158(1), 58-73. https://doi.org/https://doi.org/10.1016/j.jeconom.2010.03.022  

[48]. Giacomini, R., & White, H. (2006). Tests of conditional predictive ability. Econometrica, 74(6), 1545-1578. 

https://doi.org/https://doi.org/10.1111/j.1468-0262.2006.00718.x  

[49]. Giot, P., & Laurent, S. (2004). Modelling daily value-at-risk using realized volatility and ARCH type models. 

Journal of Empirical Finance, 11(3), 379-398. 

https://doi.org/https://doi.org/10.1016/j.jempfin.2003.03.006  

[50]. Glosten, L. R., Jagannathan, R., & Runkle, D. E. (1993). On the relation between the expected value and 

the volatility of the nominal excess return on stocks. The Journal of Finance, 48(5), 1779-1801. 

https://doi.org/https://doi.org/10.1111/j.1540-6261.1993.tb05128.x  

[51]. Gneiting, T., & Raftery, A. E. (2007). Strictly proper scoring rules, prediction, and estimation. Journal of 

the American Statistical Association, 102(477), 359-378. 

https://doi.org/https://doi.org/10.1198/016214506000001437  

[52]. Golam Qibria, L., & Takbir Hossen, S. (2023). Lean Manufacturing And ERP Integration: A Systematic 

Review Of Process Efficiency Tools In The Apparel Sector. American Journal of Scholarly Research and 

Innovation, 2(01), 104-129. https://doi.org/10.63125/mx7j4p06  

[53]. Goyal, A., & Welch, I. (2008). A comprehensive look at the empirical performance of equity premium 

prediction. The Review of Financial Studies, 21(4), 1455-1508. 

https://doi.org/https://doi.org/10.1093/rfs/hhm034  

[54]. Gu, S., Kelly, B., & Xiu, D. (2020). Empirical asset pricing via machine learning. The Review of Financial 

Studies, 33(5), 2223-2273. https://doi.org/https://doi.org/10.1093/rfs/hhaa009  

[55]. Hamilton, J. D. (1989). A new approach to the economic analysis of nonstationary time series and the 

business cycle. Econometrica, 57(2), 357-384. https://doi.org/https://doi.org/10.2307/1912559  

[56]. Hansen, P. R. (2005). A test for superior predictive ability. Journal of Business & Economic Statistics, 23(4), 

365-380. https://doi.org/https://doi.org/10.1198/073500104000000751  

[57]. Hansen, P. R., Huang, Z., & Shek, H. H. (2012). Realized GARCH: A joint model for returns and realized 

measures of volatility. Journal of Applied Econometrics, 27(6), 877-906. 

https://doi.org/https://doi.org/10.1002/jae.1234  

[58]. Hansen, P. R., & Lunde, A. (2005). A forecast comparison of volatility models: Does anything beat a 

GARCH(1,1)? Journal of Applied Econometrics, 20(7), 873-889. 

https://doi.org/https://doi.org/10.1002/jae.800  

[59]. Hansen, P. R., Lunde, A., & Nason, J. M. (2011). The model confidence set. Econometrica, 79(2), 453-

497. https://doi.org/https://doi.org/10.3982/ECTA5771  

[60]. Hasbrouck, J. (1991). Measuring the information content of stock trades. The Journal of Finance, 46(1), 

179-207. https://doi.org/https://doi.org/10.1111/j.1540-6261.1991.tb04636.x  

[61]. Hendershott, T., Jones, C. M., & Menkveld, A. J. (2011). Does algorithmic trading improve liquidity? The 

Journal of Finance, 66(1), 1-33. https://doi.org/https://doi.org/10.1111/j.1540-6261.2010.01624.x  

[62]. Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8), 1735-1780. 

https://doi.org/https://doi.org/10.1162/neco.1997.9.8.1735  

[63]. Hoeting, J. A., Madigan, D., Raftery, A. E., & Volinsky, C. T. (1999). Bayesian model averaging: A tutorial. 

Statistical Science, 14(4), 382-417. https://doi.org/https://doi.org/10.1214/ss/1009212519  

[64]. Hosne Ara, M., Tonmoy, B., Mohammad, M., & Md Mostafizur, R. (2022). AI-ready data engineering 

pipelines: a review of medallion architecture and cloud-based integration models. American Journal 

of Scholarly Research and Innovation, 1(01), 319-350. https://doi.org/10.63125/51kxtf08  

[65]. Hyndman, R. J., & Khandakar, Y. (2008). Automatic time series forecasting: The forecast package for R. 

Journal of Statistical Software, 27(3), 1-22. https://doi.org/https://doi.org/10.18637/jss.v027.i03  

[66]. Hyndman, R. J., & Koehler, A. B. (2006). Another look at measures of forecast accuracy. International 

