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ABSTRACT 

This study provides a comprehensive systematic review of federated learning as 

a framework for privacy-preserving healthcare data sharing and its potential to 

enable global artificial intelligence collaboration. In total, 124 peer-reviewed 

articles were examined following the Preferred Reporting Items for Systematic 

Reviews and Meta-Analyses (PRISMA) guidelines to ensure transparency, rigor, 

and reproducibility. The review highlights how federated learning has evolved 

from conceptual discussions to practical applications across multiple 

healthcare domains, including medical imaging, electronic health records, 

biosignals, and genomic analysis. Key findings indicate that federated 

architectures, particularly server–client models, have become the dominant 

deployment strategy, while peer-to-peer approaches are gaining attention for 

their resilience and decentralization. Privacy-preserving mechanisms—such as 

differential privacy, secure aggregation, and cryptographic computation—

emerged as central to ensuring compliance with regulatory and ethical 

standards, with adaptive strategies allowing for an effective balance between 

confidentiality and model utility. Evidence from multi-institutional collaborations 

shows that federated learning not only improves predictive performance but 

also enhances inclusivity, enabling smaller or resource-limited institutions to 

contribute meaningfully without relinquishing data ownership. At the same time, 

empirical studies identified adversarial risks such as gradient inversion, 

membership inference, and poisoning attacks, underscoring the necessity for 

layered safeguards and strong governance structures. Collectively, the findings 

demonstrate that federated learning is more than a technical innovation; it 

represents a socio-technical paradigm that integrates privacy, equity, and 

collaboration into the development of global healthcare AI. This review 

positions federated learning as a cornerstone for building secure, ethical, and 

scalable artificial intelligence systems that address the dual imperatives of 

advancing medical innovation while safeguarding patient confidentiality. 
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INTRODUCTION 

Federated learning is a distributed paradigm in which multiple institutions collaborate to train 

machine learning models without transferring raw data from one site to another (Ma et al., 2022). 

Instead of centralizing sensitive health records into a single repository, participating nodes keep data 

locally and only share model updates or parameters. This structure ensures that patient-level 

information remains under the custodianship of the originating institution while still contributing to the 

creation of a stronger (Zhang et al., 2021), generalized model. Privacy-preserving mechanisms such 

as noise injection, encryption, and secure aggregation further strengthen this process, ensuring that 

identifiable attributes do not escape institutional boundaries. In the healthcare domain, where 

regulatory, ethical, and social constraints on data mobility are intense, the value of such an 

approach becomes evident. Across the globe , healthcare providers, research centers, and 

pharmaceutical organizations recognize the immense potential of learning from diverse patient 

cohorts while simultaneously safeguarding individual privacy (Savazzi et al., 2020). This dual 

imperative—achieving collaborative learning without compromising confidentiality—forms the 

cornerstone of federated learning’s role in healthcare. Internationally, it addresses the challenge of 

heterogeneous legal systems, varying infrastructures, and diverse cultural attitudes toward data, 

offering a practical framework for global cooperation in artificial intelligence for medicine (Liu et al., 

2022). 

 

          Figure 1: Federated Learning Framework for Healthcare 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The technical structure of federated learning relies on iterative exchanges of model parameters 

between clients and a coordinating server or peer nodes (Beltrán et al., 2023). Clients compute 

updates using their local health data, then transmit those updates for aggregation into a global 

model. This process repeats until convergence, producing a model that reflects the statistical 

strength of all participants without exposing raw records (Wen et al., 2023). In healthcare 

applications, such a system must accommodate widely varying data types: imaging, laboratory 

tests, sensor streams, and textual clinical notes. Challenges arise when distributions differ substantially 

across institutions, such as different disease prevalence, equipment vendors, or coding practices. To 

manage this, federated learning algorithms incorporate strategies like personalized layers, adaptive 

optimization, and mechanisms that stabilize training under non-identical data distributions (Farahani 

& Monsefi, 2023). Alongside algorithmic refinement, privacy-preserving enhancements like 

differential privacy and cryptographic aggregation reduce the risk of inference attacks. These 

technical underpinnings are critical to building trust among institutions and regulators, ensuring that 

collaboration can scale beyond local networks into international consortia. The global dimension of 
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healthcare necessitates this type of flexible, privacy-respecting infrastructure to bring together 

knowledge scattered across continents (Li et al., 2021). 

The promise of federated learning in healthcare lies not only in technical design but also in its ability 

to mitigate privacy risks (Rahman et al., 2020). Even when raw data remains on site, updates and 

parameters can inadvertently leak information if not adequately protected. Attacks such as 

membership inference, model inversion, and gradient reconstruction have demonstrated how 

adversaries might recover sensitive details from shared parameters (Qayyum et al., 2022). In clinical 

contexts, where even partial leakage can expose patient identity or conditions, this risk cannot be 

overlooked. To counter such threats, federated learning integrates privacy budgets, auditing 

systems, and formal guarantees that bound the probability of revealing information about any 

individual record (Savazzi et al., 2021). Healthcare institutions that adopt federated learning do so 

not only for analytical efficiency but also to align with stringent privacy expectations from regulators, 

patients, and professional bodies. The system’s ability to demonstrate mathematically grounded 

protections builds confidence that shared models will not inadvertently compromise confidentiality. 

This tension between risk and safeguard illustrates the depth of innovation needed to operationalize 

privacy-preserving analytics in medicine at an international scale (Li et al., 2020). 

In practice, federated learning has demonstrated tangible benefits in collaborative medical 

research and clinical decision support (Zhang et al., 2022). Multi-institutional studies on medical 

imaging, for instance, show that models trained across hospitals achieve greater generalizability and 

robustness compared to those developed in isolation. By leveraging diverse datasets, these models 

become less biased toward specific demographics, equipment types, or regional practices. This 

capacity to integrate varied clinical contexts without exchanging raw patient records is a 

transformative development in medical AI (Nguyen, Ding, Pham, et al., 2021). Similarly, in areas such 

as intensive care monitoring, disease progression modeling, and outcome prediction, federated 

learning enhances predictive accuracy by pooling distributed knowledge. The international 

dimension is particularly critical: diseases manifest differently across populations (Alsamhi et al., 2024), 

and effective models require exposure to this global heterogeneity. Federated learning makes it 

possible to respect local privacy constraints while still accessing the collective power of international 

datasets. The healthcare sector increasingly views this model not only as a technical innovation but 

also as an ethical framework for collaborative research that honors both privacy and inclusivity (Tan 

et al., 2022). 

