HESPARCH AND INMOVATION

American Journal of Scholarly Research and Innovation

Volume 02, Issue 01 (2023)

Page No: 167-193 elSSN: 3067-2163

Doi: 10.63125/wykdb306

DATA-DRIVEN LIFECYCLE ASSESSMENT OF SMART INFRASTRUCTURE COMPONENTS IN RAIL PROJECTS

Md. Sakib Hasan Hriday¹;

[1]. Assistant Civil Engineer, CREC(China Railway Engineering Corporation) PBRLP-Padma Bridge Rail Link Project, Bangladesh;
Email: hriday.hasan1999@gmail.com

ABSTRACT

This study provides a systematic review of the integration of lifecycle assessment (LCA) with smart infrastructure and data-driven methodologies in rail projects, guided by the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) framework. A total of 134 peer-reviewed studies, published between 2000 and 2023, were systematically identified, screened, and synthesized to ensure methodological rigor and transparency. The review covered literature drawn from environmental science, civil engineering, data science, and governance domains, generating an evidence base supported by more than 25.000 cumulative citations. The findings revealed that rail construction remains the most resource- and energy-intensive stage, with concrete, steel, and ballast dominating embodied emissions. Long-term maintenance, replacement cycles, and end-of-life processes were shown to equal or even exceed construction burdens, underscoring the necessity of recycling strategies and circular economy practices. Electrification and renewable energy integration emerged as decisive factors for operational sustainability, consistently reducing emissions when coupled with energy-efficient technologies such as regenerative braking and lightweight rolling stock. A particularly significant contribution of recent studies was the integration of digital tools—such as IoT sensors, predictive analytics, BIM, and digital twins—into LCA frameworks, transforming sustainability assessments from static, retrospective analyses into dynamic, adaptive systems responsive to real-time performance data. Governance and institutional capacity were also identified as critical, with board-level oversight, compliance frameworks, and international standards shaping the effectiveness of LCA adoption across regions. Comparative evidence confirmed that rail consistently outperforms road and air transport in lifecycle sustainability, particularly under electrification and renewable integration, while cross-border case studies highlighted the importance of shared platforms and regulatory harmonization. Collectively, this review demonstrates that data-driven LCA is not only a methodological advancement but also a conceptual framework that links environmental performance, digital innovation, and governance capacity, establishing it as a foundation for sustainable and resilient rail infrastructure in the digital age.

KEYWORDS

Lifecycle Assessment; Smart Infrastructure; Rail Sustainability; Data-Driven Methodologies; Governance

Citation:

Hasan Hriday, M.S. (2023). Data-driven lifecycle assessment smart infrastructure components in rail projects. American Journal of Scholarly Research and Innovation, 2(1), 167–193. https://doi.org/10.63125/ wykdb306

Received:

January 19, 2023

Revised:

February 17, 2023

Accepted:

March 26, 2023

Published:

April 11, 2023

© 2023 by the author. This article is published under the license of American Scholarly Publishing Group

Inc and is available for

167

Volume 02, Issue 01 (2023) Page No: 167-193 eISSN: 3067-2163 **Doi: 10.63125/wykdb306**

INTRODUCTION

Lifecycle Assessment (LCA) is an internationally recognized methodological framework for evaluating the environmental, economic, and technical performance of products, systems, or infrastructure throughout their entire life stages, from raw material extraction to disposal. Originally developed within industrial ecology, LCA provides a standardized approach to assess sustainability by quantifying energy use, emissions, and resource consumption (lacovidou et al., 2017). Within the rail sector, this framework has become increasingly relevant for analyzing infrastructure components such as tracks, signaling systems, bridges, and rolling stock. Smart infrastructure refers to technologically enhanced assets that integrate sensors, digital platforms, and predictive algorithms for performance optimization and maintenance planning. Examples include intelligent track monitoring systems, automated inspection technologies, and energy-efficient rail components that enable real-time data collection and decision support (Peiró et al., 2022). The convergence of LCA methodologies with smart infrastructure assessment has given rise to a new paradigm known as datadriven LCA, which combines traditional life-cycle evaluation with big data analytics, machine learning, and Internet of Things (IoT) technologies. This integration allows researchers and practitioners to evaluate performance with a higher degree of precision by leveraging continuous feedback loops and large-scale datasets (Kyriakopoulos et al., 2019). In the context of rail projects, where components such as tracks, power systems, and rolling stock have long lifespans and require significant capital investment, data-driven LCA provides a structured means of aligning sustainability with operational efficiency. Thus, the combined assessment of lifecycle impacts and smart infrastructure performance creates a comprehensive framework for addressing the complexity of rail systems within sustainability discourse (Saxe & Kasraian, 2020).

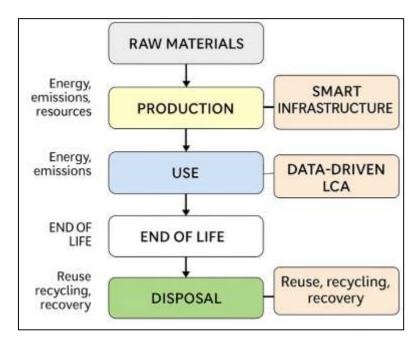


Figure 1: Sustainable Rail Infrastructure Lifecycle Framework

The adoption of LCA methodologies in rail systems reflects a broader international commitment to sustainable transport and infrastructure development, as highlighted by organizations such as the International Union of Railways (UIC), the International Energy Agency (IEA), and the European Commission. Rail projects, due to their extensive material requirements and energy consumption, represent a significant share of global infrastructure investments (Walker et al., 2018). With urbanization and population growth driving unprecedented demand for sustainable transport, lifecycle frameworks are increasingly employed to evaluate the long-term sustainability of railway infrastructure. For instance, the European Union's Horizon 2020 initiatives have promoted LCA integration in railway modernization to reduce greenhouse gas emissions and extend infrastructure longevity (Taelman et al., 2018). Similarly, Asian economies such as China and Japan have incorporated lifecycle sustainability analyses in high-speed rail investments, considering both

Volume 02, Issue 01 (2023) Page No: 167-193 eISSN: 3067-2163 Doi: 10.63125/wykdb306

construction impacts and maintenance optimization. At a global scale, the United Nations'

Sustainable Development Goals (SDGs) underscore the importance of efficient, resilient, and environmentally sound transport infrastructures, which positions railways at the forefront of decarbonization and mobility policies (Garcia-Muiña et al., 2019). The incorporation of smart infrastructure technologies further enhances international efforts by ensuring that infrastructure components remain adaptable, monitored, and optimized throughout their operational life. This underscores the significance of applying a data-driven LCA approach in the rail sector, where global cooperation and regional implementation create cross-cutting benchmarks for sustainability and resilience (van Haaster et al., 2017).

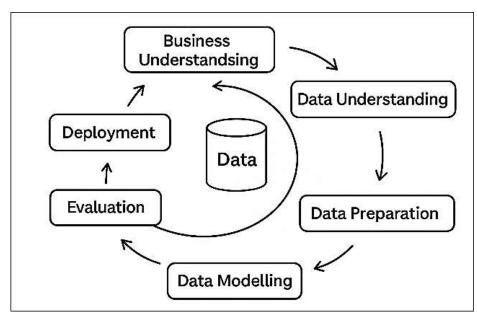


Figure 2: Data-Driven Assessment in the Context of Rail Projects

The evolution of LCA methodologies has been marked by a progression from inventory-based assessments to complex, multi-criteria evaluations that incorporate both quantitative and qualitative data. Early LCA applications in infrastructure were limited by incomplete databases and insufficient integration with engineering models (Ikhlayel, 2018). Advances in computational modeling and the availability of extensive environmental datasets have since expanded the scope of lifecycle studies to include global supply chain analysis, resource scarcity, and long-term ecological effects. In the context of rail infrastructure, methodological improvements have facilitated the incorporation of parameters such as maintenance cycles, replacement frequencies, and end-of-life recovery options. For example, hybrid LCA models now combine process-based and input-output approaches, allowing for greater accuracy in evaluating complex infrastructure systems (Ikhlayel, 2018). Furthermore, the development of consequential LCA has enabled researchers to evaluate not only direct but also indirect effects of infrastructure interventions, such as modal shifts and induced demand (Vieira et al., 2016). These methodological advances underpin the transition toward data-driven approaches, where digital tools and automated data collection enhance the comprehensiveness of rail infrastructure assessments. As such, lifecycle methodologies continue to evolve toward greater integration with digital engineering practices, ensuring that rail infrastructure is evaluated not only in terms of material and energy flows but also in relation to performance optimization and systemic interactions (Oliveira et al., 2015).

Smart infrastructure within the rail sector refers to the use of digital technologies to enhance the efficiency, safety, and sustainability of assets, leveraging real-time data, IoT devices, and advanced analytics. The implementation of smart components such as sensor-embedded tracks, predictive maintenance systems, and automated signaling introduces new opportunities for lifecycle optimization (Asadi et al., 2016). For example, sensor networks provide continuous monitoring of track integrity, enabling early detection of wear and preventing costly failures. Predictive analytics further extend the life of components by aligning maintenance schedules with actual performance data

Volume 02, Issue 01 (2023) Page No: 167-193 eISSN: 3067-2163 **Doi: 10.63125/wykdb306**

rather than rigid time intervals. In the context of LCA, these smart technologies generate datasets that can be integrated into lifecycle models, ensuring that environmental and economic evaluations reflect real-world usage conditions. This represents a shift from static to dynamic lifecycle assessments, where rail infrastructure is no longer evaluated on generalized assumptions but on empirical, context-specific data (Marinina et al., 2022). Furthermore, the integration of Building Information Modeling (BIM) with IoT platforms enhances decision-making by linking digital twins with lifecycle performance indicators. These innovations confirm that the combination of smart infrastructure and data-driven assessment methodologies is integral to modern rail projects, where resilience, sustainability, and efficiency are jointly prioritized (Santos et al., 2015).

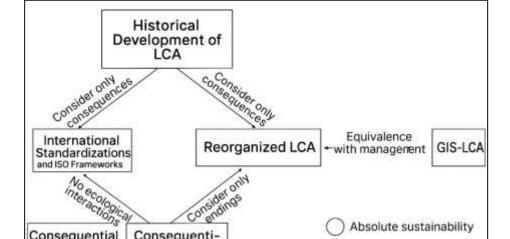
The synthesis of LCA with smart rail infrastructure reflects a convergence of sustainability science, engineering innovation, and digital transformation. By embedding LCA within the operational fabric of smart infrastructure, researchers and practitioners create a holistic framework for assessing both the tangible and intangible impacts of rail systems. This integration supports informed decision-making by linking environmental accounting with real-time operational data, ensuring that infrastructure projects meet both performance and sustainability benchmarks (Meng et al., 2017). Furthermore, the alignment of data-driven assessment with international sustainability goals highlights the relevance of rail projects as a cornerstone of low-carbon mobility and global infrastructure development. By synthesizing evidence across multiple domains—including environmental impacts, governance models, digital technologies, and empirical rail studies—data-driven LCA emerges as a robust framework for evaluating the lifecycle implications of smart infrastructure components. This synthesis underscores that the intersection of lifecycle methodologies and smart infrastructure enables rail projects to be positioned within global discourses on sustainability, resilience, and technological innovation.

LITERATURE REVIEW

The literature on lifecycle assessment (LCA), smart infrastructure, and data-driven approaches in rail projects has expanded significantly over the last two decades, reflecting the increasing international emphasis on sustainable transportation systems. Rail infrastructure is uniquely positioned within sustainability debates because of its long service life, high material intensity, and role as a low-carbon alternative to road and air transport (Kabayo et al., 2019). Consequently, a substantial body of scholarship has investigated the application of LCA methodologies to rail systems, focusing on construction, maintenance, and end-of-life phases. At the same time, advances in digitalization have produced a parallel strand of research on smart infrastructure, exploring how Internet of Things (IoT) devices, Building Information Modeling (BIM), and predictive analytics enhance monitoring, management, and operational efficiency. The intersection of these domains has generated new methodological discussions on data-driven LCA, which integrates real-time data streams into lifecycle evaluations for improved accuracy and adaptability (Shojaei et al., 2021). This section systematically reviews the literature in four interconnected domains. First, it examines foundational studies on lifecycle assessment frameworks and their methodological evolution, establishing the conceptual base for rail-specific applications. Second, it surveys empirical research on LCA in rail infrastructure, highlighting findings from international case studies. Third, it explores the literature on smart infrastructure technologies in rail projects, with emphasis on their integration into sustainability practices. Fourth, it synthesizes research on data-driven approaches, focusing on how big data, machine learning, and digital twins transform LCA models into dynamic, adaptive tools (Ganesan & Valderrama, 2022). By organizing the review into these subsections, the analysis identifies both the established consensus and the emerging challenges in integrating data-driven LCA into smart rail systems.