Journal of Forecasting, 22(4), 679-688. https://doi.org/https://doi.org/10.1016/j.ijforecast.2006.03.001  

https://researchinnovationjournal.com/index.php/AJSRI/issue/view/7
https://doi.org/10.63125/z8qq6h36
https://doi.org/https:/doi.org/10.1214/aos/1013203451
https://doi.org/https:/doi.org/10.1016/S0167-9473(01)00065-2
https://doi.org/https:/doi.org/10.1145/2523813
https://doi.org/https:/doi.org/10.1086/296093
https://doi.org/https:/doi.org/10.1145/3458723
https://doi.org/https:/doi.org/10.1016/j.jeconom.2011.02.016
https://doi.org/https:/doi.org/10.1016/j.jeconom.2010.03.022
https://doi.org/https:/doi.org/10.1111/j.1468-0262.2006.00718.x
https://doi.org/https:/doi.org/10.1016/j.jempfin.2003.03.006
https://doi.org/https:/doi.org/10.1111/j.1540-6261.1993.tb05128.x
https://doi.org/https:/doi.org/10.1198/016214506000001437
https://doi.org/10.63125/mx7j4p06
https://doi.org/https:/doi.org/10.1093/rfs/hhm034
https://doi.org/https:/doi.org/10.1093/rfs/hhaa009
https://doi.org/https:/doi.org/10.2307/1912559
https://doi.org/https:/doi.org/10.1198/073500104000000751
https://doi.org/https:/doi.org/10.1002/jae.1234
https://doi.org/https:/doi.org/10.1002/jae.800
https://doi.org/https:/doi.org/10.3982/ECTA5771
https://doi.org/https:/doi.org/10.1111/j.1540-6261.1991.tb04636.x
https://doi.org/https:/doi.org/10.1111/j.1540-6261.2010.01624.x
https://doi.org/https:/doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/https:/doi.org/10.1214/ss/1009212519
https://doi.org/10.63125/51kxtf08
https://doi.org/https:/doi.org/10.18637/jss.v027.i03
https://doi.org/https:/doi.org/10.1016/j.ijforecast.2006.03.001


American Journal of Scholarly Research and Innovation 
Volume 04, Issue 01 (2025) 

Page No:  287-319 

eISSN: 3067-5146 

Doi: 10.63125/z8qq6h36 

315 

 

[67]. Istiaque, M., Dipon Das, R., Hasan, A., Samia, A., & Sayer Bin, S. (2023). A Cross-Sector Quantitative Study 

on The Applications Of Social Media Analytics In Enhancing Organizational Performance. American 

Journal of Scholarly Research and Innovation, 2(02), 274-302. https://doi.org/10.63125/d8ree044  

[68]. Istiaque, M., Dipon Das, R., Hasan, A., Samia, A., & Sayer Bin, S. (2024). Quantifying The Impact Of 

Network Science And Social Network Analysis In Business Contexts: A Meta-Analysis Of Applications In 

Consumer Behavior, Connectivity. International Journal of Scientific Interdisciplinary Research, 5(2), 58-

89. https://doi.org/10.63125/vgkwe938  

[69]. Jahid, M. K. A. S. R. (2022). Empirical Analysis of The Economic Impact Of Private Economic Zones On 

Regional GDP Growth: A Data-Driven Case Study Of Sirajganj Economic Zone. American Journal of 

Scholarly Research and Innovation, 1(02), 01-29. https://doi.org/10.63125/je9w1c40  

[70]. Jordan, M. I., & Jacobs, R. A. (1994). Hierarchical mixtures of experts and the EM algorithm. Neural 

Computation, 6(2), 181-214. https://doi.org/https://doi.org/10.1162/neco.1994.6.2.181  

[71]. Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., Ye, Q., & Liu, T.-Y. (2017). LightGBM: A highly 

efficient gradient boosting decision tree. Advances in Neural Information Processing Systems,  

[72]. Khan, A. S., Akter, M., Enni, M. A., & Khan, S. F. (2025). An in silico approach for the identification of 

detrimental missense SNPs and their potential impacts on human CRY2 protein. Journal of Bangladesh 

Academy of Sciences, 49(1), 57-72. https://doi.org/10.3329/jbas.v49i1.71914  

[73]. Khashei, M., & Bijari, M. (2011). A novel hybridization of artificial neural networks and ARIMA models for 

time series forecasting. Applied Soft Computing, 11(2), 2664-2675. 

https://doi.org/https://doi.org/10.1016/j.asoc.2010.10.015  

[74]. Koenker, R., & Bassett, G., Jr. (1978). Regression quantiles. Econometrica, 46(1), 33-50. 

https://doi.org/https://doi.org/10.2307/1913643  

[75]. Krauss, C., Do, X. A., & Huck, N. (2017). Deep neural networks, gradient-boosted trees, random forests: 

Statistical arbitrage on the S&P 500. European Journal of Operational Research, 259(2), 689-702. 

https://doi.org/https://doi.org/10.1016/j.ejor.2016.10.089  

[76]. Kuester, K., Mittnik, S., & Paolella, M. S. (2006). Value-at-risk prediction: A comparison of alternative 

strategies. Journal of Financial Econometrics, 4(1), 53-89. 

https://doi.org/https://doi.org/10.1093/jjfinec/nbj002  

[77]. Kutub Uddin, A., Md Mostafizur, R., Afrin Binta, H., & Maniruzzaman, B. (2022). Forecasting Future 

Investment Value with Machine Learning, Neural Networks, And Ensemble Learning: A Meta-Analytic 

Study. Review of Applied Science and Technology, 1(02), 01-25. https://doi.org/10.63125/edxgjg56  

[78]. Lim, B., Arik, S. O., Loeff, N., & Pfister, T. (2021). Temporal Fusion Transformers for interpretable multi-horizon 

time series forecasting. International Journal of Forecasting, 37(4), 1748-1764. 

https://doi.org/https://doi.org/10.1016/j.ijforecast.2021.03.012  

[79]. Lundberg, S. M., & Lee, S.-I. (2017). A unified approach to interpreting model predictions. Advances in 

Neural Information Processing Systems,  

[80]. Makridakis, S., Spiliotis, E., & Assimakopoulos, V. (2018). The M4 competition: Results, findings, conclusion. 