 

Figure 2: Federated Learning Secure Global Averaging 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Beyond imaging, federated learning extends its influence into other complex healthcare data 

domains such as electronic health records, biosignals, genomics, and digital phenotyping (Zhang et 

al., 2021). These data streams are highly sensitive and deeply personal, which makes centralized 
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pooling impractical or even legally impermissible. Federated learning enables institutions to harness 

the predictive value of longitudinal patient histories (Nguyen et al., 2022), physiological signals from 

wearables, and multi-omics data while keeping the raw forms securely within local systems. This has 

profound implications for chronic disease management, rare disease research, and real-time health 

monitoring. The capacity to learn from broad, distributed datasets means that conditions that are 

underrepresented in any single region can still be studied collaboratively (Rauniyar et al., 2023). This 

inclusivity strengthens models while ensuring that marginalized or geographically isolated 

populations are not excluded from the benefits of advanced analytics. It also emphasizes the 

universality of healthcare challenges and the need for cooperative technological solutions. By 

supporting cross-border analysis in ways that respect sovereignty and privacy, federated learning 

becomes a unifying approach that bridges gaps between fragmented health systems (Wahab et 

al., 2021). 

The international dimension of federated learning requires robust interoperability standards and 

governance frameworks (Shaheen et al., 2022). Healthcare systems vary widely in the data formats 

they employ, the regulations they enforce, and the infrastructures they maintain. Federated learning 

must therefore align with standards for clinical data representation, such as resource-oriented 

models and semantic harmonization techniques (Lu et al., 2022), to enable consistent model training 

across sites. Legal frameworks governing privacy and data protection introduce further complexity, 

requiring solutions that comply with regulations in multiple jurisdictions simultaneously. In this context, 

federated learning’s in-situ analytics are advantageous, as they minimize the cross-border transfer 

of identifiable information (Hanser, 2023). Organizational trust is strengthened when cryptographic 

safeguards, secure aggregation, and auditable processes are combined with governance 

structures that clarify accountability. Institutions participating in global federated networks must 

agree not only on technical protocols but also on ethical and legal principles that underpin data 

stewardship. This intersection of governance, regulation, and technology transforms federated 

learning from a purely computational strategy into a comprehensive framework for international 

health collaboration (Yin et al., 2020). 

Ultimately, the strength of federated learning in healthcare lies in its ability to transform institutional 

diversity into a collective advantage (Andreux et al., 2020). Global health data is inherently 

heterogeneous, reflecting differences in population genetics, clinical practices, diagnostic 

equipment, and cultural contexts. Federated learning treats this heterogeneity not as an obstacle 

but as a source of robustness, enabling models that generalize across boundaries (Zhu et al., 2021). 

Technical strategies such as adaptive optimization, personalization, and communication-efficient 

updates help manage disparities in participation and infrastructure. Privacy-preserving mechanisms 

ensure that the system remains aligned with ethical expectations and legal requirements. The result 

is a collaborative environment where institutions can pool their knowledge without surrendering their 

autonomy over data (Bashir et al., 2023). In this way, federated learning advances the goal of 

equitable healthcare innovation by ensuring that diverse voices and populations contribute to the 

design of AI systems. By embedding privacy-preserving principles into its foundation, it provides a 

path forward for healthcare systems around the world to engage in meaningful, secure, and large-

scale collaboration. 

LITERATURE REVIEW 

The rapid advancement of artificial intelligence in healthcare has created unprecedented 

opportunities for predictive analytics, diagnostic support, and treatment personalization (Bohr & 

Memarzadeh, 2020). Yet, these opportunities are tightly coupled with one of the most pressing 

challenges in modern medicine: the need to share health data without compromising patient 

privacy. Healthcare information is often fragmented across multiple institutions, countries, and 

regulatory environments, making centralized aggregation both technically difficult and legally 

constrained. Federated learning has emerged as a transformative approach that enables 

collaborative model training across distributed data sources without requiring raw data exchange 

(Goel et al., 2025). By ensuring that only model parameters or updates are shared, federated 

learning preserves institutional data sovereignty while allowing the construction of high-performance 

models that reflect knowledge from diverse populations.A review of the existing scholarship in this 

domain reveals multiple layers of inquiry. At the foundational level, researchers have defined the 

architectures, algorithms, and privacy-preserving mechanisms that underpin federated learning. 

Parallel strands of research have explored how such frameworks can be applied to imaging, 
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electronic health records, biosignals, genomics, and other critical healthcare modalities. An 

additional body of work interrogates the vulnerabilities of federated systems, including inference 

attacks (Noorbakhsh-Sabet et al., 2019), reconstruction threats, and communication bottlenecks, 

and presents cryptographic and differential privacy-based safeguards to mitigate risks. Beyond the 

technical focus, scholars also emphasize governance, interoperability, and regulatory compliance 

as essential to global collaboration. Studies consistently point to the value of aligning federated 

learning not only with technical goals of efficiency and scalability but also with broader ethical 

imperatives of equity, inclusivity, and transparency.This literature review therefore examines the 

trajectory of research in federated learning for healthcare data sharing, highlighting the interplay 

between algorithmic innovation, privacy-preservation, and international collaboration. The review is 

structured to move from theoretical definitions to technical mechanisms, then to domain-specific 

applications, before addressing challenges (da Silva, 2024), safeguards, and governance 

frameworks. Through this layered exploration, the review builds a comprehensive understanding of 

how federated learning is positioned as a critical enabler of secure, cross-border, and large-scale 

artificial intelligence in healthcare. 

Foundations of Federated Learning in Healthcare 

The conceptual foundations of federated learning emerged as a response to the limitations of 

traditional centralized machine learning models, which rely on aggregating raw data from multiple 

sources into a single repository for training (Piccialli et al., 2021). While centralized approaches allow 

for large-scale pattern recognition and predictive accuracy, they introduce critical risks in domains 

where sensitive information is involved, particularly in healthcare. Scholars initially highlighted how 

centralization increases vulnerability to data breaches, regulatory violations, and ethical concerns 

surrounding patient autonomy (Jabarulla & Lee, 2021). In contrast, federated learning 

conceptualizes model development as a distributed process, where local nodes perform 

computations independently and contribute only model updates or gradients to a global 

aggregator. This distinction is crucial, as it shifts the locus of control away from a central server that 

could become a single point of failure and instead fosters a collaborative model of learning without 

data pooling (Athanasopoulou et al., 2022). Studies consistently emphasize that federated learning 

not only mitigates the privacy risks associated with centralization but also enhances scalability by 

leveraging computational resources distributed across multiple sites. The conceptual departure from 

centralized learning has positioned federated systems as both a technological innovation and a 

paradigm shift in how sensitive data, such as healthcare records, can be harnessed for collective 

intelligence. In this sense, federated learning is not merely a technical variant of distributed 

computing but a privacy-first philosophy that redefines the balance between data accessibility and 

security in clinical contexts (Bianchini et al., 2022; Ara et al., 2022). 