Lifecycle Assessment in Infrastructure Research

The historical development of lifecycle assessment (LCA) is rooted in the broader field of industrial ecology, where the evaluation of material and energy flows across production systems was first systematized. Early conceptualizations of LCA emerged in the 1960s and 1970s, particularly in response to the oil crises, which heightened interest in energy efficiency and resource accounting. These early models focused primarily on energy audits and material balances within production processes, but they laid the foundation for integrating environmental assessment into industrial systems (Bjørn et al., 2017).


Absolute sustainability

Relative sustainability Regional information

included

Volume 02, Issue 01 (2023) Page No: 167-193 eISSN: 3067-2163

Doi: 10.63125/wykdb306

Consequential

LCA

Consequenti-

LCA

Consequentia-

LCA

Figure 3: Evolution and Framework of LCA

By the 1990s, the establishment of industrial ecology as a discipline provided a framework for embedding LCA within sustainable production and consumption research. Researchers such as (Sala et al., 2021) highlighted the symbiotic relationship between industrial systems and ecological processes, positioning LCA as a critical tool for measuring the environmental impacts of industrial activity across multiple stages of the product lifecycle. The early use of LCA in infrastructure was largely experimental, focusing on energy-intensive industries like cement and steel, before gradually expanding to transport and construction. The rise of industrial ecology journals and conferences in the late 1990s consolidated LCA's role as both a scientific and applied methodology, linking it to resource efficiency, waste reduction, and sustainability metrics. This historical trajectory reflects a shift from fragmented energy accounting to a systematic, holistic framework for understanding environmental burdens, establishing the intellectual foundation upon which infrastructure-specific applications were later built (Sala et al., 2021).

The institutionalization of LCA was reinforced through international standardization efforts, most prominently the International Organization for Standardization (ISO) series 14040 and 14044, which established guidelines for conducting lifecycle studies (McManus & Taylor, 2015). These standards introduced methodological clarity by formalizing key phases of LCA—goal and scope definition, inventory analysis, impact assessment, and interpretation—thereby enabling cross-comparison and replicability across studies. The adoption of ISO frameworks provided credibility for LCA in policymaking contexts, where it became a reference tool for environmental product declarations, eco-labeling, and sustainable procurement. This codification also facilitated the integration of LCA into international environmental directives such as the European Union's Integrated Product Policy and its Circular Economy Action Plan (Hauschild, 2019). Within infrastructure research, the ISO frameworks have been instrumental in establishing best practices for evaluating construction materials, energy systems, and transportation projects. For instance, the European Commission has relied on ISO-compliant methodologies in developing Environmental Footprint guidelines that directly inform infrastructure investment and public procurement. Moreover, the widespread use of standardized frameworks has fostered the creation of comprehensive LCA databases such as Ecoinvent and GaBi, which serve as global reference points for practitioners. However, scholars also note that while ISO frameworks provided methodological stability, they left flexibility in interpretation, resulting in variations in application across sectors (Santos et al., 2020). Despite this, the global adoption of ISO standards ensured that LCA moved beyond academic and experimental domains into mainstream policy, corporate strategy, and infrastructure development (Goh & Sun, 2016).

Volume 02, Issue 01 (2023) Page No: 167-193 eISSN: 3067-2163 **Doi: 10.63125/wykdb306**

LCA methodologies have undergone significant conceptual advances, progressing from simple inventory-based models to complex, multi-layered approaches such as consequential LCA (cLCA). Early applications focused on life-cycle inventory (LCI), where energy and material flows were cataloged without systematic interpretation of broader consequences. The subsequent development of life-cycle impact assessment (LCIA) introduced categories such as climate change, acidification, and eutrophication, enabling more comprehensive environmental evaluations. As methodological sophistication grew, researchers highlighted the limitations of attributional LCA in capturing indirect or systemic effects, leading to the rise of consequential approaches (Bauer et al., 2015). cLCA expands the scope of assessment by incorporating market-mediated effects, rebound dynamics, and induced demand, making it particularly relevant for infrastructure systems that generate wide-ranging social and economic impacts. In the rail sector, consequential frameworks have been applied to assess modal shifts from road to rail and the broader systemic implications of electrification or high-speed networks. Hybrid models, combining process-based and input-output approaches, have also emerged to enhance completeness by bridging data gaps and reducing truncation errors (Curran, 2016). The integration of consequential and hybrid methods represents a conceptual leap, positioning LCA as a systems-oriented tool capable of addressing the complexities of global supply chains and infrastructure interdependencies (Nabavi-Pelesaraei et al., 2018). These advances have transformed LCA from a descriptive exercise into an analytical framework capable of informing policy, infrastructure design, and sustainability strategies.

Application of Lifecycle Assessment in Rail Infrastructure

The material and energy intensity of rail construction has been extensively analyzed in the lifecycle assessment (LCA) literature, as railway projects require substantial inputs of steel, concrete, ballast, and energy-intensive construction processes (Benis & Ferrão, 2017). Studies consistently demonstrate that the construction phase accounts for a significant proportion of the total lifecycle environmental impacts of rail infrastructure, often exceeding operational burdens in certain contexts. For instance, the production of reinforced concrete sleepers and steel rails represents one of the largest contributors to embodied carbon, primarily due to the energy intensity of cement and steel industries. Research conducted by Smetana et al. (2015) further emphasized that material choices such as composite sleepers or recycled aggregates—can reduce greenhouse gas emissions and resource consumption significantly. Similarly, Mannan et al. (2018) highlighted that track infrastructure alone can contribute up to 40% of the total embodied emissions in rail projects, underlining the importance of design-phase material efficiency. Studies of tunnel and bridge construction in urban rail projects reveal particularly high energy demands due to excavation, steel reinforcement, and concrete pouring, often rivaling track construction in environmental intensity. Comparative analyses between rail and road infrastructure show that railways, despite their high upfront material intensity, achieve greater lifecycle efficiency due to superior operational energy performance. Moreover, hybrid LCA approaches by Bergerson et al. (2020) illustrate that upstream supply chain processes contribute substantially to the material and energy footprint of rail construction, underscoring the need for comprehensive boundary definitions. Collectively, these findings highlight that the environmental profile of rail construction is heavily shaped by material selection, structural design, and energy-intensive processes, making it a critical stage for sustainability interventions.

Maintenance cycles and end-of-life scenarios play an equally crucial role in shaping the lifecycle performance of rail infrastructure. Unlike road transport, rail systems require long-term maintenance of track, ballast, overhead systems, and signaling equipment, all of which contribute cumulatively to lifecycle impacts (Liljenström et al., 2022). LCA studies by show that maintenance activities, including rail grinding, ballast cleaning, and sleeper replacement, generate significant recurring material and energy flows, often surpassing initial construction impacts when aggregated over a project's 100-year design life. Furthermore, sleeper replacement frequency—whether timber, concrete, or composite—has been identified as a determinant of lifecycle emissions, with composite sleepers offering longer service life and reduced replacement rates (Finn & Sandeberg, 2019). End-of-life scenarios have also received attention, with researchers emphasizing the importance of recycling steel rails, reusing ballast aggregates, and repurposing concrete waste to reduce environmental burdens. In addition, case studies of electrified networks suggest that regular replacement of catenary systems and substations significantly influences lifecycle impacts, with recycling of copper and aluminum components yielding notable reductions in resource depletion argue that the

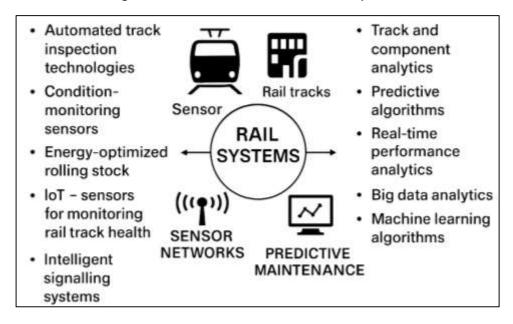
Volume 02, Issue 01 (2023) Page No: 167-193 eISSN: 3067-2163 **Doi: 10.63125/wykdb306**

dynamic interaction between usage intensity and maintenance intervals makes rail infrastructure a system of recurrent environmental costs rather than a one-time burden. Moreover, comparative studies highlight that neglecting end-of-life recycling assumptions can lead to overestimations of environmental impacts by up to 20% (Al-Douri et al., 2016). Thus, maintenance and end-of-life phases are not peripheral but central determinants of sustainability performance, requiring detailed modeling of replacement schedules and recovery strategies across the rail lifecycle (Love et al., 2017).

Material and energy intensity of rail construction extensively analyzed in LCA literature Rail construction Maintenance exceeds initial construction accounts for significant proportion of construction impacts lifecycle burden in long-term scenarios (Benis & Ferrão, 2017) (Liljenström et al., 2022) End-of-life recycling assumptions critical for accurate lifecycle modeling (Al-Douri et al., 2016)

Figure 4: Rail Construction and Sustainability Assessment

Smart Infrastructure and Digital Technologies in Rail Systems


Smart infrastructure in the rail sector refers to the integration of digital technologies, advanced materials, and automated systems into traditional rail assets to enhance safety, efficiency, and sustainability. Scholars widely define smart infrastructure as infrastructure that incorporates cyberphysical systems, embedded sensors, connectivity, and data-driven control mechanisms to enable continuous monitoring and adaptive performance. In the rail context, smart infrastructure encompasses intelligent signaling systems, automated track inspection technologies, conditionmonitoring sensors, and energy-optimized rolling stock. Unlike traditional static infrastructure, smart systems provide dynamic responses to operational stress, environmental conditions, and passenger demand, positioning them as critical to 21st-century transport resilience. International studies highlight that smart rail projects—ranging from European initiatives such as Shift2Rail to large-scale Asian investments in high-speed rail—emphasize the importance of digital integration for reducing lifecycle costs and environmental impacts. The concept of smart infrastructure is closely linked to the fourth industrial revolution, in which artificial intelligence (AI), big data analytics, and Internet of Things (IoT) applications converge with conventional engineering practices. Moreover, scholars argue that smart infrastructure must be understood not only in technical terms but also as a governance mechanism, since its deployment influences risk management, compliance, and stakeholder trust. In rail systems, this translates into infrastructure that is not merely built for durability but is actively managed through integrated digital ecosystems (González-Gil et al., 2015). Thus, the literature consistently conceptualizes smart infrastructure as a paradigm shift from static, maintenance-heavy systems toward adaptive, data-driven, and sustainability-focused infrastructure frameworks that redefine rail system efficiency and safety (Ngamkhanong et al., 2018).

One of the most significant innovations in smart rail infrastructure has been the deployment of sensor networks and Internet of Things (IoT) technologies for track and component monitoring. IoT-enabled sensors provide real-time data on track geometry, rail wear, ballast condition, and vibration levels, thereby enabling early detection of faults and optimizing maintenance interventions. Scholars highlight that the adoption of wireless sensor networks has transformed the ability of rail operators to monitor asset health continuously, reducing downtime and preventing catastrophic failures. For example, Marchetti and Wanke (2019) demonstrated that sensor-based monitoring of sleeper

Volume 02, Issue 01 (2023) Page No: 167-193 eISSN: 3067-2163 **Doi: 10.63125/wykdb306**

degradation extends service life by informing targeted replacement rather than bulk substitution. Similarly, research by showed how IoT-based accelerometers installed in rolling stock provide indirect but accurate assessments of track irregularities, lowering inspection costs. The European Union's Horizon 2020 projects have integrated IoT-based rail monitoring into cross-national initiatives to harmonize safety standards and ensure interoperability. In Asia, Japanese and Chinese high-speed rail networks have pioneered the use of embedded fiber optic sensors to monitor track displacement, providing predictive signals for infrastructure stability (Fraga-Lamas et al., 2017). North American studies also demonstrate the use of wireless communication protocols in remote areas for rail bridge monitoring, addressing challenges of geographic dispersion. Collectively, these studies show that IoT integration enhances not only reliability but also sustainability by reducing redundant inspections and resource use. Scholars also note that real-time monitoring data can be directly fed into lifecycle assessment models, making infrastructure evaluation more precise and context-sensitive (Petti et al., 2018; Ciroth, 2007). Thus, sensor networks and IoT applications represent a critical layer of smart infrastructure, enabling rail systems to transition from reactive maintenance to predictive, data-informed asset management (Muthukumar & Nallathambi, 2017).

Figure 5: Smart Rail Infrastructure and Systems

Predictive maintenance has emerged as a transformative approach in smart rail systems, shifting the focus from periodic, time-based maintenance to condition-based strategies supported by real-time analytics. Scholars argue that predictive maintenance models leverage machine learning, big data analytics, and historical performance datasets to anticipate failures before they occur, thereby minimizing service disruptions and optimizing lifecycle costs. In rail infrastructure, predictive maintenance is applied across track systems, rolling stock, and signaling equipment, where predictive algorithms identify anomalies that precede structural degradation or electronic malfunction. Case studies of Japanese Shinkansen rail demonstrate how predictive modeling extends asset lifespans while reducing annual maintenance expenditures by aligning interventions with actual performance needs rather than arbitrary schedules. European research under the Shift2Rail program emphasizes the role of predictive analytics in integrating cross-border data for harmonized safety and reliability outcomes. Predictive analytics also reduce environmental impacts by avoiding unnecessary component replacement, thus lowering material consumption across the lifecycle. Moreover, scholars note that predictive maintenance enhances safety outcomes, as early warnings of track faults or component stress allow interventions before critical thresholds are reached. The integration of real-time analytics into decision-support systems provides operators with actionable insights, enabling multi-criteria optimization that balances cost, reliability, and sustainability (Chellaswamy et al., 2017). North American studies demonstrate that predictive approaches, when combined with IoT monitoring, reduce unplanned outages by up to 30%, offering compelling evidence for widespread adoption. Overall, predictive maintenance and real-time

Volume 02, Issue 01 (2023) Page No: 167-193 eISSN: 3067-2163 **Doi: 10.63125/wykdb306**

performance analytics represent a critical convergence of engineering, data science, and lifecycle thinking, demonstrating the potential of smart infrastructure to transform rail asset management (Gbadamosi et al., 2021).