International Journal of Forecasting, 34(4), 802-808. 

https://doi.org/https://doi.org/10.1016/j.ijforecast.2018.06.001  

[81]. Makridakis, S., Spiliotis, E., & Assimakopoulos, V. (2020). The M4 competition: 100,000 time series and 61 

forecasting methods. International Journal of Forecasting, 36(1), 54-74. 

https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.04.014  

[82]. Mansura Akter, E. (2023). Applications Of Allele-Specific PCR In Early Detection of Hereditary Disorders: 

A Systematic Review Of Techniques And Outcomes. Review of Applied Science and Technology, 2(03), 

1-26. https://doi.org/10.63125/n4h7t156  

[83]. Mansura Akter, E. (2025). Bioinformatics-Driven Approaches in Public Health Genomics: A Review Of 

Computational SNP And Mutation Analysis. International Journal of Scientific Interdisciplinary Research, 

6(1), 88-118. https://doi.org/10.63125/e6pxkn12  

[84]. Mansura Akter, E., & Md Abdul Ahad, M. (2022). In Silico drug repurposing for inflammatory diseases: a 

systematic review of molecular docking and virtual screening studies. American Journal of Advanced 

Technology and Engineering Solutions, 2(04), 35-64. https://doi.org/10.63125/j1hbts51  

[85]. Mansura Akter, E., & Shaiful, M. (2024). A systematic review of SNP polymorphism studies in South Asian 

populations: implications for diabetes and autoimmune disorders. American Journal of Scholarly 

Research and Innovation, 3(01), 20-51. https://doi.org/10.63125/8nvxcb96  

[86]. McNeil, A. J., & Frey, R. (2000). Estimation of tail-related risk measures for heteroscedastic financial time 

series: An extreme value approach. Journal of Empirical Finance, 7(3–4), 271-300. 

https://doi.org/https://doi.org/10.1016/S0927-5398(00)00012-8  

[87]. Md Arafat, S., Md Imran, K., Hasib, A., Md Jobayer Ibne, S., & Md Sanjid, K. (2025). Investigating Key 

Attributes for Circular Economy Implementation In Manufacturing Supply Chains: Impacts On The Triple 

Bottom Line. Review of Applied Science and Technology, 4(02), 145-175. 

https://doi.org/10.63125/fnsy0e41  

https://researchinnovationjournal.com/index.php/AJSRI/issue/view/7
https://doi.org/10.63125/z8qq6h36
https://doi.org/10.63125/d8ree044
https://doi.org/10.63125/vgkwe938
https://doi.org/10.63125/je9w1c40
https://doi.org/https:/doi.org/10.1162/neco.1994.6.2.181
https://doi.org/10.3329/jbas.v49i1.71914
https://doi.org/https:/doi.org/10.1016/j.asoc.2010.10.015
https://doi.org/https:/doi.org/10.2307/1913643
https://doi.org/https:/doi.org/10.1016/j.ejor.2016.10.089
https://doi.org/https:/doi.org/10.1093/jjfinec/nbj002
https://doi.org/10.63125/edxgjg56
https://doi.org/https:/doi.org/10.1016/j.ijforecast.2021.03.012
https://doi.org/https:/doi.org/10.1016/j.ijforecast.2018.06.001
https://doi.org/https:/doi.org/10.1016/j.ijforecast.2019.04.014
https://doi.org/10.63125/n4h7t156
https://doi.org/10.63125/e6pxkn12
https://doi.org/10.63125/j1hbts51
https://doi.org/10.63125/8nvxcb96
https://doi.org/https:/doi.org/10.1016/S0927-5398(00)00012-8
https://doi.org/10.63125/fnsy0e41


American Journal of Scholarly Research and Innovation 
Volume 04, Issue 01 (2025) 

Page No:  287-319 

eISSN: 3067-5146 

Doi: 10.63125/z8qq6h36 

316 

 

[88]. Md Arifur, R., & Sheratun Noor, J. (2022). A Systematic Literature Review of User-Centric Design In Digital 

Business Systems: Enhancing Accessibility, Adoption, And Organizational Impact. Review of Applied 

Science and Technology, 1(04), 01-25. https://doi.org/10.63125/ndjkpm77  

[89]. Md Ashiqur, R., Md Hasan, Z., & Afrin Binta, H. (2025). A meta-analysis of ERP and CRM integration tools 

in business process optimization. ASRC Procedia: Global Perspectives in Science and Scholarship, 1(01), 

278-312. https://doi.org/10.63125/yah70173  

[90]. Md Atiqur Rahman, K., Md Abdur, R., Niger, S., & Mst Shamima, A. (2025). Development Of a Fog 

Computing-Based Real-Time Flood Prediction And Early Warning System Using Machine Learning And 

Remote Sensing Data. Journal of Sustainable Development and Policy, 1(01), 144-169. 

https://doi.org/10.63125/6y0qwr92  

[91]. Md Hasan, Z. (2025). AI-Driven business analytics for financial forecasting: a systematic review of 

decision support models in SMES. Review of Applied Science and Technology, 4(02), 86-117. 