At the heart of federated learning lies the principle of data locality, which mandates that raw data 

remain within the secure infrastructure of its originating institution (Jahid, 2022; Olawade et al., 2024). 

This principle directly addresses the legal and ethical challenges of transferring medical records 

across jurisdictions, particularly in environments governed by strict regulatory frameworks. The 

operationalization of this principle depends on distributed optimization techniques that aggregate 

updates from multiple clients into a unified model. The federated averaging algorithm exemplifies 

this approach, combining local updates in a way that approximates centralized training while 

preserving data autonomy (Uddin et al., 2022; Poongodi et al., 2021). However, healthcare data is 

rarely homogeneous, and the non-identical distribution of patient populations, diagnostic 

equipment, and institutional practices complicates optimization. To address these challenges, 

federated learning employs algorithmic strategies such as proximal regularization, adaptive learning 

rates, and variance reduction, which stabilize model performance under highly heterogeneous 

conditions. The principle of distributed optimization ensures that every institution contributes 

proportionally to the collective model while maintaining independence over its sensitive data 

(Branda & Scarpa, 2024; Akter & Ahad, 2022). This design reduces reliance on data transfer protocols 

that are vulnerable to interception or misuse, instead aligning computational processes with privacy-

preserving ethics. Scholars note that data locality and distributed optimization together embody the 

defining philosophy of federated learning, where computational collaboration occurs without 

compromising the autonomy and confidentiality of medical data custodians (Kitsios et al., 2023; 

Arifur & Noor, 2022). 
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Figure 3: Federated Learning in Healthcare Systems 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Healthcare ecosystems are characterized by data fragmentation, heterogeneity, and regulatory 

constraints that make centralized data aggregation impractical (Helm et al., 2020; Rahaman, 2022). 

Patient information is stored across hospitals, laboratories, imaging centers, and regional health 

networks, often using incompatible standards and formats. Federated learning directly addresses 

these challenges by enabling cross-institutional collaboration without requiring homogenization or 

centralization of records. Its relevance lies in its ability to harness statistical strength from diverse 

sources, thereby producing models that generalize better across populations and clinical contexts 

(Li et al., 2021; Hasan et al., 2022). Studies in medical imaging, electronic health records, and 

biosignal analysis illustrate that federated learning enables broader coverage of demographic and 

pathological variations while maintaining compliance with privacy laws. For example, training across 

international institutions allows for models that capture disease manifestations in varied populations, 

thereby improving diagnostic equity and accuracy (Li et al., 2021; Mubashir & Abdul, 2022). 

Moreover, federated learning reduces the administrative burden associated with negotiating 

complex data-sharing agreements, since raw patient records never leave their source. Within the 

broader health data ecosystem, this approach harmonizes the dual imperatives of collaboration 

and protection. Its ability to operate effectively across heterogeneous infrastructures and regulatory 

regimes underscores its transformative relevance, positioning it as a cornerstone of international 

health informatics and AI-driven clinical research (Arora et al., 2021; Reduanul & Shoeb, 2022). 

Privacy-preservation is not merely a technical feature of federated learning but its central guiding 

philosophy (Lu et al., 2023). In healthcare, the confidentiality of patient data is paramount, and the 

consequences of breaches extend beyond regulatory penalties to issues of trust, equity, and patient 

safety. Federated learning operationalizes privacy through a layered approach that combines 

technical safeguards with organizational and ethical principles (Bragazzi et al., 2020; Sazzad & Islam, 

2022). Differential privacy, secure aggregation, and cryptographic protocols ensure that even the 

shared model updates are resistant to adversarial attacks seeking to reconstruct sensitive 

information. At the same time, institutions participating in federated networks retain sovereignty over 

their datasets, aligning participation with ethical principles of data stewardship. This philosophy 

distinguishes federated learning from other distributed computing frameworks by making privacy the 

non-negotiable foundation of design rather than an ancillary consideration (Chalasani et al., 2023; 

Noor & Momena, 2022). Scholars repeatedly highlight that the effectiveness of federated learning in 

healthcare rests not only on its predictive accuracy but also on its ability to maintain public trust and 

regulatory compliance. In practice, this guiding philosophy creates a framework where institutions 

collaborate with confidence, knowing that their contributions are protected by rigorous safeguards. 

Privacy-preservation therefore emerges as both the moral compass and the structural backbone of 

federated learning in healthcare, ensuring that technological advancement proceeds hand in 

hand with ethical responsibility (Adar & Md, 2023; Xu et al., 2019). 
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Architectures and Algorithms for Distributed Model Training 

Federated learning architectures are primarily defined by the manner in which communication and 

coordination occur among participants (Wahab et al., 2021). The most common orchestration 

framework is the server-client model, in which a central coordinating server aggregates updates 

from multiple distributed clients and disseminates a global model. This architecture has been favored 

in healthcare applications due to its relative simplicity, scalability, and straightforward monitoring of 

model convergence. However (Qibria & Hossen, 2023; Qin et al., 2021), the server-client framework 

also introduces a potential bottleneck, as the server becomes a critical point of trust and a possible 

vector of attack. To counter this, some scholars and practitioners have explored peer-to-peer 

frameworks, where participating nodes coordinate directly with each other without reliance on a 

single central aggregator. Peer-to-peer orchestration fosters resilience against single-point failures 

(Istiaque et al., 2023; Zhang et al., 2021), distributes control more equitably, and aligns with ethical 

imperatives of decentralization in healthcare data governance. Yet, it introduces challenges in 

synchronizing updates, maintaining consistency, and preventing collusion or malicious manipulation 

by adversarial nodes. Both approaches illustrate trade-offs: server-client systems offer simplicity and 

control but raise questions about central authority, while peer-to-peer models encourage 

democratized collaboration but require sophisticated consensus mechanisms. Within healthcare, 

where institutions vary widely in technical capability, legal obligations, and trust levels, these 

orchestration frameworks must be evaluated not just for technical efficiency but also for alignment 

with regulatory and ethical expectations (Mansura Akter, 2023; Zhang et al., 2021). The ongoing 

evolution of architectures reflects an attempt to balance coordination, resilience, and inclusivity in 

global health data collaborations. 