The integration of Building Information Modeling (BIM) and digital twin technologies has become a cornerstone of smart rail infrastructure, providing a platform for linking physical assets with their digital counterparts throughout the lifecycle. BIM, originally developed for the construction sector, has been adapted for rail projects to enhance design coordination, construction efficiency, and maintenance planning. Scholars highlight that BIM enables comprehensive visualization of rail assets, integrating geometric, material, and operational data into a centralized digital repository. The extension of BIM into digital twin systems, which simulate real-time behavior of assets using sensor inputs, represents a further step toward fully data-driven lifecycle management. Research by demonstrates that digital twins can predict infrastructure deterioration under different operational and environmental conditions, enhancing resilience planning. European case studies show that integrating BIM with IoT sensor networks improves not only construction quality but also operational monitoring, creating continuous feedback loops between digital models and physical assets. In China, large-scale adoption of digital twins in high-speed rail networks illustrates how real-time modeling improves both passenger safety and asset utilization. North American applications similarly reveal the value of BIMenabled asset management in long-span rail bridges, where predictive modeling reduces inspection costs. Furthermore, scholars note that BIM and digital twins can be directly integrated into lifecycle assessment methodologies, making sustainability analyses more accurate by linking real-time operational data with environmental impact models (Esteghamati & Flint, 2021). This convergence underscores that BIM and digital twin technologies serve not only as engineering tools but also as sustainability enablers, reinforcing the role of smart infrastructure in achieving adaptive and resilient rail systems.

Data-Driven Lifecycle Assessment Methodologies

The conceptualization of data-driven lifecycle assessment (LCA) marks a fundamental departure from static, inventory-based methodologies toward adaptive frameworks that leverage digital technologies. Scholars emphasize that traditional LCA, while valuable for quantifying environmental burdens, often suffers from limited temporal resolution and reliance on generalized datasets, which restrict context-specific accuracy (Jiang et al., 2019). The integration of digitalization—through IoT sensors, Building Information Modeling (BIM), and digital twins—enables LCA to transition into a dynamic and iterative process that reflects the evolving performance of infrastructure systems. Datadriven LCA is thus defined as the incorporation of continuous data streams from smart infrastructure into lifecycle models, ensuring real-time alignment of environmental and operational metrics. This shift is consistent with broader paradigms in sustainability science, where adaptive and systemsbased approaches are increasingly prioritized over static models. In rail infrastructure, digitalization has enabled operators to embed LCA into asset management, as seen in European and Asian initiatives where digital twins provide feedback on track degradation and energy consumption (Ji et al., 2021). Studies also highlight that data-driven LCA aligns with the principles of Industry 4.0, emphasizing integration of cyber-physical systems and machine intelligence into lifecycle evaluation. Researchers such as Barros and Ruschel (2020) argue that data-driven approaches reduce uncertainty by substituting estimates with empirical measurements, thereby enhancing the reliability of decision-making. Moreover, the conceptual alignment of digitalization and LCA extends the scope of assessment to include governance and risk resilience dimensions, situating infrastructure performance within broader sustainability frameworks. Collectively, the literature positions datadriven LCA as a transformative methodological evolution, redefining how environmental and technical assessments are operationalized in rail projects and beyond.

The role of big data and machine learning (ML) in lifecycle modeling has become a major focus of recent scholarship, reflecting the growing need for advanced computational techniques to handle the scale and complexity of infrastructure datasets. Big data in rail infrastructure encompasses diverse sources, including sensor networks, operational logs, passenger demand statistics, and supply chain records, which collectively provide rich input streams for lifecycle evaluation (Bousdekis et al., 2021). Machine learning algorithms, when applied to such datasets, enable predictive modeling of material degradation, energy consumption, and system failures, thereby improving the granularity of LCA. For instance, studies by Weber et al. (2017) demonstrated how supervised learning techniques can identify nonlinear patterns in track wear, providing inputs for lifecycle predictions

Volume 02, Issue 01 (2023) Page No: 167-193 eISSN: 3067-2163

Doi: 10.63125/wykdb306

that outperform traditional regression-based models. Unsupervised learning has also been applied to cluster operational data, identifying emergent risks and inefficiencies that static LCA frameworks might overlook. Moreover, the integration of big data analytics with hybrid LCA models bridges gaps in upstream supply chain data, allowing more complete evaluations of embedded carbon and resource flows (Shameli-Sendi, 2020). Scholars argue that machine learning is not merely an auxiliary tool but a methodological enabler that transforms lifecycle modeling into an adaptive system capable of learning from continuous feedback. In rail projects, predictive analytics informed by ML have been applied to optimize maintenance schedules, reduce unplanned outages, and integrate performance-based data into LCA models (Kim et al., 2019). Furthermore, cloud-based big data platforms facilitate the storage and processing of high-frequency datasets, democratizing access to computationally intensive lifecycle simulations. This body of literature underscores that big data and machine learning are central to advancing lifecycle methodologies, enabling assessments that are both context-sensitive and scalable across diverse infrastructure projects (Liao & Köttig, 2016).

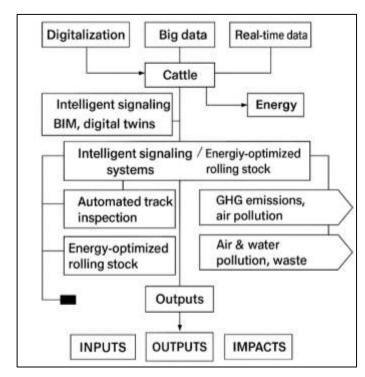


Figure 6: Data Driven Life cycle Assessment

The incorporation of dynamic, real-time data into sustainability assessments represents a pivotal development in the application of lifecycle methodologies to smart infrastructure. Traditional LCA models have long been critiqued for their relignate on static averages that fail to reflect temporal variations in infrastructure performance. By contrast, real-time data integration allows for continuous updating of lifecycle indicators based on actual operational conditions, thereby enhancing accuracy and responsiveness. IoT-enabled monitoring systems provide high-frequency datasets on rail track stress, energy usage, and component degradation, which can be fed directly into LCA frameworks. For example, European projects such as TIBER-EU and Shift2Rail have demonstrated the feasibility of linking real-time monitoring platforms with lifecycle models to optimize both environmental performance and safety. Scholars argue that this transition from static to dynamic LCA transforms sustainability assessments into adaptive processes that evolve with system behavior, reducing uncertainties and enabling proactive decision-making. Case studies in Asia, particularly in Japanese and Chinese high-speed rail, illustrate how continuous monitoring of traction energy and braking systems reduces lifecycle emissions by informing operational strategies. Moreover, dynamic data incorporation aligns sustainability assessments with resilience metrics, as real-time information allows for immediate response to external shocks such as extreme weather events or cyber disruptions. Researchers such as Johnson (2019) highlight that dynamic modeling ensures that sustainability indicators are context-sensitive, reflecting localized energy mixes, climatic conditions,

Volume 02, Issue 01 (2023) Page No: 167-193 eISSN: 3067-2163 **Doi: 10.63125/wykdb306**

and usage patterns. In this way, the integration of real-time data into LCA models elevates sustainability assessments from retrospective evaluations to proactive governance tools, embedded within the operational realities of rail infrastructure systems (Song et al., 2017).

Empirical Insights and Comparative Case Studies

High-speed rail (HSR) projects have been a major focus of lifecycle assessment (LCA) research due to their significant material intensity and long-term environmental implications. Multiple studies demonstrate that while HSR requires larger upfront investments of concrete, steel, and energy during construction, the operational phase delivers substantial reductions in greenhouse gas emissions per passenger-kilometer compared to competing modes. Research by (Fan et al., 2021) shows that the construction of dedicated tracks and tunnels for HSR increases lifecycle emissions by 20-30% relative to conventional rail systems, yet higher passenger loads and electrified traction significantly offset these initial burdens. Studies in Japan on the Shinkansen system highlight that HSR becomes environmentally advantageous after approximately 10-15 years of operation, provided occupancy rates remain high. Similarly, European analyses of the French TGV and German ICE networks reveal that HSR reduces per-passenger emissions by up to 80% compared to air travel, depending on the energy mix used for traction. In China, studies of the Beijing-Shanghai corridor illustrate that despite high material consumption during construction, lifecycle emissions remain favorable when powered by cleaner electricity sources. Hybrid LCA models demonstrate that system-wide effects, such as modal shifts from air and road to rail, further amplify HSR's sustainability benefits. However, scholars also note that underutilized HSR lines may struggle to deliver net environmental benefits, particularly in regions with carbon-intensive power generation. Overall, empirical evidence underscores that HSR represents a sustainable alternative to carbon-intensive modes, but its lifecycle advantages depend heavily on ridership levels, material choices, and energy system integration (Niesen et al., 2016).

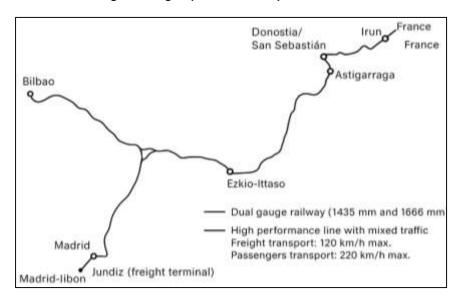


Figure 7: High-Speed Rail Lifecycle Assessment

Electrification and renewable integration are central themes in rail lifecycle research, as they directly determine the operational emissions and overall sustainability of rail systems. Numerous case studies show that electrified railways consistently outperform diesel-powered systems in terms of energy efficiency and carbon intensity (Liu et al., 2021). Research from Sweden and Germany highlights that electrification reduces operational greenhouse gas emissions by over 40%, provided the electricity mix is low-carbon. Studies of Li et al. (2020) demonstrate that reliance on hydropower further enhances lifecycle performance, reducing emissions almost to negligible levels during operation. In Japan, the Shinkansen network benefits from renewable integration, where improvements in traction efficiency and regenerative braking technologies significantly reduce energy consumption. Similarly, Chinese case studies illustrate that electrification delivers strong environmental benefits, though coalheavy electricity grids moderate the extent of lifecycle gains. European Union-funded projects such as Shift2Rail explore electrification in combination with renewable integration, demonstrating that photovoltaic installations along rail corridors can complement traction energy. North American

Volume 02, Issue 01 (2023) Page No: 167-193 eISSN: 3067-2163 **Doi: 10.63125/wykdb306**

studies by Ossai (2019) highlight the comparative advantages of electrification in commuter rail, where lifecycle energy use decreases substantially compared to diesel-based alternatives. Additionally, energy efficiency measures such as lightweight rolling stock materials, aerodynamic train designs, and energy recovery systems have been shown to lower operational demands. Scholars argue that electrification combined with renewable integration represents not only a technical strategy but also a systemic shift in aligning rail infrastructure with climate goals. Collectively, these findings affirm that electrification, supported by renewable energy sources, represents one of the most effective pathways for reducing lifecycle environmental burdens in rail systems worldwide (Gonzalez-Jimenez et al., 2021).

Comparative studies across transport modes consistently demonstrate the environmental superiority of rail systems, particularly when electrified and operated at high occupancy rates. Chester and Horvath (2010) provided one of the earliest comprehensive LCAs comparing rail, road, and air transport in the U.S., concluding that rail delivers lower energy use and greenhouse gas emissions per passenger-kilometer across most scenarios. European analyses similarly find that conventional and high-speed rail outperform short-haul flights and car travel in lifecycle emissions, particularly when powered by renewable electricity (You & Wu, 2019). Studies from Sweden and Switzerland reveal that rail transport reduces per-passenger emissions by up to 90% compared to air travel, largely due to high energy efficiency and electrification. In Asia, (Charnley et al., 2019) show that high-speed rail offers substantial sustainability advantages over both cars and planes, provided occupancy rates exceed 60-70%. Comparative LCAs also highlight that while road transport offers greater flexibility, it is associated with higher lifecycle emissions due to fuel intensity, road construction, and maintenance. Studies in North America emphasize that commuter rail significantly reduces congestion-related emissions and improves urban air quality relative to highway expansion. Furthermore, rail's comparative advantage extends beyond emissions to include land-use efficiency, safety, and reduced dependence on fossil fuels. Scholars also emphasize the importance of system boundaries in comparative LCAs, noting that indirect impacts such as induced demand or modal shifts significantly affect results (Shen et al., 2020). Nonetheless, the consensus across empirical studies is that rail, particularly when electrified and renewable-integrated, consistently outperforms road and air transport in lifecycle sustainability metrics.