https://doi.org/10.63125/gjrpv442  

[92]. Md Hasan, Z., Mohammad, M., & Md Nur Hasan, M. (2024). Business Intelligence Systems In Finance And 

Accounting: A Review Of Real-Time Dashboarding Using Power BI & Tableau. American Journal of 

Scholarly Research and Innovation, 3(02), 52-79. https://doi.org/10.63125/fy4w7w04  

[93]. Md Hasan, Z., Sheratun Noor, J., & Md. Zafor, I. (2023). Strategic role of business analysts in digital 

transformation tools, roles, and enterprise outcomes. American Journal of Scholarly Research and 

Innovation, 2(02), 246-273. https://doi.org/10.63125/rc45z918  

[94]. Md Jakaria, T., Md, A., Zayadul, H., & Emdadul, H. (2025). Advances In High-Efficiency Solar Photovoltaic 

Materials: A Comprehensive Review of Perovskite And Tandem Cell Technologies. American Journal of 

Advanced Technology and Engineering Solutions, 1(01), 201-225. https://doi.org/10.63125/5amnvb37  

[95]. Md Mahamudur Rahaman, S. (2022). Electrical And Mechanical Troubleshooting in Medical And 

Diagnostic Device Manufacturing: A Systematic Review Of Industry Safety And Performance Protocols. 

American Journal of Scholarly Research and Innovation, 1(01), 295-318. 

https://doi.org/10.63125/d68y3590  

[96]. Md Masud, K., Mohammad, M., & Hosne Ara, M. (2023). Credit decision automation in commercial 

banks: a review of AI and predictive analytics in loan assessment. American Journal of Interdisciplinary 

Studies, 4(04), 01-26. https://doi.org/10.63125/1hh4q770  

[97]. Md Masud, K., Mohammad, M., & Sazzad, I. (2023). Mathematics For Finance: A Review of Quantitative 

Methods In Loan Portfolio Optimization. International Journal of Scientific Interdisciplinary Research, 4(3), 

01-29. https://doi.org/10.63125/j43ayz68  

[98]. Md Masud, K., Sazzad, I., Mohammad, M., & Noor Alam, S. (2025). Digitization In Retail Banking: A Review 

of Customer Engagement And Financial Product Adoption In South Asia. ASRC Procedia: Global 

Perspectives in Science and Scholarship, 1(01), 42-46. https://doi.org/10.63125/cv50rf30  

[99]. Md, N., Golam Qibria, L., Abdur Razzak, C., & Khan, M. A. M. (2025). Predictive Maintenance In Power 

Transformers: A Systematic Review Of AI And IOT Applications. ASRC Procedia: Global Perspectives in 

Science and Scholarship, 1(01), 34-47. https://doi.org/10.63125/r72yd809  

[100]. Md Nazrul Islam, K., & Debashish, G. (2025). Cybercrime and contractual liability: a systematic review of 

legal precedents and risk mitigation frameworks. Journal of Sustainable Development and Policy, 1(01), 

01-24. https://doi.org/10.63125/x3cd4413  

[101]. Md Nazrul Islam, K., & Ishtiaque, A. (2025). A systematic review of judicial reforms and legal access 

strategies in the age of cybercrime and digital evidence. International Journal of Scientific 

Interdisciplinary Research, 5(2), 01-29. https://doi.org/10.63125/96ex9767  

[102]. Md Nur Hasan, M., Md Musfiqur, R., & Debashish, G. (2022). Strategic Decision-Making in Digital Retail 

Supply Chains: Harnessing AI-Driven Business Intelligence From Customer Data. Review of Applied 

Science and Technology, 1(03), 01-31. https://doi.org/10.63125/6a7rpy62  

[103]. Md Sultan, M., Proches Nolasco, M., & Md. Torikul, I. (2023). Multi-Material Additive Manufacturing For 

Integrated Electromechanical Systems. American Journal of Interdisciplinary Studies, 4(04), 52-79. 

https://doi.org/10.63125/y2ybrx17  

[104]. Md Sultan, M., Proches Nolasco, M., & Vicent Opiyo, N. (2025). A Comprehensive Analysis Of Non-Planar 

Toolpath Optimization In Multi-Axis 3D Printing: Evaluating The Efficiency Of Curved Layer Slicing 

Strategies. Review of Applied Science and Technology, 4(02), 274-308. 

https://doi.org/10.63125/5fdxa722  

[105]. Md Takbir Hossen, S., Abdullah Al, M., Siful, I., & Md Mostafizur, R. (2025). Transformative applications of 

ai in emerging technology sectors: a comprehensive meta-analytical review of use cases in healthcare, 

retail, and cybersecurity. ASRC Procedia: Global Perspectives in Science and Scholarship, 1(01), 121-

141. https://doi.org/10.63125/45zpb481  

[106]. Md Takbir Hossen, S., Ishtiaque, A., & Md Atiqur, R. (2023). AI-Based Smart Textile Wearables For Remote 

Health Surveillance And Critical Emergency Alerts: A Systematic Literature Review. American Journal of 