 

Figure 4: Federated Learning Orchestration in Healthcare 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

At the algorithmic core of most federated learning systems is the Federated Averaging (FedAvg) 

algorithm (Beltrán et al., 2023; Hasan et al., 2023). FedAvg enables clients to perform multiple local 

gradient updates before transmitting model parameters to the central aggregator, which then 

computes a weighted average to update the global model. This innovation reduces communication 

costs, enhances scalability, and ensures that models converge more efficiently even in the presence 

of limited bandwidth. In healthcare (Masud et al., 2023; Nguyen, Ding, Pathirana, et al., 2021), where 

connectivity may be inconsistent across hospitals or countries, FedAvg provides a practical 

foundation for collaborative learning. However, FedAvg is not without limitations. It can struggle in 

contexts where data across sites is highly non-identical, leading to slower convergence and potential 

biases in the global model. To address these limitations, a series of variants have emerged. For 

example, algorithms that adjust learning rates adaptively (Khan et al., 2021; Sultan et al., 2023), 
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algorithms that incorporate proximal terms to stabilize training, and algorithms that use variance 

reduction techniques all seek to mitigate the challenges inherent in heterogeneous environments. In 

practice, these adaptations enable federated systems to maintain high levels of accuracy across 

clinical datasets that differ substantially in scale, quality, and distribution. As a result, FedAvg and its 

derivatives remain the cornerstone of federated healthcare research, providing the mathematical 

backbone for distributed optimization while inspiring continual refinements to address the 

complexities of medical data (Hossen et al., 2023; Zhu et al., 2021). 

One of the most persistent challenges in federated learning is the issue of non-identical, 

independently distributed (non-IID) data across participating institutions (Aledhari et al., 2020). In 

healthcare, this challenge is particularly acute because patient demographics, disease prevalence, 

diagnostic practices, and instrumentation vary widely across regions and organizations. Such 

heterogeneity often leads to client drift, where local updates diverge significantly from the global 

objective, resulting in unstable or biased models. To mitigate these issues, researchers have proposed 

a variety of strategies (Tawfiqul, 2023; Paragliola & Coronato, 2022). Some approaches incorporate 

proximal terms into optimization to constrain local updates and maintain alignment with the global 

model. Others use data augmentation techniques to simulate more balanced distributions or 

reweight client contributions based on dataset size and variability. Clustering-based methods also 

group clients with similar data distributions, training specialized sub-models that can then be merged 

into a more robust global model. Additionally (Shamima et al., 2023; Sattler et al., 2019), variance 

reduction techniques and adaptive aggregation rules help minimize the distortions caused by 

extreme heterogeneity. In clinical contexts, where fairness and generalization are critical, these 

methods ensure that federated models do not disproportionately reflect the characteristics of 

dominant or data-rich institutions. Handling non-IID data is therefore not simply a technical 

optimization problem but a central concern for ensuring that federated learning systems in 

healthcare produce models that are equitable, reliable, and representative of global patient 

populations (Li et al., 2020; Ashraf & Ara, 2023). 

While federated learning aspires to create global models that serve diverse populations, the reality 

of healthcare practice often demands institution-specific adaptation (Sanjai et al., 2023; Yang et al., 

2022). Hospitals, clinics, and research centers may face unique patient populations, disease patterns, 

or technological environments that require models tuned to their local contexts. Personalization 

strategies have emerged as a critical response to this need. One approach is fine-tuning, in which 

institutions use the shared global model as a starting point and then adjust parameters on local data 

to achieve better alignment with their own population (Liu et al., 2022; Akter et al., 2023). Another 

strategy involves multi-task learning, where the federated process jointly optimizes global parameters 

and site-specific objectives, allowing each institution to benefit from shared knowledge while 

retaining local specialization. Layer-wise personalization is also common, with shared representations 

learned globally while higher-level layers are customized locally. These strategies ensure that 

federated learning is not merely about producing a single universal model but about enabling 

flexible adaptation across heterogeneous environments (Razzak et al., 2024; Gafni et al., 2022). In 

healthcare, this is especially important for equity: institutions with rare disease populations, resource-

limited infrastructures, or culturally specific health challenges can still derive meaningful utility from 

federated participation. Personalization therefore bridges the gap between collective intelligence 

and local relevance, ensuring that federated learning supports not just the global advancement of 

healthcare AI but also the nuanced realities of diverse clinical ecosystems (Chen et al., 2021). 

Privacy-Preserving Mechanisms in Federated Healthcare 

Differential privacy has emerged as one of the most important tools for ensuring confidentiality in 

federated healthcare environments (Ziyao Liu et al., 2022). It provides a formal mathematical 

framework that guarantees that the contribution of any single individual within a dataset cannot be 

distinguished with high probability, even if adversaries have access to external information. In 

practice, this is achieved by injecting carefully calibrated noise into model gradients, updates, or 

outputs during the federated training process (Eltaras et al., 2023; Istiaque et al., 2024). The challenge 

in healthcare contexts lies in striking a balance between the strength of the privacy guarantee and 

the preservation of clinical utility. Excessive noise can obscure subtle but clinically relevant patterns, 

particularly in rare disease datasets or small institutional cohorts. To address this, researchers have 

proposed adaptive noise calibration, where the magnitude of perturbation varies according to 

factors such as dataset size, sensitivity of features, or phase of training (Chen et al., 2025). In some 
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approaches, privacy budgets are explicitly tracked, ensuring that cumulative exposure remains 

bounded across multiple training rounds. Healthcare-specific adaptations of differential privacy 

recognize that different modalities—such as medical images, genomic sequences, and structured 

clinical records—present unique risks of re-identification and thus require tailored calibration 

strategies. As a result, differential privacy has become a foundational layer of federated healthcare 

learning, embedding rigorous protections into the very fabric of model updates while 

acknowledging the domain-specific trade-offs between data protection and model performance 

(Awan et al., 2023; Akter & Shaiful, 2024). 