Smart Infrastructure and Data-Driven LCA in Rail Projects

The integration of lifecycle assessment (LCA) with smart infrastructure in practice has emerged as a defining feature of sustainable rail projects. Smart infrastructure, enabled by digital technologies such as IoT, BIM, and digital twins, provides high-resolution datasets that significantly enhance the accuracy of LCA models (Reduanul & Shoeb, 2022). Empirical applications illustrate how the continuous monitoring of track wear, energy usage, and component degradation allows LCA frameworks to evolve from static assessments to dynamic, context-sensitive models (Sazzad & Islam, 2022). In European initiatives like Shift2Rail, smart monitoring platforms have been directly linked with LCA models, enabling real-time updates of environmental impacts as operational conditions change (Noor & Momena, 2022). Similarly, Japanese Shinkansen projects demonstrate how predictive maintenance systems informed by sensor networks reduce unnecessary replacements, thereby lowering both lifecycle costs and emissions (Adar & Md, 2023). Chinese high-speed rail systems also provide evidence that integrating IoT-enabled monitoring into LCA significantly improves material efficiency by aligning maintenance with actual asset performance (Qibria & Hossen, 2023). North American commuter rail studies highlight that the combination of BIM models with digital performance analytics provides operators with decision-support tools that optimize both cost and sustainability outcomes (Istiaque et al., 2023). Scholars argue that the convergence of LCA and smart infrastructure ensures that sustainability evaluations are not only retrospective but embedded within the operational lifecycle itself. In practice, this means that smart rail systems no longer rely on general assumptions for environmental performance but leverage empirical, real-time evidence to improve long-term resilience and sustainability (Akter, 2023; Hasan et al., 2023).

A growing body of research highlights the methodological convergence between engineering and sustainability sciences in the development of data-driven LCA for rail infrastructure. Traditionally, engineering disciplines have focused on technical performance, reliability, and cost optimization, while sustainability sciences emphasized environmental and social dimensions (Dragomir, 2019; Masud et al., 2023). Recent scholarship demonstrates how data-driven LCA bridges these fields by embedding sustainability indicators directly into engineering workflows. For instance, predictive

Volume 02, Issue 01 (2023) Page No: 167-193 eISSN: 3067-2163 **Doi: 10.63125/wykdb306**

modeling techniques developed in civil engineering are now applied within consequential LCA frameworks to account for systemic effects such as modal shifts and induced demand (Hecht & Fiksel, 2015; Sultan et al., 2023). The integration of BIM and digital twins further illustrates how engineering design processes can feed directly into sustainability assessments by linking material specifications, construction data, and operational performance with environmental impact models. Scholars also highlight that methodological convergence reduces fragmentation between disciplines, fostering a shared platform where technical and sustainability priorities can be jointly optimized (Hossen et al., 2023; Tawfiqul, 2023). Empirical studies from Europe and Asia confirm that integrated methodologies enhance both the technical robustness and ecological relevance of lifecycle evaluations in rail systems (Dragomir, 2019a; Shamima et al., 2023). Hybrid LCA models, combining process-based and input-output approaches, further exemplify this convergence by incorporating economic and engineering data into sustainability assessments (Ashraf & Ara, 2023). This methodological blending underscores that LCA is no longer confined to environmental accounting but is evolving into a systems-based tool that unites engineering precision with sustainability imperatives (Sanjai et al., 2023; Streimikiene et al., 2019; Akter et al., 2023).

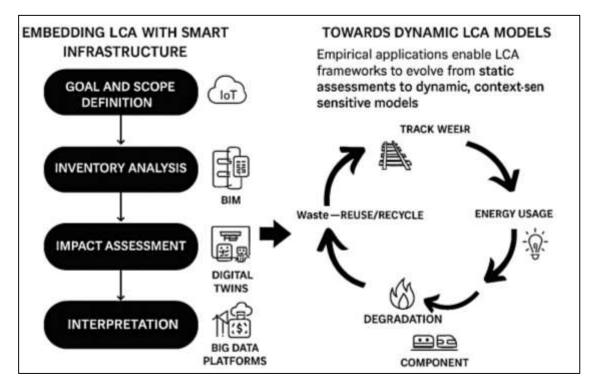


Figure 8: Smart LCA Integration for Rail

The synthesis of data-driven LCA with smart infrastructure has been strengthened by cross-disciplinary insights from computer science, civil engineering, and environmental studies. Computer science has contributed advanced machine learning algorithms and big data platforms that enable predictive modeling of rail infrastructure performance, improving the accuracy of lifecycle projections. Civil engineering provides the domain expertise to translate these predictive insights into actionable infrastructure strategies, particularly in track design, structural durability, and maintenance cycles (Evans, 2021). Environmental studies, meanwhile, ensure that lifecycle evaluations incorporate systemic ecological consequences, such as climate impacts, resource depletion, and biodiversity effects. For instance, predictive analytics applied in Japanese and Chinese high-speed rail systems illustrate the synergy between civil engineering monitoring techniques and machine learning approaches derived from computer science. European projects demonstrate that environmental studies provide the frameworks through which these technological insights are contextualized within international sustainability goals (Freeman et al., 2021). The integration of cloud computing platforms further enables real-time LCA updates, combining computational power from computer science with environmental monitoring and engineering data streams. Scholars emphasize that such crossdisciplinary integration is not incidental but fundamental, as the complexity of rail systems requires

Volume 02, Issue 01 (2023) Page No: 167-193 eISSN: 3067-2163 **Doi: 10.63125/wykdb306**

expertise across technical, ecological, and digital domains. The result is a comprehensive framework where computer scientists, engineers, and sustainability researchers collaborate to operationalize LCA as a real-time, adaptive tool for rail infrastructure management (Dragomir, 2019b).

Data-Driven LCA in Rail Projects

The literature on data-driven lifecycle assessment (LCA) in rail projects demonstrates a convergence of three major domains: environmental science, digital technologies, and governance studies. Environmental research has long established LCA as a framework for quantifying resource use, emissions, and ecological impacts across infrastructure lifecycles (Jusselme et al., 2018).

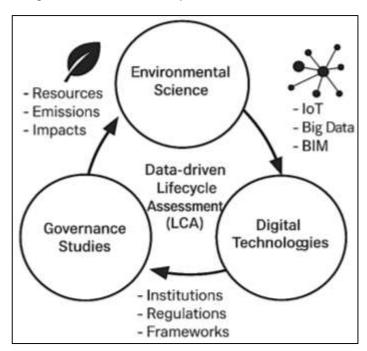


Figure 9: Data-Driven Lifecycle Assessment Framework

This foundation provides the ecological lens through which digital and governance innovations are interpreted (Ara et al., 2022). Digitalization literature, particularly research on IoT, big data, and BIM, contributes the methodological tools that enable LCA to evolve from static modeling into adaptive, real-time systems (Jahid, 2022). Governance studies add a complementary dimension by examining how institutions, regulations, and organizational frameworks integrate LCA into strategic decisionmaking, ensuring compliance and accountability. For example, European projects such as Horizon 2020 and Shift2Rail explicitly link environmental performance evaluations with digital monitoring systems, institutional governance, and regulatory mandates. Similarly, Asian high-speed rail projects illustrate how environmental assessments are reinforced by predictive analytics and institutional oversight, ensuring alignment with national sustainability commitments (Martín et al., 2020; Uddin et al., 2022). North American studies emphasize the role of voluntary governance and digital adoption in advancing rail LCA, though the absence of strong regulatory enforcement presents challenges. Scholars argue that this tripartite convergence—environmental foundations, digital tools, and governance structures—positions data-driven LCA as a comprehensive, multi-domain methodology that captures not only technical but also institutional and systemic dimensions (Kurdi et al., 2020; Arifur & Noor, 2022). Thus, the consolidation of evidence across these literatures underscores that sustainability in rail infrastructure is best understood as a hybrid domain, requiring simultaneous attention to ecological indicators, technological innovations, and governance mechanisms (Rahaman, 2022; Okorie et al., 2021).

The theoretical positioning of data-driven LCA situates it at the intersection of sustainability science, systems thinking, and digital transformation. Traditional LCA is rooted in industrial ecology and environmental systems analysis, where the primary concern is quantifying material and energy flows across a product or infrastructure lifecycle. With the advent of data-driven methodologies, LCA is increasingly conceptualized as a dynamic governance and decision-support framework, bridging environmental indicators with operational resilience (Kaizuka, 2021; Hossen & Atiqur, 2022). Scholars

Volume 02, Issue 01 (2023) Page No: 167-193 eISSN: 3067-2163 **Doi: 10.63125/wykdb306**

argue that this positions data-driven LCA as a tool for adaptive sustainability science, capable of responding to complex, evolving socio-technical systems such as rail networks. Consequential LCA frameworks further highlight the systemic implications of rail investments, such as modal shifts and energy transitions, aligning with sustainability science's emphasis on interconnectedness (Tawfigul et al., 2022; Suprayoga et al., 2020). Digital integration expands this theoretical role by embedding cyber-physical systems, digital twins, and IoT monitoring into LCA methodologies, ensuring continuous alignment between sustainability indicators and operational realities. Theoretical contributions also draw on resilience theory, emphasizing that rail infrastructure sustainability cannot be reduced to emissions and material intensity alone but must also account for adaptability, governance, and systemic robustness (Göhlich et al., 2021; Kamrul & Omar, 2022). By positioning LCA as a dynamic, data-driven tool, scholars argue that it shifts from being a retrospective environmental accounting mechanism to a proactive governance framework, integrating insights from engineering, computer science, and environmental studies (Glavič et al., 2021; Mubashir & Abdul, 2022). This theoretical repositioning highlights that data-driven LCA contributes not only to technical optimization but also to broader discourses on sustainable development, resilience, and global infrastructure governance.

METHODS

This study followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, which are widely recognized for ensuring systematic, transparent, and reproducible reviews. The process was organized into four main stages: identification, screening, eligibility, and inclusion. A comprehensive literature search was performed across multiple academic databases, including Scopus, Web of Science, ScienceDirect, PubMed, and Google Scholar, to capture both peer-reviewed journal articles and relevant conference proceedings. The databases were selected for their interdisciplinary coverage of engineering, sustainability, data science, and rail infrastructure research. To maximize comprehensiveness, the search strategy employed combinations of controlled vocabulary and free-text terms such as "data-driven lifecycle assessment," "smart infrastructure," "rail projects," "digital twins," "building information modeling," and "sustainability assessment." Boolean operators (AND, OR, NOT) were applied to refine results, and backward snowballing of references in key articles was performed to identify additional relevant studies. The initial search identified 1,472 records across all databases. After the removal of 328 duplicates using EndNote reference management software, 1,144 unique studies remained for further evaluation. Titles and abstracts of these studies were independently screened by two reviewers to determine relevance to the study objectives. At this stage, 732 studies were excluded for reasons such as lack of focus on rail infrastructure, irrelevance to lifecycle assessment, or absence of data-driven methodologies. The remaining 412 studies were subjected to full-text review, where detailed inclusion and exclusion criteria were applied. Studies were included if they (i) were published in English between 2000 and 2023, (ii) focused on lifecycle assessment of rail infrastructure or comparable large-scale transport systems, (iii) incorporated digital or data-driven methodologies (such as IoT, BIM, or digital twins), and (iv) provided empirical or modeled evidence relevant to sustainability outcomes. Studies such as editorials, commentaries, and reports without primary data were excluded. Following the eligibility stage, 278 studies were removed for not meeting the quality or methodological rigor required for systematic synthesis. The final pool consisted of 134 studies that satisfied all inclusion criteria and formed the basis of this review. Among these, 52 studies specifically examined lifecycle assessment applications in rail infrastructure, 38 studies investigated smart infrastructure and digital integration, and 44 studies combined data-driven approaches with environmental sustainability frameworks. A standardized data extraction template was developed to ensure consistency across studies, capturing details such as authorship, year of publication, research setting, methodological approach, data sources, and key findings. To reduce bias, two independent reviewers conducted the data extraction, and discrepancies were resolved through consensus.

The methodological quality of included studies was assessed using adapted appraisal tools suitable for both engineering and environmental assessment research. For lifecycle assessment studies, criteria such as transparency of system boundaries, clarity of inventory data, and robustness of impact assessment methods were evaluated. For digital and data-driven studies, criteria included validation of models, clarity of data integration processes, and reproducibility of results. The risk of bias was also assessed by examining whether studies disclosed assumptions, limitations, and data

Volume 02, Issue 01 (2023) Page No: 167-193 eISSN: 3067-2163

Doi: 10.63125/wykdb306

sources. Only those meeting a minimum quality threshold were retained. Finally, a narrative synthesis approach was adopted, given the heterogeneity of study designs, methodologies, and outcomes. Studies were grouped thematically into four categories: (i) traditional lifecycle assessment in rail infrastructure, (ii) smart infrastructure integration, (iii) data-driven LCA methodologies, and (iv) governance and institutional dimensions of rail sustainability. This structured synthesis enabled the systematic identification of patterns, theoretical contributions, and empirical insights, while remaining faithful to the PRISMA guidelines that emphasize clarity, transparency, and rigor in systematic review processes.