Scholarly Research and Innovation, 2(02), 1-29. https://doi.org/10.63125/ceqapd08  

https://researchinnovationjournal.com/index.php/AJSRI/issue/view/7
https://doi.org/10.63125/z8qq6h36
https://doi.org/10.63125/ndjkpm77
https://doi.org/10.63125/yah70173
https://doi.org/10.63125/6y0qwr92
https://doi.org/10.63125/gjrpv442
https://doi.org/10.63125/fy4w7w04
https://doi.org/10.63125/rc45z918
https://doi.org/10.63125/5amnvb37
https://doi.org/10.63125/d68y3590
https://doi.org/10.63125/1hh4q770
https://doi.org/10.63125/j43ayz68
https://doi.org/10.63125/cv50rf30
https://doi.org/10.63125/r72yd809
https://doi.org/10.63125/x3cd4413
https://doi.org/10.63125/96ex9767
https://doi.org/10.63125/6a7rpy62
https://doi.org/10.63125/y2ybrx17
https://doi.org/10.63125/5fdxa722
https://doi.org/10.63125/45zpb481
https://doi.org/10.63125/ceqapd08


American Journal of Scholarly Research and Innovation 
Volume 04, Issue 01 (2025) 

Page No:  287-319 

eISSN: 3067-5146 

Doi: 10.63125/z8qq6h36 

317 

 

[107]. Md Takbir Hossen, S., & Md Atiqur, R. (2022). Advancements In 3d Printing Techniques For Polymer Fiber-

Reinforced Textile Composites: A Systematic Literature Review. American Journal of Interdisciplinary 

Studies, 3(04), 32-60. https://doi.org/10.63125/s4r5m391  

[108]. Md Tawfiqul, I. (2023). A Quantitative Assessment Of Secure Neural Network Architectures For Fault 

Detection In Industrial Control Systems. Review of Applied Science and Technology, 2(04), 01-24. 

https://doi.org/10.63125/3m7gbs97  

[109]. Md Tawfiqul, I. (2025). Adversarial Defence Mechanisms In Neural Networks For ICS Fault Tolerance: A 

Comparative Analysis. ASRC Procedia: Global Perspectives in Science and Scholarship, 1(01), 404-431. 

https://doi.org/10.63125/xrp7be57  

[110]. Md Tawfiqul, I., Meherun, N., Mahin, K., & Mahmudur Rahman, M. (2022). Systematic Review of 

Cybersecurity Threats In IOT Devices Focusing On Risk Vectors Vulnerabilities And Mitigation Strategies. 

American Journal of Scholarly Research and Innovation, 1(01), 108-136. 

https://doi.org/10.63125/wh17mf19  

[111]. Md Tawfiqul, I., Sabbir, A., Md Anikur, R., & Md Arifur, R. (2024). Neural Network–Based Risk Prediction 

And Simulation Framework For Medical IOT Cybersecurity: An Engineering Management Model For 

Smart Hospitals. International Journal of Scientific Interdisciplinary Research, 5(2), 30-57. 

https://doi.org/10.63125/g0mvct35  

[112]. Md.Kamrul, K., & Md Omar, F. (2022). Machine Learning-Enhanced Statistical Inference For Cyberattack 

Detection On Network Systems. American Journal of Advanced Technology and Engineering Solutions, 

2(04), 65-90. https://doi.org/10.63125/sw7jzx60  

[113]. Mitchell, M., Wu, S., Zaldivar, A., Barnes, P., Vasserman, L., Hutchinson, B., Spitzer, E., Raji, I. D., & Gebru, 

T. (2019). Model cards for model reporting. Proceedings of the Conference on Fairness, Accountability, 

and Transparency,  

[114]. Montero-Manso, P., Athanasopoulos, G., Hyndman, R. J., & Talagala, T. S. (2020). FFORMA: Feature-

based forecast model averaging. International Journal of Forecasting, 36(1), 86-92. 

https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.02.011  

[115]. Mst Shamima, A., Niger, S., Md Atiqur Rahman, K., & Mohammad, M. (2023). Business Intelligence-Driven 

Healthcare: Integrating Big Data And Machine Learning For Strategic Cost Reduction And Quality Care 

Delivery. American Journal of Interdisciplinary Studies, 4(02), 01-28. https://doi.org/10.63125/crv1xp27  

[116]. Mubashir, I., & Abdul, R. (2022). Cost-Benefit Analysis in Pre-Construction Planning: The Assessment Of 

Economic Impact In Government Infrastructure Projects. American Journal of Advanced Technology 

and Engineering Solutions, 2(04), 91-122. https://doi.org/10.63125/kjwd5e33  

[117]. Mullainathan, S., & Spiess, J. (2017). Machine learning: An applied econometric approach. Journal of 

Economic Perspectives, 31(2), 87-106. https://doi.org/https://doi.org/10.1257/jep.31.2.87  

[118]. Nelson, D. B. (1991). Conditional heteroskedasticity in asset returns: A new approach. Journal of 

Econometrics, 45(1-2), 347-364. https://doi.org/https://doi.org/10.1016/0304-4076(91)90201-8  

[119]. Parkinson, M. (1980). The extreme value method for estimating the variance of the stock price. Journal 

of Business, 53(1), 61-65. https://doi.org/https://doi.org/10.1086/296071  

[120]. Patel, J., Shah, S., Thakkar, P., & Kotecha, K. (2015). Predicting stock market index movement using 

machine learning techniques. Expert Systems with Applications, 42(20), 2162-2172. 

https://doi.org/https://doi.org/10.1016/j.eswa.2015.06.016  

[121]. Patton, A. J. (2011). Volatility forecast comparison using imperfect volatility proxies. Journal of 