 

Figure 5: Secure Aggregation in Federated Learning 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Secure aggregation protocols serve as another critical pillar of privacy-preserving federated learning 

in healthcare (Manzoor et al., 2024). These protocols ensure that a central server, or any adversary 

observing communication, can only access the aggregated sum of client updates rather than 

individual contributions. In practice, this means that even if one client’s update were intercepted, it 

would be computationally infeasible to isolate its contents without access to the full aggregation 

process (Hasan et al., 2024; Wang et al., 2024). This mechanism is especially valuable in clinical 

networks where institutions may be hesitant to expose even model parameters derived from sensitive 

patient data. By protecting updates during transmission, secure aggregation builds trust among 

participants and reduces the attack surface for adversaries. Protocols typically employ random 

masking, secret sharing, or distributed key generation to achieve privacy guarantees, ensuring that 

no single party—including the central coordinator—can reconstruct the original updates (Aljrees et 

al., 2023). The healthcare context adds unique dimensions to the use of secure aggregation, since 

participating institutions often differ in computational resources and network reliability. Lightweight 

implementations are necessary for hospitals with limited infrastructure, while robust error-handling 

ensures that partial failures do not compromise the aggregation process. The presence of secure 

aggregation thus transforms federated learning into a truly collaborative framework, assuring 

stakeholders that their contributions cannot be individually scrutinized and thereby lowering barriers 

to international cooperation (Abaoud et al., 2023). 

Cryptographic techniques such as homomorphic encryption and secure multiparty computation 

provide advanced methods for protecting sensitive information in federated healthcare 

environments (Tawfiqul et al., 2024; Tariq et al., 2024). Homomorphic encryption allows computations 

to be performed directly on encrypted data, meaning that a server can aggregate model updates 

without ever accessing their plaintext form. This property ensures strong confidentiality but introduces 
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computational overhead that can become a barrier in resource-constrained clinical settings (Ma et 

al., 2020; Subrato & Md, 2024). Multiparty computation, by contrast, distributes computations across 

several parties such that no single participant can access the full information, yet the collective 

process yields correct outputs. Together, these cryptographic techniques strengthen the security of 

federated systems against both external adversaries and semi-honest participants. Their relevance 

in healthcare lies in their ability to uphold privacy even in environments where institutions do not fully 

trust one another but still seek the benefits of shared model development (Ashiqur et al., 2025; 

Moshawrab et al., 2023). Advances in optimization, compression, and lightweight cryptographic 

primitives have made these tools more practical for large-scale deployments, though efficiency 

remains a persistent concern. Importantly, these methods are not mutually exclusive but can be 

layered with differential privacy and secure aggregation to create multi-tiered defenses. In sensitive 

healthcare applications (Hasan, 2025; Rahmati & Pagano, 2025), where breaches carry severe 

consequences for patients and institutions alike, cryptographic methods serve as essential 

safeguards that complement and reinforce other privacy-preserving strategies. 

Federated Learning in Medical Imaging Applications 

Radiology has been one of the most fertile domains for demonstrating the power of federated 

learning because of its data-intensive nature and its reliance on highly sensitive patient imaging 

records (Sultan et al., 2025; Sandhu et al., 2023). Traditional centralized learning approaches in 

radiology often encounter major barriers related to the transfer of raw images across institutions, 

which is restricted by privacy regulations and logistical challenges. Federated learning addresses this 

limitation by enabling cross-institutional collaboration where hospitals and imaging centers can train 

models collectively without exchanging raw image data (Lakhan et al., 2023). This framework allows 

institutions of varying sizes and resources to contribute to a shared model, pooling their collective 

knowledge to achieve better diagnostic accuracy and robustness. In practice, federated 

approaches have been applied to tasks such as lung disease detection, neuroimaging analysis, and 

cardiovascular risk assessment, with institutions reporting significant performance gains compared to 

models trained on single-center data (Sanjai et al., 2025; Yang et al., 2023). Cross-institutional 

collaboration in radiology also enhances inclusivity, as smaller hospitals with limited datasets benefit 

from participating in models trained on larger, more diverse imaging cohorts. By respecting privacy 

boundaries while enabling broad cooperation, federated learning has become a transformative 

mechanism for radiology research networks, creating opportunities to generate clinically useful 

models that reflect a wide range of patient populations and imaging modalities (Khan et al., 2025). 

One of the most impactful applications of federated learning in medical imaging lies in the domain 

of tumor segmentation, lesion detection, and disease classification (Huang et al., 2022). 

Segmentation of tumors in modalities such as MRI or CT scans requires access to large, annotated 

datasets that capture the variability of tumor shapes, sizes, and imaging conditions across patients. 

Federated learning enables multiple institutions to collaborate on these tasks without pooling raw 

data, significantly increasing the statistical power available for model training (Khalil et al., 2023). In 

tumor segmentation, federated models have been shown to rival or surpass the accuracy of 

centralized models by leveraging diverse data from multiple hospitals. Similarly, lesion detection 

tasks, including identifying pulmonary nodules or brain lesions, benefit from federated strategies that 

expose the global model to variations in imaging protocols and patient populations (Holzinger et al., 

2023). Disease classification, such as predicting malignancy in oncology or diagnosing chronic 

respiratory conditions, also demonstrates improved generalizability when trained on federated 

datasets. These tasks are crucial for clinical decision support, where precise detection and 

classification directly influence treatment planning and patient outcomes. By uniting scattered 

imaging data into a cohesive, privacy-preserving framework, federated learning not only expands 

diagnostic capabilities but also accelerates progress in personalized medicine, enabling clinicians 

to make better-informed decisions while respecting confidentiality requirements (Holzinger et al., 

2023). 

Electronic Health Records (EHRs) 

Electronic health records encode rich longitudinal information that is central to clinical prediction 

problems such as hospital readmission, in-hospital mortality, length-of-stay, deterioration, and 

comorbidity indexing (Zhang et al., 2018). Federated learning reframes these tasks by allowing 

institutions to contribute to shared models without disclosing raw records, thereby preserving data 

stewardship while enlarging the effective training cohort. In practice, sites train local classifiers or 
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survival models on structured fields (diagnoses, procedures, medications, laboratory values, vitals, 

utilization history) and transmit parameter updates for aggregation (Yang et al., 2022). This 

collaborative setup supports common objectives—binary readmission within 30 days, risk of sepsis 

onset, cardiovascular events, adverse drug reactions, or composite morbidity scores—while 

respecting institutional constraints around patient confidentiality. Methodologically, model families 

span penalized generalized linear models for interpretability, gradient-boosted decision trees for 

tabular heterogeneity, and deep architectures that can blend structured and free-text notes. 