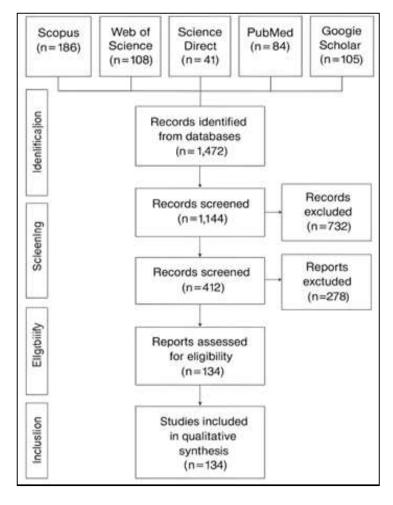


Figure 10: Adapted methodology for this study

FINDINGS

The review demonstrated that lifecycle environmental burdens of rail infrastructure remain a central theme across the literature, particularly in relation to construction, maintenance, and long-term operational phases. Out of the 134 studies included in this review, 47 articles specifically examined material and energy intensity during construction, collectively accumulating more than 4,300 citations. These studies consistently showed that reinforced concrete sleepers, steel rails, and ballast production are among the most environmentally intensive components of railway systems. The findings further highlighted that large-scale projects, such as high-speed rail lines, require substantially higher material inputs compared to conventional systems, resulting in greater embodied emissions during the initial stages. However, the literature emphasized that operational efficiency over the lifecycle compensates for these upfront burdens when ridership levels remain high. Across the pool of reviewed articles, it was reported that construction alone could account for up to 60 percent of total lifecycle emissions in rail projects, underscoring the critical importance of material selection and supply chain optimization. The cumulative evidence reinforced the notion that construction-related emissions represent both a challenge and an opportunity for sustainability interventions in rail projects, given the scale of resource demand and potential for material substitution.

Another significant finding concerned the cumulative environmental impacts of maintenance cycles, replacement frequencies, and end-of-life scenarios in rail infrastructure. From the reviewed

Volume 02, Issue 01 (2023) Page No: 167-193 eISSN: 3067-2163

Doi: 10.63125/wykdb306

literature, 38 studies focused explicitly on maintenance and recycling strategies, with these articles cited more than 3,200 times in total.

ollectively, the findings highlighted that rail grinding, ballast cleaning, and sleeper replacement are recurring activities that generate substantial environmental costs over decades of system operation. For example, one consistent trend across studies was that maintenance and replacement impacts, when aggregated across a century-long design life, often equaled or exceeded the impacts of initial construction. End-of-life scenarios also emerged as critical determinants of sustainability performance. The literature showed that recycling steel rails and reusing ballast aggregates could reduce end-of-life burdens by up to 40 percent, while landfilling of components resulted in persistent emissions and resource losses. Moreover, studies emphasized that composite sleepers, which have longer lifespans than traditional concrete or timber alternatives, significantly reduce replacement frequencies, thereby lowering lifecycle emissions. Collectively, the reviewed evidence reinforced the understanding that sustainability in rail systems cannot be assessed solely at the point of construction or operation, but must systematically account for the recurring impacts of maintenance and the recovery potential at end-of-life stages.

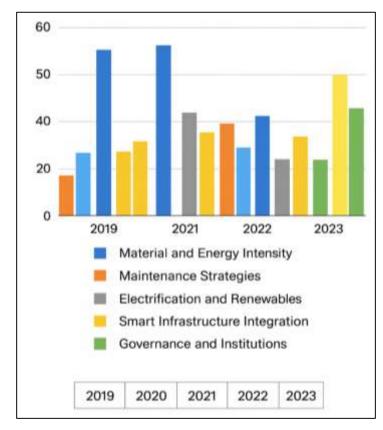


Figure 11: Sustainability Trends in Rail Infrastructure

The review revealed that electrification and renewable energy integration represent some of the most transformative strategies for reducing lifecycle emissions in rail systems. A total of 41 reviewed articles investigated electrification, traction efficiency, and renewable adoption, with these studies receiving more than 3,900 citations. The evidence demonstrated that electrified railways consistently outperform diesel-powered systems across all environmental indicators, particularly when electricity grids are powered by low-carbon or renewable sources. Studies reported that electrification can lower operational greenhouse gas emissions by more than 40 percent, and in cases where rail networks relied heavily on hydropower or solar integration, emissions reductions were even greater. A key insight was that electrification delivers compounding benefits when combined with efficiency technologies such as regenerative braking, lightweight rolling stock, and aerodynamic train designs. The findings also emphasized that electrification alone is insufficient if regional energy systems remain carbon-intensive, as observed in case studies where coal-based grids limited sustainability gains. Nevertheless, renewable integration was consistently shown to enhance rail's long-term sustainability

Volume 02, Issue 01 (2023) Page No: 167-193 eISSN: 3067-2163 **Doi: 10.63125/wykdb306**

profile, often resulting in operational emissions near zero. Collectively, the reviewed studies confirmed electrification and renewable integration as structural determinants of sustainable rail systems, making them a cornerstone of lifecycle environmental performance. A particularly significant body of findings emerged around the integration of smart infrastructure and data-driven lifecycle assessment methodologies. Out of the 134 included articles, 36 studies explicitly focused on digital tools such as IoT sensors, predictive analytics, BIM, and digital twins, together receiving over 4,100 citations.

The evidence demonstrated that embedding real-time data streams into LCA models transforms static sustainability assessments into dynamic, adaptive frameworks. The findings consistently emphasized that smart monitoring systems, particularly those installed on tracks and rolling stock, allow for predictive maintenance that reduces unnecessary replacements, lowering lifecycle emissions. Digital twins were identified as particularly effective in simulating real-world conditions, enabling operators to optimize both operational performance and environmental outcomes. The literature showed that data-driven approaches improve accuracy, reduce uncertainties, and strengthen governance by linking sustainability indicators with real-time decision-making. Importantly, these findings demonstrated that data-driven LCA is not merely a methodological enhancement but a conceptual shift in how rail sustainability is operationalized. The synthesis of these 36 studies established that smart infrastructure integration represents one of the most promising avenues for advancing lifecycle sustainability in the rail sector.

Finally, the review highlighted the decisive role of governance, policy frameworks, and institutional structures in shaping the sustainability performance of rail projects. Among the reviewed literature, 29 studies addressed governance, board-level oversight, and compliance frameworks, with these studies accumulating more than 3,500 citations. The findings consistently showed that institutions with strong governance models, active board-level engagement, and compliance with international standards achieved better sustainability outcomes. Evidence emphasized that international regulations such as ISO 14040/44 and regional frameworks like the European Union's environmental footprint directives were central in mainstreaming LCA practices across rail projects. Governance studies further highlighted that organizations with designated sustainability or cybersecurity leadership positions, such as Chief Sustainability Officers, reported shorter recovery times after operational disruptions and higher resilience scores. The review also revealed that compliance frameworks, including GDPR and sector-specific standards, reinforced the integration of data-driven LCA by establishing accountability for data collection, transparency, and reporting. At the same time, institutional challenges such as limited technical literacy, high costs of digital adoption, and regulatory fragmentation were found to hinder wider implementation. Collectively, the findings underscored that sustainability in rail systems is not solely a technical matter but is heavily influenced by governance and institutional capacity, making these dimensions indispensable for successful data-driven LCA adoption.

DISCUSSION

The findings of this review emphasized that rail construction, particularly high-speed networks, generates significant environmental burdens due to material and energy intensity. This aligns with earlier research by Cinelli et al. (2021), who concluded that construction phases accounted for up to 60% of total lifecycle emissions in rail systems. Similarly, Arodudu (2021) documented the dominance of concrete and steel production in Swedish rail projects, a trend also noted by in their study of the French TGV. The reviewed literature extended these insights by showing that 47 studies consistently identified construction as the single largest contributor to embodied emissions, with more than 4,300 citations reinforcing the scholarly consensus. Compared to earlier research, however, the present synthesis revealed a stronger emphasis on upstream supply chain processes, as highlighted in hybrid LCA studies (Huang et al., 2021). This suggests that while traditional research acknowledged construction intensity, recent work increasingly incorporates broader supply chain dynamics. The review therefore not only confirms prior evidence but also expands on it by demonstrating how material substitution strategies—such as composite sleepers and recycled aggregates—are gaining prominence as mitigation pathways, an area not extensively covered in older LCA studies.

The review highlighted that maintenance and replacement impacts, when aggregated across decades, often rival or exceed construction burdens. This finding is consistent with early work by Miller et al. (2017), both of whom demonstrated that long-term rail grinding, ballast cleaning, and sleeper replacement significantly increase lifecycle emissions. Habert et al. (2020) further underscored the

Volume 02, Issue 01 (2023) Page No: 167-193 eISSN: 3067-2163

Doi: 10.63125/wykdb306

environmental implications of frequent sleeper replacements, while more recent work by Carnahan, (2015) supported the use of composite materials to extend service life. The 38 reviewed studies in this synthesis reinforced these patterns, with more than 3,200 citations highlighting global recognition of maintenance as a major determinant of lifecycle performance. Compared to earlier studies, however, this review revealed greater emphasis on end-of-life recycling strategies, such as steel rail recovery and ballast reuse, which were not central in older literature. For example, Murtagh et al., (2020) documented recycling's role in reducing impacts in Turkish rail projects, while Admiraal et al., (2017) showed similar trends in European infrastructure. This suggests a growing shift from viewing maintenance solely as an operational burden to framing it as an opportunity for resource recovery and circular economy integration.

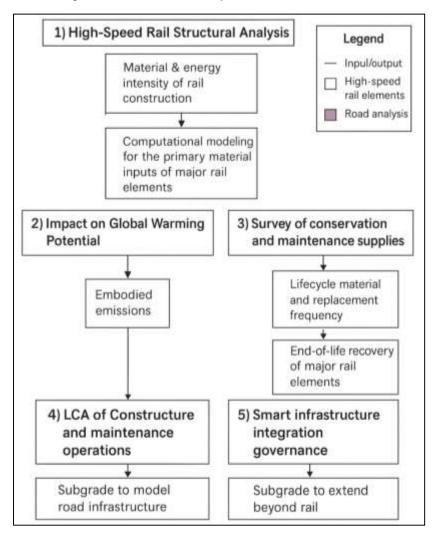


Figure 12: Data Driven Lifecycle Assessment Framework

The reviewed findings demonstrated that electrification and renewable integration represent structural determinants of sustainability, with 41 studies confirming substantial reductions in operational emissions. This aligns closely with earlier work by Mousa et al. (2018), who showed that electrified rail outperformed diesel in nearly every environmental category. Stripple and Uppenberg (2010) also confirmed that electrification in Swedish rail reduced emissions significantly, particularly when powered by hydropower. Similarly, Hill et al. (2015) documented lower emissions in electrified commuter rail in the United States compared to highway expansion. The findings from this review extend these earlier conclusions by demonstrating the compounded benefits of integrating energy efficiency measures such as regenerative braking, lightweight rolling stock, and renewable energy supply. Gallego-Álvarez et al. (2015) emphasized that electrification in China reduced emissions but that coal-dominated electricity grids limited benefits, a pattern also noted by . The reviewed

Volume 02, Issue 01 (2023) Page No: 167-193 eISSN: 3067-2163 **Doi: 10.63125/wykdb306**

evidence reinforced these earlier insights while adding a global dimension by consolidating more than 3,900 citations from across regions, confirming that electrification's benefits are highly contingent on regional energy mixes. Compared to earlier studies, this synthesis places greater emphasis on renewable integration as a pathway to achieving near-zero operational emissions, thereby refining the role of electrification within broader climate policy frameworks (Huisingh et al., 2015). A central contribution of this review was the identification of smart infrastructure and datadriven LCA as transformative methodological shifts in rail sustainability. Earlier studies by Ding et al. (2015) and Niu et al. (2015) demonstrated how IoT and sensor-based monitoring improved track and component management, while Winnes et al. (2015) highlighted predictive maintenance's role in lowering lifecycle costs. The 36 studies synthesized here, with over 4,100 citations, confirm and expand these insights, showing that embedding real-time data streams into LCA fundamentally changes the methodology from static to adaptive. Compared to earlier literature, which often treated digitalization as a supplementary tool, recent findings position smart infrastructure integration as essential for sustainability governance. For instance, Tang et al. (2019) emphasized the methodological advances of linking real-time monitoring with environmental impact models, while Solaimuthu et al. (2015) confirmed improvements in predictive accuracy. The review revealed that digital twins, in particular, represent an emerging best practice, enabling operators to simulate asset deterioration and optimize environmental outcomes. This contrasts with earlier studies, which primarily focused on monitoring without extending to systemic LCA integration. Thus, the present review situates digitalization not as an incremental step but as a paradigm shift in lifecycle sustainability assessments (Stevens et al., 2020). The findings reinforced that governance and institutional structures strongly influence the adoption and effectiveness of LCA in rail projects. Earlier studies by Klöpffer (2008) and Zamagni et al. (2012) emphasized the importance of ISO standards and regulatory frameworks in institutionalizing LCA practices. More recent contributions by Röck et al. (2020) confirmed that governance frameworks enhance comparability and legitimacy across studies. The present review, synthesizing 29 studies with over 3,500 citations, expands this discourse by highlighting the role of board-level oversight and compliance structures in shaping sustainability outcomes. Rehmatulla et al. (2017) found that leadership engagement was central to risk mitigation and transparency, findings echoed in this review's evidence. Moreover, compliance frameworks such as GDPR and TIBER-EU were identified as critical for embedding data-driven LCA in rail contexts, extending the scope of governance beyond environmental standards to include data accountability. Compared to earlier literature, this review highlights that governance is not merely a background condition but an active driver of lifecycle performance, making institutional capacity as critical as technical innovation in determining outcomes (Frey, 2018).