Econometrics, 160(1), 246-256. https://doi.org/https://doi.org/10.1016/j.jeconom.2010.03.034  

[122]. Polyzotis, N., Roy, S., Whang, S. E., & Zinkevich, M. (2017). Data management challenges in production 

machine learning. Proceedings of the 2017 ACM International Conference on Management of Data 

(SIGMOD ’17),  

[123]. Preis, T., Moat, H. S., & Stanley, H. E. (2013). Quantifying trading behavior in financial markets using 

Google Trends. Scientific Reports, 3, 1684. https://doi.org/https://doi.org/10.1038/srep01684  

[124]. Prokhorenkova, L., Gusev, G., Vorobev, A., Dorogush, A. V., & Gulin, A. (2018). CatBoost: Unbiased 

boosting with categorical features. Advances in Neural Information Processing Systems,  

[125]. Raftery, A. E., Kárný, M., & Ettler, P. (2005). Online prediction under model uncertainty via dynamic 

model averaging. Technometrics, 49(2), 138-154. 

https://doi.org/https://doi.org/10.1198/004017005000000014  

[126]. Rangapuram, S. S., Seeger, M. W., Gasthaus, J., Stella, L., Wang, Y., & Januschowski, T. (2018). Deep 

state space models for time series forecasting. Advances in Neural Information Processing Systems 

(NeurIPS 2018),  

[127]. Rapach, D. E., Strauss, J. K., & Zhou, G. (2010). Out-of-sample equity premium prediction: Combination 

forecasts and links to the real economy. Journal of Financial Economics, 96(2), 217-231. 

https://doi.org/https://doi.org/10.1016/j.jfineco.2010.02.013  

https://researchinnovationjournal.com/index.php/AJSRI/issue/view/7
https://doi.org/10.63125/z8qq6h36
https://doi.org/10.63125/s4r5m391
https://doi.org/10.63125/3m7gbs97
https://doi.org/10.63125/xrp7be57
https://doi.org/10.63125/wh17mf19
https://doi.org/10.63125/g0mvct35
https://doi.org/10.63125/sw7jzx60
https://doi.org/https:/doi.org/10.1016/j.ijforecast.2019.02.011
https://doi.org/10.63125/crv1xp27
https://doi.org/10.63125/kjwd5e33
https://doi.org/https:/doi.org/10.1257/jep.31.2.87
https://doi.org/https:/doi.org/10.1016/0304-4076(91)90201-8
https://doi.org/https:/doi.org/10.1086/296071
https://doi.org/https:/doi.org/10.1016/j.eswa.2015.06.016
https://doi.org/https:/doi.org/10.1016/j.jeconom.2010.03.034
https://doi.org/https:/doi.org/10.1038/srep01684
https://doi.org/https:/doi.org/10.1198/004017005000000014
https://doi.org/https:/doi.org/10.1016/j.jfineco.2010.02.013


American Journal of Scholarly Research and Innovation 
Volume 04, Issue 01 (2025) 

Page No:  287-319 

eISSN: 3067-5146 

Doi: 10.63125/z8qq6h36 

318 

 

[128]. Reduanul, H., & Mohammad Shoeb, A. (2022). Advancing ai in marketing through cross border 

integration ethical considerations and policy implications. American Journal of Scholarly Research and 

Innovation, 1(01), 351-379. https://doi.org/10.63125/d1xg3784  

[129]. Rezwanul Ashraf, R., & Hosne Ara, M. (2023). Visual communication in industrial safety systems: a review 

of UI/UX design for risk alerts and warnings. American Journal of Scholarly Research and Innovation, 

2(02), 217-245. https://doi.org/10.63125/wbv4z521  

[130]. Ribeiro, M. T., Singh, S., & Guestrin, C. (2016). “Why should I trust you?”: Explaining the predictions of any 

classifier. Proceedings of KDD,  

[131]. Roll, R. (1984). A simple implicit measure of the effective bid–ask spread in an efficient market. The 

Journal of Finance, 39(4), 1127-1139. https://doi.org/https://doi.org/10.1111/j.1540-6261.1984.tb03897.x  

[132]. Romano, J. P., & Wolf, M. (2005). Stepwise multiple testing as formalized data snooping. Econometrica, 

73(4), 1237-1282. https://doi.org/https://doi.org/10.1111/j.1468-0262.2005.00615.x  

[133]. Salinas, D., Flunkert, V., Gasthaus, J., & Januschowski, T. (2020). DeepAR: Probabilistic forecasting with 

autoregressive recurrent networks. International Journal of Forecasting, 36(3), 1181-1191. 

https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.07.001  

[134]. Sanjai, V., Sanath Kumar, C., Maniruzzaman, B., & Farhana Zaman, R. (2023). Integrating Artificial 

Intelligence in Strategic Business Decision-Making: A Systematic Review Of Predictive Models. 