Central concerns include outcome definition harmonization, label latency, and class imbalance, 

which are addressed with site-specific reweighting, threshold calibration, and focal losses 

communicated through aggregation rather than raw counts (Duan et al., 2019). Calibration is 

treated as a first-class metric alongside discrimination; participating hospitals frequently apply post-

aggregation recalibration to align risk estimates with local prevalence while maintaining shared 

feature representations. Feature engineering emphasizes robust abstractions that transfer across 

coding systems—grouped diagnosis clusters, medication classes, and normalized laboratory 

indices—to reduce brittleness. Governance overlays ensure that covariates with high re-

identification risk are transformed or excluded locally. Across these tasks, federated training reliably 

outperforms single-site baselines by capturing broader epidemiologic variability, and approaches 

parity with centralized learning when non-identical distributions are handled through appropriate 

optimization and weighting (Xiang et al., 2019). The result is a privacy-preserving pathway for 

developing clinically useful predictors of readmission, risk, and comorbidity that are responsive to 

local practice patterns yet grounded in multi-institution evidence. 

 

Figure 6: Electronic Health Records Data Integration 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

EHR data are inherently temporal, irregular, and multi-scale: encounters arrive sporadically, 

laboratory panels cluster around episodes of care, and vital signs stream at high frequency during 

admissions (Goudarzvand et al., 2019). Federated learning systems must therefore accommodate 

sequences with missingness patterns that are informative rather than random. Time-aware 
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architectures represent intervals explicitly through decay mechanisms, elapsed-time embeddings, 

or continuous-time formulations so that gaps and bursts contribute signal rather than noise. For 

structured streams, models synthesize event tokens (diagnoses, orders, administrations) with 

timestamps and values, while textual notes provide narrative context through local embeddings that 

remain on site (Wang et al., 2022). To stabilize cross-site training, institutions align units, reference 

ranges, and code vocabularies into coarse-grained concepts; remaining discrepancies are 

absorbed by representation layers trained collaboratively. Irregular sampling is addressed through 

interpolation networks, attention over event sets, or segment-level summarization that produces 

compact visit embeddings. Sequence length variation is mitigated through hierarchical encoders 

that compress lifetime history into visit- and problem-level summaries before aggregation. 

Communication constraints motivate local accumulation of gradients over multiple mini-batches or 

curriculum schedules that emphasize high-impact windows (admission, peri-operative, discharge) to 

conserve bandwidth (Poongodi et al., 2020). Missingness indicators are modeled explicitly, allowing 

the network to learn patterns of ordering behavior and care pathways that correlate with outcomes. 

Self-supervised objectives—masked event prediction, contrastive visit representation, next-k-event 

forecasting—are trained federatively to pretrain encoders before supervised fine-tuning, improving 

data efficiency at smaller sites. Throughout, privacy is preserved by confining tokenized sequences 

and raw timestamps to local infrastructure; only model updates flow outward, optionally with 

clipping and noise to bound information leakage. This combination of time-sensitive modeling and 

privacy-aware coordination enables robust sequence learning despite the irregularity and 

heterogeneity that characterize real-world EHRs (Harerimana et al., 2019). 

Because hospitals serve distinct populations and follow different clinical workflows, a single global 

model may not capture site-specific nuances in documentation, ordering habits, or resource 

availability (Ma et al., 2023). Personalization in federated EHR modeling addresses this by separating 

shared representations from adaptable components that reflect local context. Common designs 

freeze a global backbone trained across all sites—capturing universal clinical semantics—and 

attach lightweight, site-specific heads that calibrate predictions to local prevalence and practice. 

Layer-wise personalization fine-tunes only a subset of parameters (for example, adapters or low-rank 

factors) to achieve rapid adaptation with minimal privacy risk and communication cost (Rao et al., 

2022). Multi-task formulations treat each institution as a related task, jointly optimizing a shared 

encoder while allowing task-dependent decoders to learn localized decision boundaries. Clustered 

personalization groups similar hospitals based on update statistics or proxy covariates, yielding 

regional sub-models that balance diversity with statistical efficiency. When label spaces diverge, 

mapping layers reconcile local codes to shared concepts while preserving downstream gradients 

for local labels that lack global analogs (Zhang et al., 2020). Post-hoc recalibration methods—such 

as isotonic or temperature scaling—align risk outputs with site-level outcome frequencies without 

perturbing shared features. Personalization also advances equity: institutions with rare disease 

caseloads or limited resources adapt the global prior to scarce local evidence, improving utility 

without compromising privacy. From an optimization perspective, constraints or proximal penalties 

prevent over-fitting during local adaptation, and periodic re-anchoring to the shared backbone 

mitigates drift. Collectively, these strategies convert federation from a one-size-fits-all paradigm into 

a spectrum where institutions inherit a strong common model yet retain the flexibility to express their 

unique clinical signatures (Meduri et al., 2025). 

Comparisons between federated and centralized training in EHR contexts hinge on three axes: 

predictive performance, calibration and fairness, and operational feasibility (Meduri et al., 2025). 

When data distributions across sites are moderately aligned and non-identical effects are handled 

through weighted aggregation or proximal optimization, federated models typically achieve 

discrimination metrics close to centralized counterparts while substantially outperforming single-site 

models. In highly heterogeneous settings, centralized pooling can enjoy a small advantage in 

discrimination, but this gap narrows with personalization layers, client clustering, and robust 

aggregation (Gupta et al., 2020). Calibration often favors localized post-processing: federated 

models supply well-structured features, and sites apply lightweight recalibration to achieve reliable 

absolute risk estimates. Fairness assessments examine subgroup performance by age, sex, race, 

language, or insurance status; federation broadens exposure to diverse cohorts and reduces over-

fitting to dominant populations, though auditing remains essential to detect site-specific disparities. 

Operationally, centralized pipelines face legal agreements, de-identification costs, and data 
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transfer risks that grow super-linearly with partners, whereas federated pipelines exchange only 

updates and thus reduce governance friction (Siebra et al., 2024). Communication and 

cryptographic overheads are real but predictable, and can be amortized through periodic 

averaging, update compression, and client sampling. Privacy-enhancing measures impose 

accuracy trade-offs; nonetheless, for many readmission and risk tasks, carefully calibrated noise and 

secure aggregation retain clinically acceptable performance. Importantly, external validation 

across non-participating hospitals tends to favor models trained with federated diversity, reflecting 

resilience to covariate shift. Taking these dimensions together (Ziyi Liu et al., 2022), federation offers 

a pragmatic equilibrium: performance approaching centralized training, markedly better than 

single-site baselines, with superior privacy alignment and cross-system scalability—attributes that are 

particularly salient when collaborating institutions span jurisdictions and infrastructures 

Biosignals and Wearable Data 

Federated learning has gained particular traction in biosignal domains where continuous 

cardiopulmonary and neurological monitoring generates high-volume, privacy-sensitive data 

(Gahlan & Sethia, 2025). Cardiovascular use cases include arrhythmia detection from single-lead 

and multi-lead electrocardiography, photoplethysmography-based estimation of heart rate 

variability, atrial fibrillation screening, heart failure decompensation risk stratification, and 

cardiorespiratory fitness assessment using wearable signals and contextual activity features. 