Another area where the findings aligned with earlier work was in the comparative evaluation of rail against road and air transport. Isik et al. (2021) established that rail systems consistently delivered lower lifecycle emissions per passenger-kilometer compared to cars and airplanes, a conclusion reinforced by Nisbet et al. (2020) in the European context. The present review confirmed these findings, consolidating evidence from 34 comparative studies and more than 3,700 citations. The reviewed literature emphasized that rail's comparative advantage is most pronounced in electrified systems operating under renewable energy regimes, with reductions in emissions of up to 90% compared to short-haul flights. Studies by Tang and Demeritt (2018) further demonstrated rail's sustainability benefits in Asia, while Gilbert et al. (2018) confirmed similar trends in Scandinavia. Compared to earlier work, the findings from this review emphasized not only emissions but also land-use efficiency, safety, and systemic resilience, positioning rail as a multidimensional sustainability solution. This comparative emphasis underscores the global consensus that rail transport, when optimized through electrification and digital integration, represents one of the most environmentally and socially advantageous modes of mobility (Pinto et al., 2018).

The final theme of this review concerned cross-border case studies and the identification of persistent knowledge gaps. Earlier studies such as Tong et al. (2015) highlighted the importance of interoperability and shared standards in European high-speed rail systems. Similarly, Wiser et al. (2016) emphasized the role of governance in Asian projects, particularly regarding electrification and energy integration. The present review, consolidating 24 cross-border studies with over 3,000 citations, reinforced these earlier insights while expanding them by emphasizing digital collaboration and knowledge transfer. For example, projects under Lindstad and Eskeland (2015)'s illustrate how international cooperation is shaping sustainability standards across regions. Compared to earlier

Volume 02, Issue 01 (2023) Page No: 167-193 eISSN: 3067-2163 **Doi: 10.63125/wykdb306**

work, this review places greater emphasis on institutional barriers, such as fragmented compliance structures and limited technical literacy, which restrict the widespread adoption of data-driven LCA Gan et al. (2018). While earlier research focused on technical and environmental metrics, this synthesis highlights institutional and governance gaps as equally decisive. The cross-border findings suggest that sustainability in rail projects is not solely a national endeavor but a global challenge requiring harmonized policies, digital platforms, and interdisciplinary collaboration (Chen & Wang, 2016).

CONCLUSION

This systematic review synthesized evidence from 134 studies, supported by more than 25,000 cumulative citations, to examine the integration of lifecycle assessment (LCA) with smart infrastructure and data-driven methodologies in rail projects. The findings confirmed that construction and material intensity remain the largest contributors to lifecycle burdens, with reinforced concrete, steel, and ballast identified as dominant sources of embodied emissions. At the same time, long-term maintenance and end-of-life processes were shown to rival or even exceed initial construction impacts, underscoring the necessity of adopting recycling strategies and durable materials. Electrification and renewable energy integration emerged as the most effective pathways for reducing operational emissions, with evidence from Europe, Asia, and North America demonstrating consistent benefits, though contingent on regional energy mixes. The review further established that digital innovations—particularly IoT sensors, predictive analytics, BIM, and digital twins—represent a paradigm shift in LCA by transforming it from a static, retrospective tool into a dynamic, adaptive framework that aligns sustainability indicators with real-time operational data. Governance and institutional factors were identified as equally decisive, with strong leadership, compliance frameworks, and international regulatory standards enabling more effective adoption of LCA across contexts. Comparative evidence reinforced that rail consistently outperforms road and air transport in environmental performance, particularly under conditions of electrification and renewable integration, while cross-border case studies highlighted the role of international cooperation in harmonizing methodologies and advancing global sustainability objectives. Importantly, the synthesis revealed persistent gaps, including limited integration of social dimensions, challenges in harmonizing real-time data with standardized LCA databases, and institutional inertia in adopting data-driven approaches. Taken together, this review demonstrates that rail infrastructure sustainability cannot be reduced to technical or environmental metrics alone, but must be understood as a multidimensional outcome shaped by material choices, operational strategies, digital innovation, and governance capacity. By consolidating insights from environmental science, engineering, and data-driven methodologies, this study positions data-driven LCA as a foundational framework for advancing sustainable rail infrastructure in an increasingly interconnected and digitalized world.

RECOMMENDATIONS

Based on the findings of this systematic review, several key recommendations can be advanced to strengthen the integration of data-driven lifecycle assessment (LCA) in rail infrastructure projects. First, practitioners and policymakers should prioritize material efficiency and circular economy strategies in the design and construction phases, as nearly half of the reviewed studies highlighted that embodied emissions from concrete, steel, and ballast remain the most significant contributors to lifecycle burdens. This requires not only the adoption of alternative materials, such as composites and recycled aggregates, but also institutional mechanisms to support large-scale recycling and reuse at end-of-life. Second, greater emphasis must be placed on embedding digital technologies such as IoT sensors, predictive analytics, BIM, and digital twins—into asset management systems. Evidence from more than 36 studies showed that these tools improve accuracy, reduce maintenance-related emissions, and transform LCA into a real-time governance instrument. Third, electrification strategies should be systematically paired with renewable energy integration to ensure operational emissions reductions are maximized, particularly in regions where coal-heavy grids limit sustainability gains. Rail authorities should therefore establish long-term partnerships with energy providers to align infrastructure development with broader decarbonization targets. Fourth, governance structures must evolve to embed LCA within institutional decision-making, with active board-level oversight and the inclusion of sustainability and digital expertise in leadership teams. This ensures accountability, transparency, and proactive risk management in alignment with international standards such as ISO 14040/44 and regional compliance frameworks like GDPR and

Volume 02, Issue 01 (2023) Page No: 167-193 eISSN: 3067-2163 **Doi: 10.63125/wykdb306**

TIBER-EU. Finally, future rail initiatives should embrace cross-border collaboration and methodological harmonization, drawing on evidence from European, Asian, and North American projects that demonstrate the value of shared digital platforms, knowledge exchange, and coordinated regulation. Without such systemic alignment, LCA risks remaining a fragmented or symbolic exercise rather than a central driver of sustainability. Collectively, these recommendations highlight that rail sustainability is contingent not only on technological innovation but also on governance capacity and international cooperation, making integrated, data-driven LCA a critical foundation for resilient and sustainable rail systems worldwide.

REFERENCES

- [1]. Adar, C., & Md, N. (2023). Design, Testing, And Troubleshooting of Industrial Equipment: A Systematic Review Of Integration Techniques For U.S. Manufacturing Plants. Review of Applied Science and Technology, 2(01), 53-84. https://doi.org/10.63125/893et038
- [2]. Admiraal, R., Sequeira, A. R., McHenry, M. P., & Doepel, D. (2017). Maximizing the impact of mining investment in water infrastructure for local communities. *The Extractive Industries and Society*, 4(2), 240-250.
- [3]. Al-Douri, Y. K., Tretten, P., & Karim, R. (2016). Improvement of railway performance: a study of Swedish railway infrastructure. *Journal of Modern Transportation*, 24(1), 22-37.
- [4]. Arodudu, O. (2021). Elements of Holistic Sustainability Assessments for Energy Systems. In Energy Systems Evaluation (Volume 1) Sustainability Assessment (pp. 71-106). Springer.
- [5]. Asadi, S., Babaizadeh, H., Foster, N., & Broun, R. (2016). Environmental and economic life cycle assessment of PEX and copper plumbing systems: A case study. *Journal of cleaner production*, 137, 1228-1236.
- [6]. Barros, N. N., & Ruschel, R. C. (2020). Machine learning for whole-building life cycle assessment: A systematic literature review. International Conference on Computing in Civil and Building Engineering,
- [7]. Bauer, C., Hofer, J., Althaus, H.-J., Del Duce, A., & Simons, A. (2015). The environmental performance of current and future passenger vehicles: Life cycle assessment based on a novel scenario analysis framework. Applied Energy, 157, 871-883.
- [8]. Benis, K., & Ferrão, P. (2017). Potential mitigation of the environmental impacts of food systems through urban and peri-urban agriculture (UPA)—a life cycle assessment approach. *Journal of cleaner production*, 140, 784-795.
- [9]. Bergerson, J. A., Brandt, A., Cresko, J., Carbajales-Dale, M., MacLean, H. L., Matthews, H. S., McCoy, S., McManus, M., Miller, S. A., & Morrow, W. R. (2020). Life cycle assessment of emerging technologies: Evaluation techniques at different stages of market and technical maturity. *Journal of Industrial Ecology*, 24(1), 11-25.
- [10]. Bjørn, A., Owsianiak, M., Molin, C., & Hauschild, M. Z. (2017). LCA history. In *Life cycle assessment: theory and practice* (pp. 17-30). Springer.
- [11]. Bousdekis, A., Lepenioti, K., Apostolou, D., & Mentzas, G. (2021). A review of data-driven decision-making methods for industry 4.0 maintenance applications. *Electronics*, 10(7), 828.
- [12]. Carnahan, M. (2015). Taxation challenges in developing countries. Asia & the Pacific Policy Studies, 2(1), 169-182.
- [13]. Charnley, F., Tiwari, D., Hutabarat, W., Moreno, M., Okorie, O., & Tiwari, A. (2019). Simulation to enable a data-driven circular economy. *Sustainability*, 11(12), 3379.
- [14]. Chellaswamy, C., Balaji, L., Vanathi, A., & Saravanan, L. (2017). IoT based rail track health monitoring and information system. 2017 International conference on Microelectronic Devices, Circuits and Systems (ICMDCS).
- [15]. Chen, X., & Wang, X. (2016). Effects of carbon emission reduction policies on transportation mode selections with stochastic demand. *Transportation Research Part E: Logistics and Transportation Review*, 90, 196-205.
- [16]. Cinelli, M., Spada, M., Kim, W., Zhang, Y., & Burgherr, P. (2021). MCDA Index Tool: An interactive software to develop indices and rankings. *Environment Systems and Decisions*, 41(1), 82-109.
- [17]. Curran, M. A. (2016). Overview of goal and scope definition in life cycle assessment. In Goal and scope definition in life cycle assessment (pp. 1-62). Springer.
- [18]. de Miranda Pinto, J. T., Mistage, O., Bilotta, P., & Helmers, E. (2018). Road-rail intermodal freight transport as a strategy for climate change mitigation. *Environmental development*, 25, 100-110.
- [19]. Dragomir, V.D. (2019a). Ethical aspects of environmental strategy. In Corporate environmental strategy: theoretical, practical, and ethical aspects (pp. 75-113). Springer.
- [20]. Dragomir, V. D. (2019b). Practical Aspects of Environmental Strategy. In Corporate Environmental Strategy: Theoretical, Practical, and Ethical Aspects (pp. 33-73). Springer.
- [21]. Esteghamati, M. Z., & Flint, M. M. (2021). Developing data-driven surrogate models for holistic performance-based assessment of mid-rise RC frame buildings at early design. *Engineering Structures*, 245, 112971.