International Journal of Scientific Interdisciplinary Research, 4(1), 01-26. 

https://doi.org/10.63125/s5skge53  

[135]. Sanjai, V., Sanath Kumar, C., Sadia, Z., & Rony, S. (2025). Ai And Quantum Computing For Carbon-

Neutral Supply Chains: A Systematic Review Of Innovations. American Journal of Interdisciplinary 

Studies, 6(1), 40-75. https://doi.org/10.63125/nrdx7d32  

[136]. Sazzad, I. (2025a). Public Finance and Policy Effectiveness A Review Of Participatory Budgeting In Local 

Governance Systems. Journal of Sustainable Development and Policy, 1(01), 115-143. 

https://doi.org/10.63125/p3p09p46  

[137]. Sazzad, I. (2025b). A Systematic Review of Public Budgeting Strategies In Developing Economies: Tools 

For Transparent Fiscal Governance. American Journal of Advanced Technology and Engineering 

Solutions, 1(01), 602-635. https://doi.org/10.63125/wm547117  

[138]. Sazzad, I., & Md Nazrul Islam, K. (2022). Project impact assessment frameworks in nonprofit 

development: a review of case studies from south asia. American Journal of Scholarly Research and 

Innovation, 1(01), 270-294. https://doi.org/10.63125/eeja0t77  

[139]. Schwert, G. W. (1989). Why does stock market volatility change over time? The Journal of Finance, 44(5), 

1115-1153. https://doi.org/https://doi.org/10.1111/j.1540-6261.1989.tb00519.x  

[140]. Sheratun Noor, J., & Momena, A. (2022). Assessment Of Data-Driven Vendor Performance Evaluation in 

Retail Supply Chains: Analyzing Metrics, Scorecards, And Contract Management Tools. American 

Journal of Interdisciplinary Studies, 3(02), 36-61. https://doi.org/10.63125/0s7t1y90  

[141]. Sirignano, J., & Cont, R. (2019). Universal features of price formation in financial markets: Perspectives 

from deep learning. Quantitative Finance, 19(9), 1449-1459. 

https://doi.org/https://doi.org/10.1080/14697688.2019.1622295  

[142]. Sohel, R., & Md, A. (2022). A Comprehensive Systematic Literature Review on Perovskite Solar Cells: 

Advancements, Efficiency Optimization, And Commercialization Potential For Next-Generation 

Photovoltaics. American Journal of Scholarly Research and Innovation, 1(01), 137-185. 

https://doi.org/10.63125/843z2648  

[143]. Stock, J. H., & Watson, M. W. (2002). Macroeconomic forecasting using diffusion indexes. Econometrica, 

70(2), 613-646. https://doi.org/https://doi.org/10.1111/1468-0262.00273  

[144]. Subrato, S. (2025). Role of management information systems in environmental risk assessment: a 

systematic review of geographic and ecological applications. American Journal of Interdisciplinary 

Studies, 6(1), 95–126. https://doi.org/10.63125/k27tnn83  

[145]. Subrato, S., & Faria, J. (2025). AI-driven MIS applications in environmental risk monitoring: a systematic 

review of predictive geographic information systems. ASRC Procedia: Global Perspectives in Science 

and Scholarship, 1(01), 81-97. https://doi.org/10.63125/pnx77873  

[146]. Subrato, S., & Md, N. (2024). The role of perceived environmental responsibility in artificial intelligence-

enabled risk management and sustainable decision-making. American Journal of Advanced 

Technology and Engineering Solutions, 4(04), 33-56. https://doi.org/10.63125/7tjw3767  

[147]. Tahmina Akter, R. (2025). AI-driven marketing analytics for retail strategy: a systematic review of data-

backed campaign optimization. International Journal of Scientific Interdisciplinary Research, 6(1), 28-

59. https://doi.org/10.63125/0k4k5585  

[148]. Tahmina Akter, R., & Abdur Razzak, C. (2022). The Role Of Artificial Intelligence In Vendor Performance 

Evaluation Within Digital Retail Supply Chains: A Review Of Strategic Decision-Making Models. American 

Journal of Scholarly Research and Innovation, 1(01), 220-248. https://doi.org/10.63125/96jj3j86  

https://researchinnovationjournal.com/index.php/AJSRI/issue/view/7
https://doi.org/10.63125/z8qq6h36
https://doi.org/10.63125/d1xg3784
https://doi.org/10.63125/wbv4z521
https://doi.org/https:/doi.org/10.1111/j.1540-6261.1984.tb03897.x
https://doi.org/https:/doi.org/10.1111/j.1468-0262.2005.00615.x
https://doi.org/https:/doi.org/10.1016/j.ijforecast.2019.07.001
https://doi.org/10.63125/s5skge53
https://doi.org/10.63125/nrdx7d32
https://doi.org/10.63125/p3p09p46
https://doi.org/10.63125/wm547117
https://doi.org/10.63125/eeja0t77
https://doi.org/https:/doi.org/10.1111/j.1540-6261.1989.tb00519.x
https://doi.org/10.63125/0s7t1y90
https://doi.org/https:/doi.org/10.1080/14697688.2019.1622295
https://doi.org/10.63125/843z2648
https://doi.org/https:/doi.org/10.1111/1468-0262.00273
https://doi.org/10.63125/k27tnn83
https://doi.org/10.63125/pnx77873
https://doi.org/10.63125/7tjw3767
https://doi.org/10.63125/0k4k5585
https://doi.org/10.63125/96jj3j86


American Journal of Scholarly Research and Innovation 
Volume 04, Issue 01 (2025) 

Page No:  287-319 

eISSN: 3067-5146 

Doi: 10.63125/z8qq6h36 

319 

 

[149]. Tahmina Akter, R., Debashish, G., Md Soyeb, R., & Abdullah Al, M. (2023). A Systematic Review of AI-

Enhanced Decision Support Tools in Information Systems: Strategic Applications In Service-Oriented 