Respiratory applications leverage plethysmography waveforms (Jiang et al., 2025), acoustic sensors, 

and accelerometry to characterize breathing rate, variability, cough burden, and nocturnal 

desaturation profiles relevant to chronic obstructive pulmonary disease and sleep-disordered 

breathing. In neurology, wearable and near-wearable systems capture electroencephalography for 

seizure detection, inertial signals for tremor quantification in movement disorders, and multimodal 

streams for gait, balance, and freezing episodes. These tasks benefit from diverse signal 

morphologies arising from differences in anatomy, comorbidities, device placement, and lifestyle—

diversity that typically resides across many institutions and vendors. Federated learning aligns with 

this distribution by training shared models on locally held waveforms and derived features (Li et al., 

2024), so that rare patterns—paroxysmal events, subtle prodromal changes, or medication side 

effects—contribute to model capacity without exposing raw telemetry. Methodologically, pipelines 

combine waveform preprocessing (filtering, beat detection, artifact suppression), hand-crafted 

temporal features (time–frequency descriptors, morphological indices), and representation learning 

via convolutional or transformer encoders that operate on fixed windows or event segments. 

Sequence-aware objectives accommodate sparsely labeled events by pairing weak labels (e.g., 

device-flagged episodes) with adjudicated subsets, while class imbalance is addressed through 

focal or cost-sensitive losses applied locally and harmonized during aggregation. Evaluation 

emphasizes patient-level sensitivity and false alarm burden, calibration across device cohorts, and 

robustness to motion artifacts and skin-contact variability (Alzakari et al., 2024). By situating learning 

at the source, federated approaches reduce the need to centralize raw biosignals—often the most 

identifying layer of personal physiology—yet still capture cross-population regularities essential for 

clinically reliable cardiopulmonary and neurological monitoring. 

Mobile phones, smartwatches, adhesive patches, and home IoT devices create a naturally 

federated landscape where computation, storage, and sensing co-locate with the individual (Jin et 

al., 2025). Distributed learning in this setting must reconcile intermittent connectivity, constrained 

compute, battery limits, and heterogeneous hardware while coordinating thousands to millions of 

clients. Orchestration commonly relies on event-driven rounds scheduled during charging, Wi-Fi 

availability, or low-usage windows, with partial participation to accommodate churn. 

Communication efficiency is a first-order design goal: model update size is reduced via sparsification 

(Zeleke & Bochicchio, 2024), quantization, sketching, and low-rank adapters, often combined with 

periodic averaging to amortize uplinks. Asynchronous or semi-synchronous schemes prevent 

stragglers from stalling progress, while hierarchical federation aggregates at local gateways (e.g., a 

home hub or clinic server) before contributing to a regional or global coordinator, reducing long-

haul traffic and enforcing data locality tiers. On-device learning emphasizes privacy by keeping raw 

streams—accelerometry, gyroscope, PPG, ECG, ambient audio features—on the device; only 

clipped and possibly noised gradients leave the perimeter. To counter non-stationarity in daily life, 

client drift controls and replay buffers stabilize optimization when behavior, medication, or 

environment shift abruptly (Elbachir et al., 2024). Self-supervised pretraining on-device (masked 
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waveform reconstruction, contrastive segments, predictive coding) extracts structure from 

unlabeled windows, enabling downstream fine-tuning for tasks such as fall detection, apnea events, 

or arrhythmia classification with relatively few clinician-verified labels. Sensor fusion strategies align 

asynchronous modalities through learned time warping, attention over event sets, and late-fusion 

heads that tolerate missing channels. Reliability layers include out-of-distribution detectors and 

confidence-aware heads to throttle alerts when signal quality degrades. Throughout, telemetry 

governance is encoded in client policies that bound training frequency, cap uplink volume, and 

enforce retention limits for intermediate features (Zhang et al., 2024). The result is a distributed 

learning substrate that respects the operational realities of mobile and IoT sensors while enabling 

statistically powerful, privacy-preserving model improvement across broad user bases. 

 

Figure 7: Federated Learning Framework for Privacy-Preserving Biosignal Monitoring 

 
 

Streaming biosignals from personal devices raise distinct privacy challenges that extend beyond 

traditional health records (Supriya et al., 2023). Continuous telemetry can reveal routines, locations, 

social interactions, sleep–wake cycles, and sensitive health states; even when identifiers are 

removed, linkage attacks across time, devices, or auxiliary datasets can re-associate signals with 

individuals. In federated pipelines, the primary exposure shifts from raw data to update streams, 

which remain vulnerable to inference risks such as membership and property inference or gradient-

based reconstruction if safeguards are weak. Timing channels may leak engagement patterns, while 

per-round participation itself can become a quasi-identifier for rare conditions (Umair et al., 2023). 

Robust privacy engineering therefore layers multiple controls: transport-level encryption to protect 

updates in flight; secure aggregation so that only masked sums are visible to coordinators; clipping 

to bound the sensitivity of any single client’s contribution; and calibrated noise addition that enforces 

user-level privacy budgets over many rounds. Because streaming contexts can involve frequent 

participation, longitudinal privacy accounting must prevent cumulative exposure from eroding 

guarantees, with opt-out and consent refresh mechanisms that respect dynamic preferences. 

Device co-use in households, shared phones, or caregiver-patient pairings introduces additional 

ambiguity about data provenance and authorization, motivating on-device access controls and 

audit logs that are human-readable (Umair et al., 2023). Side-channel protections address sensor 

fingerprints and model-update metadata that could reveal device type or condition category. 

Policy constraints limit retention of intermediate features, prohibit raw audio or high-fidelity waveform 

export, and require on-device redaction of background speech or personally revealing artifacts 
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extracted from ambient sensors. Finally, privacy must be balanced with safety: designs incorporate 

local anomaly detection and clinician-visible summaries without exposing granular traces beyond 

the individual’s control. In aggregate, these measures acknowledge that personal biosignals are 

among the most identifying forms of data and that privacy assurance in streaming contexts depends 

on careful protocol design as much as on formal guarantees (Whig et al., 2025). 