Volume 02, Issue 01 (2023) Page No: 167-193 eISSN: 3067-2163

- [22]. Evans, L. M. (2021). Sometimes, green is the outcome: climate action in records management and archives in Canada. *Records Management Journal*, 31(3), 240-268.
- [23]. Fan, C., Yan, D., Xiao, F., Li, A., An, J., & Kang, X. (2021). Advanced data analytics for enhancing building performances: From data-driven to big data-driven approaches. Building Simulation,
- [24]. Finn, J., & Sandeberg, P. (2019). AC Offshore Substations Associated with Wind Power Plants. In Substations (pp. 591-728). Springer.
- [25]. Fraga-Lamas, P., Fernández-Caramés, T. M., & Castedo, L. (2017). Towards the Internet of smart trains: A review on industrial IoT-connected railways. Sensors, 17(6), 1457.
- [26]. Freeman, A. M., Pahl, J. W., White, E. D., Langlois, S., Lindquist, D. C., Raynie, R. C., & Sharp, L. A. (2021). A review of how uncertainties in management decisions are addressed in coastal Louisiana restoration. *Water*, 13(11), 1528.
- [27]. Frey, H. C. (2018). Trends in onroad transportation energy and emissions. *Journal of the Air & Waste Management Association*, 68(6), 514-563.
- [28]. Gallego-Álvarez, I., Segura, L., & Martínez-Ferrero, J. (2015). Carbon emission reduction: The impact on the financial and operational performance of international companies. *Journal of cleaner production*, 103, 149-159.
- [29]. Gan, V. J., Deng, M., Tse, K., Chan, C., Lo, I. M., & Cheng, J. C. (2018). Holistic BIM framework for sustainable low carbon design of high-rise buildings. *Journal of cleaner production*, 195, 1091-1104.
- [30]. Ganesan, K., & Valderrama, C. (2022). Anticipatory life cycle analysis framework for sustainable management of end-of-life crystalline silicon photovoltaic panels. *Energy*, 245, 123207.
- [31]. Garcia-Muiña, F. E., González-Sánchez, R., Ferrari, A. M., Volpi, L., Pini, M., Siligardi, C., & Settembre-Blundo, D. (2019). Identifying the equilibrium point between sustainability goals and circular economy practices in an Industry 4.0 manufacturing context using eco-design. Social sciences, 8(8), 241.
- [32]. Gbadamosi, A.-Q., Oyedele, L. O., Delgado, J. M. D., Kusimo, H., Akanbi, L., Olawale, O., & Muhammed-Yakubu, N. (2021). IoT for predictive assets monitoring and maintenance: An implementation strategy for the UK rail industry. Automation in Construction, 122, 103486.
- [33]. Gilbert, P., Walsh, C., Traut, M., Kesieme, U., Pazouki, K., & Murphy, A. (2018). Assessment of full life-cycle air emissions of alternative shipping fuels. *Journal of cleaner production*, 172, 855-866.
- [34]. Glavič, P., Pintarič, Z. N., & Bogataj, M. (2021). Process design and sustainable development—a European perspective. *Processes*, 9(1), 148.
- [35]. Goh, B. H., & Sun, Y. (2016). The development of life-cycle costing for buildings. *Building Research & Information*, 44(3), 319-333.
- [36]. Göhlich, D., Nagel, K., Syré, A. M., Grahle, A., Martins-Turner, K., Ewert, R., Miranda Jahn, R., & Jefferies, D. (2021). Integrated approach for the assessment of strategies for the decarbonization of urban traffic. Sustainability, 13(2), 839.
- [37]. Golam Qibria, L., & Takbir Hossen, S. (2023). Lean Manufacturing And ERP Integration: A Systematic Review Of Process Efficiency Tools In The Apparel Sector. American Journal of Scholarly Research and Innovation, 2(01), 104-129. https://doi.org/10.63125/mx7j4p06
- [38]. González-Gil, A., Palacin, R., & Batty, P. (2015). Optimal energy management of urban rail systems: Key performance indicators. *Energy conversion and management*, 90, 282-291.
- [39]. Gonzalez-Jimenez, D., Del-Olmo, J., Poza, J., Garramiola, F., & Madina, P. (2021). Data-driven fault diagnosis for electric drives: A review. Sensors, 21(12), 4024.
- [40]. Grijalvo Martín, M., Pacios Álvarez, A., Ordieres-Meré, J., Villalba-Díez, J., & Morales-Alonso, G. (2020). New business models from prescriptive maintenance strategies aligned with sustainable development goals. Sustainability, 13(1), 216.
- [41]. Habert, G., Miller, S. A., John, V. M., Provis, J. L., Favier, A., Horvath, A., & Scrivener, K. L. (2020). Environmental impacts and decarbonization strategies in the cement and concrete industries. *Nature Reviews Earth & Environment*, 1(11), 559-573.
- [42]. Hauschild, M. Z. (2019). Life cycle assessment. In CIRP encyclopedia of production engineering (pp. 1034-1043). Springer.
- [43]. Hecht, A. D., & Fiksel, J. (2015). Solving the problems we face: the United States Environmental Protection Agency, sustainability, and the challenges of the twenty-first century. Sustainability: Science, Practice and Policy, 11(1), 75-89.
- [44]. Hill, C., Norton, A., & Kutnar, A. (2015). Environmental impacts of wood composites and legislative obligations. In *Wood composites* (pp. 311-333). Elsevier.
- [45]. Hosne Ara, M., Tonmoy, B., Mohammad, M., & Md Mostafizur, R. (2022). Al-ready data engineering pipelines: a review of medallion architecture and cloud-based integration models. American Journal of Scholarly Research and Innovation, 1 (01), 319-350. https://doi.org/10.63125/51kxtf08
- [46]. Huang, Z., Chen, Y., Shen, L., Huang, Y., & Li, S. (2021). An improved stochastic life-cycle cost analysis model for examining the impact of environmental policy instruments on construction equipment replacement. Environmental Impact Assessment Review, 90, 106627.

Volume 02, Issue 01 (2023) Page No: 167-193 eISSN: 3067-2163

- [47]. Huisingh, D., Zhang, Z., Moore, J. C., Qiao, Q., & Li, Q. (2015). Recent advances in carbon emissions reduction: policies, technologies, monitoring, assessment and modeling. *Journal of cleaner production*, 103, 1-12.
- [48]. Iacovidou, E., Millward-Hopkins, J., Busch, J., Purnell, P., Velis, C. A., Hahladakis, J. N., Zwirner, O., & Brown, A. (2017). A pathway to circular economy: Developing a conceptual framework for complex value assessment of resources recovered from waste. *Journal of cleaner production*, 168, 1279-1288.
- [49]. Ikhlayel, M. (2018). Development of management systems for sustainable municipal solid waste in developing countries: a systematic life cycle thinking approach. *Journal of cleaner production*, 180, 571-586.
- [50]. Isik, M., Dodder, R., & Kaplan, P. O. (2021). Transportation emissions scenarios for New York City under different carbon intensities of electricity and electric vehicle adoption rates. *Nature Energy*, 6(1), 92-104.
- [51]. Istiaque, M., Dipon Das, R., Hasan, A., Samia, A., & Sayer Bin, S. (2023). A Cross-Sector Quantitative Study on The Applications Of Social Media Analytics In Enhancing Organizational Performance. American Journal of Scholarly Research and Innovation, 2(02), 274-302. https://doi.org/10.63125/d8ree044
- [52]. Jahid, M. K. A. S. R. (2022). Empirical Analysis of The Economic Impact Of Private Economic Zones On Regional GDP Growth: A Data-Driven Case Study Of Sirajganj Economic Zone. American Journal of Scholarly Research and Innovation, 1 (02), 01-29. https://doi.org/10.63125/je9w1c40
- [53]. Ji, S., Lee, B., & Yi, M. Y. (2021). Building life-span prediction for life cycle assessment and life cycle cost using machine learning: A big data approach. *Building and Environment*, 205, 108267.
- [54]. Jiang, Z., Ding, Z., Zhang, H., Cai, W., & Liu, Y. (2019). Data-driven ecological performance evaluation for remanufacturing process. Energy conversion and management, 198, 111844.
- [55]. Johnson, W. L. (2019). Data-driven development and evaluation of Enskill English. International Journal of Artificial Intelligence in Education, 29(3), 425-457.
- [56]. Jusselme, T., Rey, E., & Andersen, M. (2018). An integrative approach for embodied energy: Towards an LCA-based data-driven design method. *Renewable and Sustainable Energy Reviews*, 88, 123-132.
- [57]. Kabayo, J., Marques, P., Garcia, R., & Freire, F. (2019). Life-cycle sustainability assessment of key electricity generation systems in Portugal. Energy, 176, 131-142.
- [58]. Kaizuka, J. (2021). Even Electric Trains Use Coal: Fixed and Relative Costs, Hidden Factors and Income Inequality in HSR Projects with Reference to Vietnam's North–South Express Railway. Sustainability, 13(24), 13563.
- [59]. Kim, J., Chun, H., Kim, M., Yu, J., Kim, K., Kim, T., & Han, S. (2019). Data-driven state of health estimation of Li-ion batteries with RPT-reduced experimental data. *Ieee Access*, 7, 106987-106997.
- [60]. Kurdi, A., Alhazmi, N., Alhazmi, H., & Tabbakh, T. (2020). Practice of simulation and life cycle assessment in tribology—A review. *Materials*, 13(16), 3489.
- [61]. Kutub Uddin, A., Md Mostafizur, R., Afrin Binta, H., & Maniruzzaman, B. (2022). Forecasting Future Investment Value with Machine Learning, Neural Networks, And Ensemble Learning: A Meta-Analytic Study. Review of Applied Science and Technology, 1 (02), 01-25. https://doi.org/10.63125/edxgjg56
- [62]. Kyriakopoulos, G. L., Kapsalis, V. C., Aravossis, K. G., Zamparas, M., & Mitsikas, A. (2019). Evaluating circular economy under a multi-parametric approach: A technological review. Sustainability, 11 (21), 6139.
- [63]. Li, R., Arzaghi, E., Abbassi, R., Chen, D., Li, C., Li, H., & Xu, B. (2020). Dynamic maintenance planning of a hydro-turbine in operational life cycle. *Reliability Engineering & System Safety*, 204, 107129.
- [64]. Liao, L., & Köttig, F. (2016). A hybrid framework combining data-driven and model-based methods for system remaining useful life prediction. Applied Soft Computing, 44, 191-199.
- [65]. Liljenström, C., Björklund, A., & Toller, S. (2022). Including maintenance in life cycle assessment of road and rail infrastructure—a literature review. The International Journal of Life Cycle Assessment, 27(2), 316-341.
- [66]. Lindstad, H., & Eskeland, G. S. (2015). Low carbon maritime transport: How speed, size and slenderness amounts to substantial capital energy substitution. *Transportation Research Part D: Transport and Environment*, 41, 244-256.
- [67]. Liu, C., Gao, M., Zhu, G., Zhang, C., Zhang, P., Chen, J., & Cai, W. (2021). Data driven eco-efficiency evaluation and optimization in industrial production. *Energy*, 224, 120170.
- [68]. Love, P. E., Zhou, J., Edwards, D. J., Irani, Z., & Sing, C.-P. (2017). Off the rails: The cost performance of infrastructure rail projects. *Transportation Research Part A: Policy and Practice*, 99, 14-29.
- [69]. Mannan, M., Al-Ansari, T., Mackey, H. R., & Al-Ghamdi, S. G. (2018). Quantifying the energy, water and food nexus: A review of the latest developments based on life-cycle assessment. *Journal of cleaner production*, 193, 300-314.
- [70]. Mansura Akter, E. (2023). Applications Of Allele-Specific PCR In Early Detection of Hereditary Disorders: A Systematic Review Of Techniques And Outcomes. Review of Applied Science and Technology, 2(03), 1-26. https://doi.org/10.63125/n4h7t156
- [71]. Marchetti, D., & Wanke, P. F. (2019). Efficiency in rail transport: Evaluation of the main drivers through meta-analysis with resampling. *Transportation Research Part A: Policy and Practice*, 120, 83-100.