Enterprises And Enterprise Planning. Review of Applied Science and Technology, 2(01), 26-52. 

https://doi.org/10.63125/73djw422  

[150]. Tahmina Akter, R., Md Arifur, R., & Anika Jahan, M. (2024). Customer relationship management and 

data-driven decision-making in modern enterprises: a systematic literature review. American Journal of 

Advanced Technology and Engineering Solutions, 4(04), 57-82. https://doi.org/10.63125/jetvam38  

[151]. Taylor, J. W. (2008). Estimating value at risk and expected shortfall using expectiles. Journal of Financial 

Econometrics, 6(2), 231-252. https://doi.org/https://doi.org/10.1093/jjfinec/nbn004  

[152]. Taylor, S. J., & Letham, B. (2018). Forecasting at scale. The American Statistician, 72(1), 37-45. 

https://doi.org/https://doi.org/10.1080/00031305.2017.1380080  

[153]. Tetlock, P. C. (2007). Giving content to investor sentiment: The role of media in the stock market. The 

Journal of Finance, 62(3), 1139-1168. https://doi.org/https://doi.org/10.1111/j.1540-6261.2007.01219.x  

[154]. Timmermann, A. (2006). Forecast combinations. Journal of Econometrics, 135(1-2), 197-228. 

https://doi.org/https://doi.org/10.1016/j.jeconom.2005.07.005  

[155]. van der Laan, M. J., Polley, E. C., & Hubbard, A. E. (2007). Super learner. Statistical Applications in 

Genetics and Molecular Biology, 6(1), Article 25. https://doi.org/https://doi.org/10.2202/1544-6115.1309  

[156]. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., & Polosukhin, I. 

(2017). Attention is all you need. arXiv. https://doi.org/https://doi.org/10.48550/arXiv.1706.03762  

[157]. Wen, R., Torkkola, K., Narayanaswamy, B., & Madeka, D. (2017). A multi-horizon quantile recurrent 

forecaster. arXiv. https://doi.org/https://doi.org/10.48550/arXiv.1711.11053  

[158]. West, K. D. (1996). Asymptotic inference about predictive ability. Econometrica, 64(5), 1067-1084. 

https://doi.org/https://doi.org/10.2307/2171956  

[159]. White, H. (2000). A reality check for data snooping. Econometrica, 68(5), 1097-1126. 

https://doi.org/https://doi.org/10.1111/1468-0262.00078  

[160]. Wolpert, D. H. (1992). Stacked generalization. Neural Networks, 5(2), 241-259. 

https://doi.org/https://doi.org/10.1016/S0893-6080(05)80023-1  

[161]. Wu, H., Xu, J., Wang, J., & Long, M. (2021). Autoformer: Decomposition transformers with auto-

correlation for long-term series forecasting. arXiv. 

https://doi.org/https://doi.org/10.48550/arXiv.2106.13008  

[162]. Yang, D., & Zhang, Q. (2000). Drift-independent volatility estimation based on high, low, open, and close 

prices. Journal of Business, 73(3), 477-492. https://doi.org/https://doi.org/10.1086/209650  

[163]. Zaharia, M., Chen, A., Davidson, A., & et al. (2018). Accelerating the machine learning lifecycle with 

MLflow. Proceedings of the 2018 International Conference on Management of Data (SIGMOD),  

[164]. Zhang, G. P. (2003). Time series forecasting using a hybrid ARIMA and neural network model. 

Neurocomputing, 50, 159-175. https://doi.org/https://doi.org/10.1016/S0925-2312(01)00702-0  

[165]. Zhang, Z., Zohren, S., & Roberts, S. (2019). DeepLOB: Deep convolutional neural networks for limit order 

books. IEEE Transactions on Signal Processing, 67(11), 3001-3012. 

https://doi.org/https://doi.org/10.1109/TSP.2019.2907260  

[166]. Zhou, H., Zhang, S., Peng, J., Zhang, S., Li, J., Xiong, H., & Zhang, W. (2021). Informer: Beyond efficient 

Transformer for long sequence time-series forecasting. Proceedings of the AAAI Conference on Artificial 

Intelligence,  

 

https://researchinnovationjournal.com/index.php/AJSRI/issue/view/7
https://doi.org/10.63125/z8qq6h36
https://doi.org/10.63125/73djw422
https://doi.org/10.63125/jetvam38
https://doi.org/https:/doi.org/10.1093/jjfinec/nbn004
https://doi.org/https:/doi.org/10.1080/00031305.2017.1380080
https://doi.org/https:/doi.org/10.1111/j.1540-6261.2007.01219.x
https://doi.org/https:/doi.org/10.1016/j.jeconom.2005.07.005
https://doi.org/https:/doi.org/10.2202/1544-6115.1309
https://doi.org/https:/doi.org/10.48550/arXiv.1706.03762
https://doi.org/https:/doi.org/10.48550/arXiv.1711.11053
https://doi.org/https:/doi.org/10.2307/2171956
https://doi.org/https:/doi.org/10.1111/1468-0262.00078
https://doi.org/https:/doi.org/10.1016/S0893-6080(05)80023-1
https://doi.org/https:/doi.org/10.48550/arXiv.2106.13008
https://doi.org/https:/doi.org/10.1086/209650
https://doi.org/https:/doi.org/10.1016/S0925-2312(01)00702-0
https://doi.org/https:/doi.org/10.1109/TSP.2019.2907260