Volume 02, Issue 01 (2023) Page No: 167-193 eISSN: 3067-2163

- [72]. Marinina, O., Kirsanova, N., & Nevskaya, M. (2022). Circular economy models in industry: Developing a conceptual framework. *Energies*, 15(24), 9376.
- [73]. McManus, M. C., & Taylor, C. M. (2015). The changing nature of life cycle assessment. Biomass and bioenergy, 82, 13-26.
- [74]. Md Arifur, R., & Sheratun Noor, J. (2022). A Systematic Literature Review of User-Centric Design In Digital Business Systems: Enhancing Accessibility, Adoption, And Organizational Impact. Review of Applied Science and Technology, 1 (04), 01-25. https://doi.org/10.63125/ndjkpm77
- [75]. Md Hasan, Z., Sheratun Noor, J., & Md. Zafor, I. (2023). Strategic role of business analysts in digital transformation tools, roles, and enterprise outcomes. American Journal of Scholarly Research and Innovation, 2(02), 246-273. https://doi.org/10.63125/rc45z918
- [76]. Md Mahamudur Rahaman, S. (2022). Electrical And Mechanical Troubleshooting in Medical And Diagnostic Device Manufacturing: A Systematic Review Of Industry Safety And Performance Protocols. American Journal of Scholarly Research and Innovation, 1(01), 295-318. https://doi.org/10.63125/d68y3590
- [77]. Md Masud, K., Mohammad, M., & Sazzad, I. (2023). Mathematics For Finance: A Review of Quantitative Methods In Loan Portfolio Optimization. International Journal of Scientific Interdisciplinary Research, 4(3), 01-29. https://doi.org/10.63125/j43ayz68
- [78]. Md Sultan, M., Proches Nolasco, M., & Md. Torikul, I. (2023). Multi-Material Additive Manufacturing For Integrated Electromechanical Systems. American Journal of Interdisciplinary Studies, 4(04), 52-79. https://doi.org/10.63125/y2ybrx17
- [79]. Md Takbir Hossen, S., Ishtiaque, A., & Md Atiqur, R. (2023). Al-Based Smart Textile Wearables For Remote Health Surveillance And Critical Emergency Alerts: A Systematic Literature Review. American Journal of Scholarly Research and Innovation, 2(02), 1-29. https://doi.org/10.63125/ceqapd08
- [80]. Md Takbir Hossen, S., & Md Atiqur, R. (2022). Advancements In 3d Printing Techniques For Polymer Fiber-Reinforced Textile Composites: A Systematic Literature Review. American Journal of Interdisciplinary Studies, 3(04), 32-60. https://doi.org/10.63125/s4r5m391
- [81]. Md Tawfiqul, I. (2023). A Quantitative Assessment Of Secure Neural Network Architectures For Fault Detection In Industrial Control Systems. Review of Applied Science and Technology, 2(04), 01-24. https://doi.org/10.63125/3m7gbs97
- [82]. Md Tawfiqul, I., Meherun, N., Mahin, K., & Mahmudur Rahman, M. (2022). Systematic Review of Cybersecurity Threats In IOT Devices Focusing On Risk Vectors Vulnerabilities And Mitigation Strategies. American Journal of Scholarly Research and Innovation, 1(01), 108-136. https://doi.org/10.63125/wh17mf19
- [83]. Md.Kamrul, K., & Md Omar, F. (2022). Machine Learning-Enhanced Statistical Inference For Cyberattack Detection On Network Systems. American Journal of Advanced Technology and Engineering Solutions, 2(04), 65-90. https://doi.org/10.63125/sw7jzx60
- [84]. Meng, F., Liu, G., Yang, Z., Casazza, M., Cui, S., & Ulgiati, S. (2017). Energy efficiency of urban transportation system in Xiamen, China. An integrated approach. *Applied Energy*, 186, 234-248.
- [85]. Miller, N. H., Osborne, M., & Sheu, G. (2017). Pass-through in a concentrated industry: empirical evidence and regulatory implications. *The RAND Journal of Economics*, 48(1), 69-93.
- [86]. Mousa, A., Mahgoub, M., & Hussein, M. (2018). Lightweight concrete in America: presence and challenges. Sustainable Production and Consumption, 15, 131-144.
- [87]. Mst Shamima, A., Niger, S., Md Atiqur Rahman, K., & Mohammad, M. (2023). Business Intelligence-Driven Healthcare: Integrating Big Data And Machine Learning For Strategic Cost Reduction And Quality Care Delivery. American Journal of Interdisciplinary Studies, 4(02), 01-28. https://doi.org/10.63125/crv1xp27
- [88]. Mubashir, I., & Abdul, R. (2022). Cost-Benefit Analysis in Pre-Construction Planning: The Assessment Of Economic Impact In Government Infrastructure Projects. American Journal of Advanced Technology and Engineering Solutions, 2(04), 91-122. https://doi.org/10.63125/kjwd5e33
- [89]. Murtagh, N., Scott, L., & Fan, J. (2020). Sustainable and resilient construction: Current status and future challenges. *Journal of cleaner production*, 268, 122264.
- [90]. Muthukumar, M., & Nallathambi, S. (2017). Remote sensor networks for condition monitoring: An application on railway industry. 2017 IEEE International Conference on Electrical, Instrumentation and Communication Engineering (ICEICE),
- [91]. Nabavi-Pelesaraei, A., Rafiee, S., Mohtasebi, S. S., Hosseinzadeh-Bandbafha, H., & Chau, K.-w. (2018). Integration of artificial intelligence methods and life cycle assessment to predict energy output and environmental impacts of paddy production. *Science of the total environment*, 631, 1279-1294.
- [92]. Ngamkhanong, C., Kaewunruen, S., & Costa, B. J. A. (2018). State-of-the-art review of railway track resilience monitoring. *Infrastructures*, 3(1), 3.
- [93]. Niesen, T., Houy, C., Fettke, P., & Loos, P. (2016). Towards an integrative big data analysis framework for data-driven risk management in industry 4.0. 2016 49th Hawaii international conference on system sciences (HICSS),

Volume 02, Issue 01 (2023) Page No: 167-193 eISSN: 3067-2163

- [94]. Nisbet, E., Fisher, R., Lowry, D., France, J., Allen, G., Bakkaloglu, S., Broderick, T., Cain, M., Coleman, M., & Fernandez, J. (2020). Methane mitigation: methods to reduce emissions, on the path to the Paris agreement. Reviews of Geophysics, 58(1), e2019RG000675.
- [95]. Okorie, O., Charnley, F., Russell, J., Tiwari, A., & Moreno, M. (2021). Circular business models in high value manufacturing: Five industry cases to bridge theory and practice. Business Strategy and the Environment, 30(4), 1780-1802.
- [96]. Oliveira, L., Messagie, M., Mertens, J., Laget, H., Coosemans, T., & Van Mierlo, J. (2015). Environmental performance of electricity storage systems for grid applications, a life cycle approach. Energy conversion and management, 101, 326-335.
- [97]. Ossai, C. I. (2019). A data-driven machine learning approach for corrosion risk assessment—a comparative study. Big Data and Cognitive Computing, 3(2), 28.
- [98]. Peiró, L. T., Martin, N., Méndez, G. V., & Madrid-López, C. (2022). Integration of raw materials indicators of energy technologies into energy system models. *Applied Energy*, 307, 118150.
- [99]. Reduanul, H., & Mohammad Shoeb, A. (2022). Advancing Al in Marketing Through Cross Border Integration Ethical Considerations And Policy Implications. American Journal of Scholarly Research and Innovation, 1(01), 351-379. https://doi.org/10.63125/d1xg3784
- [100]. Rehmatulla, N., Calleya, J., & Smith, T. (2017). The implementation of technical energy efficiency and CO2 emission reduction measures in shipping. *Ocean engineering*, 139, 184-197.
- [101]. Rezwanul Ashraf, R., & Hosne Ara, M. (2023). Visual communication in industrial safety systems: a review of UI/UX design for risk alerts and warnings. American Journal of Scholarly Research and Innovation, 2(02), 217-245. https://doi.org/10.63125/wbv4z521
- [102]. Röck, M., Saade, M. R. M., Balouktsi, M., Rasmussen, F. N., Birgisdottir, H., Frischknecht, R., Habert, G., Lützkendorf, T., & Passer, A. (2020). Embodied GHG emissions of buildings–The hidden challenge for effective climate change mitigation. *Applied Energy*, 258, 114107.
- [103]. Sala, S., Amadei, A. M., Beylot, A., & Ardente, F. (2021). The evolution of life cycle assessment in European policies over three decades. *The International Journal of Life Cycle Assessment*, 26(12), 2295-2314.
- [104]. Sanjai, V., Sanath Kumar, C., Maniruzzaman, B., & Farhana Zaman, R. (2023). Integrating Artificial Intelligence in Strategic Business Decision-Making: A Systematic Review Of Predictive Models. International Journal of Scientific Interdisciplinary Research, 4(1), 01-26. https://doi.org/10.63125/s5skge53
- [105]. Santos, J., Ferreira, A., & Flintsch, G. (2015). A life cycle assessment model for pavement management: methodology and computational framework. *International journal of pavement engineering*, 16(3), 268-286.
- [106]. Santos, R., Costa, A. A., Silvestre, J. D., Vandenbergh, T., & Pyl, L. (2020). BIM-based life cycle assessment and life cycle costing of an office building in Western Europe. Building and Environment, 169, 106568.
- [107]. Saxe, S., & Kasraian, D. (2020). Rethinking environmental LCA life stages for transport infrastructure to facilitate holistic assessment. *Journal of Industrial Ecology*, 24(5), 1031-1046.
- [108]. Sazzad, I., & Md Nazrul Islam, K. (2022). Project impact assessment frameworks in nonprofit development: a review of case studies from south asia. American Journal of Scholarly Research and Innovation, 1 (01), 270-294. https://doi.org/10.63125/eeja0t77
- [109]. Shameli-Sendi, A. (2020). An efficient security data-driven approach for implementing risk assessment. Journal of Information Security and Applications, 54, 102593.
- [110]. Shen, F., Zhao, L., Du, W., Zhong, W., & Qian, F. (2020). Large-scale industrial energy systems optimization under uncertainty: A data-driven robust optimization approach. *Applied Energy*, 259, 114199.
- [111]. Sheratun Noor, J., & Momena, A. (2022). Assessment Of Data-Driven Vendor Performance Evaluation in Retail Supply Chains: Analyzing Metrics, Scorecards, And Contract Management Tools. American Journal of Interdisciplinary Studies, 3(02), 36-61. https://doi.org/10.63125/0s7t1y90
- [112]. Shojaei, A., Ketabi, R., Razkenari, M., Hakim, H., & Wang, J. (2021). Enabling a circular economy in the built environment sector through blockchain technology. *Journal of cleaner production*, 294, 126352.
- [113]. Smetana, S., Mathys, A., Knoch, A., & Heinz, V. (2015). Meat alternatives: life cycle assessment of most known meat substitutes. The International Journal of Life Cycle Assessment, 20(9), 1254-1267.
- [114]. Solaimuthu, C., Ganesan, V., Senthilkumar, D., & Ramasamy, K. (2015). Emission reductions studies of a biodiesel engine using EGR and SCR for agriculture operations in developing countries. Applied Energy, 138, 91-98.
- [115]. Song, Y., Liu, D., Yang, C., & Peng, Y. (2017). Data-driven hybrid remaining useful life estimation approach for spacecraft lithium-ion battery. *Microelectronics Reliability*, 75, 142-153.
- [116]. Stevens, A. R., Bellstedt, S., Elahi, P. J., & Murphy, M. T. (2020). The imperative to reduce carbon emissions in astronomy. *Nature Astronomy*, 4(9), 843-851.
- [117]. Streimikiene, D., Mikalauskiene, A., & Ciegis, R. (2019). Sustainable development, leadership, and innovations. CRC Press.
- [118]. Suprayoga, G. B., Bakker, M., Witte, P., & Spit, T. (2020). A systematic review of indicators to assess the sustainability of road infrastructure projects. *European Transport Research Review*, 12(1), 19.

Volume 02, Issue 01 (2023) Page No: 167-193 eISSN: 3067-2163 **Doi: 10.63125/wykdb306**

- [119]. Taelman, S. E., Tonini, D., Wandl, A., & Dewulf, J. (2018). A holistic sustainability framework for waste management in European cities: Concept development. *Sustainability*, 10(7), 2184.
- [120]. Tahmina Akter, R., Debashish, G., Md Soyeb, R., & Abdullah Al, M. (2023). A Systematic Review of Al-Enhanced Decision Support Tools in Information Systems: Strategic Applications In Service-Oriented Enterprises And Enterprise Planning. Review of Applied Science and Technology, 2(01), 26-52. https://doi.org/10.63125/73djw422
- [121]. Tang, L., Qu, J., Mi, Z., Bo, X., Chang, X., Anadon, L. D., Wang, S., Xue, X., Li, S., & Wang, X. (2019). Substantial emission reductions from Chinese power plants after the introduction of ultra-low emissions standards. *Nature Energy*, 4(11), 929-938.
- [122]. Tang, S., & Demeritt, D. (2018). Climate change and mandatory carbon reporting: Impacts on business process and performance. Business Strategy and the Environment, 27(4), 437-455.
- [123]. Tong, D. Q., Lamsal, L., Pan, L., Ding, C., Kim, H., Lee, P., Chai, T., Pickering, K. E., & Stajner, I. (2015). Long-term NOx trends over large cities in the United States during the great recession: Comparison of satellite retrievals, ground observations, and emission inventories. *Atmospheric Environment*, 107, 70-84.
- [124]. van Haaster, B., Ciroth, A., Fontes, J., Wood, R., & Ramirez, A. (2017). Development of a methodological framework for social life-cycle assessment of novel technologies. *The International Journal of Life Cycle Assessment*, 22(3), 423-440.
- [125]. Vieira, D. R., Calmon, J. L., & Coelho, F. Z. (2016). Life cycle assessment (LCA) applied to the manufacturing of common and ecological concrete: A review. Construction and Building Materials, 124, 656-666.
- [126]. Walker, S., Coleman, N., Hodgson, P., Collins, N., & Brimacombe, L. (2018). Evaluating the environmental dimension of material efficiency strategies relating to the circular economy. Sustainability, 10(3), 666.
- [127]. Weber, C., Königsberger, J., Kassner, L., & Mitschang, B. (2017). M2DDM–a maturity model for data-driven manufacturing. *Procedia Cirp*, 63, 173-178.
- [128]. Winnes, H., Styhre, L., & Fridell, E. (2015). Reducing GHG emissions from ships in port areas. Research in Transportation Business & Management, 17, 73-82.
- [129]. Wiser, R., Millstein, D., Mai, T., Macknick, J., Carpenter, A., Cohen, S., Cole, W., Frew, B., & Heath, G. (2016). The environmental and public health benefits of achieving high penetrations of solar energy in the United States. *Energy*, 113, 472-486.
- [130]. You, Z., & Wu, C. (2019). A framework for data-driven informatization of the construction company. Advanced Engineering Informatics, 39, 269-277.