Federated Approaches in Genomics and Multi-Omics Data 

Genomics and other omics disciplines generate data of extreme dimensionality, often containing 

millions of features per sample (Perakakis et al., 2018). Whole genome sequences, transcriptomic 

profiles, proteomic quantifications, and metabolomic signatures present an analytical space where 

the number of variables far exceeds the number of individuals. This imbalance creates unique 

computational and statistical challenges for federated learning. Traditional machine learning 

algorithms can overfit quickly when faced with high-dimensional omics data, producing models that 

fail to generalize across institutions or populations (Kaur et al., 2021). Within a federated framework, 

the problem is compounded by non-identical data distributions across laboratories, differences in 

sequencing platforms, and variability in pre-processing pipelines. Dimensionality reduction strategies, 

such as feature selection, autoencoders, and embedding methods (Tsimenidis et al., 2022), are often 

integrated into federated workflows to address these concerns. These methods allow participating 

institutions to exchange compressed representations rather than raw, high-dimensional vectors, 

which reduces communication overhead while maintaining informative content. Additionally, 

federated optimization algorithms must manage the instability that arises from sparse but large-scale 

features, ensuring that local updates do not diverge dramatically from the global objective. The 

challenge of high-dimensionality in omics datasets highlights the need for architectures capable of 

balancing efficiency, stability, and accuracy while preserving the privacy of participants. As 

federated learning matures (Mirza et al., 2019), its capacity to manage this scale of complexity 

positions it as a uniquely powerful tool for genomics research where traditional centralized data 

sharing remains impractical. 

 

Figure 8: Federated Learning in Genomic Integration 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Collaboration across research laboratories and clinical centers is essential in genomics, as no single 

institution can capture the diversity and scale of data needed for robust biological discovery (Ng et 

al., 2023). Yet, sharing raw genomic sequences presents profound privacy concerns, given that DNA 

is inherently identifiable and immutable. Federated learning provides a mechanism for laboratories 
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to collaborate on model training without disclosing raw sequences, thus preserving participant 

confidentiality. Under this paradigm (Dhondalay et al., 2018), each laboratory processes its genomic 

data locally, extracting features such as single nucleotide variants, expression levels, or methylation 

patterns, and contributes only model updates to a central aggregator or peer-to-peer system. This 

structure allows institutions to retain control over raw data while benefiting from the statistical power 

of multi-center collaboration. Importantly (Wang, 2018), federated systems also facilitate 

standardization across laboratories by encouraging consistent model architectures and training 

objectives, even when local preprocessing pipelines differ. Cross-laboratory federated collaboration 

thus enhances reproducibility and accelerates discovery by pooling knowledge while circumventing 

the ethical and legal barriers associated with genomic data exchange. In practice, this means that 

large-scale studies of polygenic risk, molecular subtyping, or biomarker discovery can be conducted 

at a global level, with diverse laboratories contributing to the same federated initiative (El-

Manzalawy et al., 2018). The result is a collaborative ecosystem where valuable insights are 

generated collectively, yet raw genomic sequences remain securely within the originating institution. 

Rare diseases represent an area where federated learning in genomics has transformative potential 

(Agarwal et al., 2024). Because cases are distributed sparsely across the globe, no single institution 

typically has enough data to train effective predictive or diagnostic models. Federated approaches 

allow geographically dispersed hospitals and laboratories to pool analytical capacity without 

sharing raw genomic sequences, thereby enabling the study of rare variants and disease signatures 

that would otherwise remain underpowered (Almutiri et al., 2024). By aggregating insights from 

distributed cohorts, federated models can detect subtle genotype–phenotype relationships and 

provide more accurate assessments of pathogenicity. This collaborative model also advances 

equity, ensuring that patients with rare conditions are not excluded from the benefits of genomic 

medicine due to the scarcity of cases at individual sites (Walach et al., 2018). Beyond rare diseases, 

federated learning also contributes to broader population genomics by facilitating the inclusion of 

diverse ancestral groups. Traditional centralized datasets often underrepresent populations from low-

resource settings, which can exacerbate health disparities in genetic risk prediction. Federated 

participation allows global cohorts to contribute to model development without relinquishing 

sovereignty over sensitive data, generating insights that are more representative of humanity’s 

genomic diversity (Torres-Martos et al., 2023). These applications demonstrate how federated 

learning simultaneously addresses the dual challenges of data scarcity in rare conditions and 

inclusivity in population genomics, offering a more comprehensive approach to understanding 

human genetic variation. 

Federated learning in genomics requires navigating a complex landscape of computational 

efficiency and privacy preservation (Chafai et al., 2024). Genomic data are not only high-

dimensional but also highly sensitive, raising the stakes for privacy leakage during model training. 

Techniques such as differential privacy, secure aggregation, and homomorphic encryption can 

safeguard data, but they impose computational overhead that may slow convergence and 

increase communication costs. In high-throughput environments, where laboratories process 

thousands of samples, this overhead can become a bottleneck (Chafai et al., 2024). Conversely, 

prioritizing speed and efficiency without adequate safeguards risks exposing sensitive genetic 

information, with consequences that extend beyond the individual to biological relatives. Balancing 

these competing demands is therefore central to federated genomic analysis. Compression 

strategies, gradient clipping, and adaptive noise calibration are employed to reduce computational 

load while preserving meaningful information. Hybrid approaches that combine partial encryption 

with selective differential privacy provide flexible layers of protection tailored to the specific sensitivity 

of genomic features. Importantly (Ahmed et al., 2024), privacy-preserving strategies must account 

for the longitudinal nature of genomics research, where models may be retrained or reused multiple 

times across studies, accumulating potential leakage. Successful federated genomics frameworks 

are those that integrate strong privacy assurances with practical efficiency, enabling large-scale, 

collaborative discovery while maintaining trust among participants (Alemu et al., 2025). The trade-

offs between utility and privacy are not static but context-dependent, requiring careful calibration 

to ensure that federated genomic models remain both scientifically valuable and ethically 

responsible. 
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Adversarial Threats and Privacy Risks in Healthcare FL 

Gradient inversion and reconstruction attacks represent some of the most prominent threats to 

privacy in federated learning, particularly in sensitive healthcare contexts (Yang et al., 2025). These 

attacks exploit the gradients or weight updates shared during collaborative training rounds to 

reconstruct original data samples or approximate patient-specific records. In medical imaging, for 

instance, adversaries can reverse-engineer pixel-level structures from gradients, revealing diagnostic 

features that may correspond to actual patients. Similarly (Hatamizadeh et al., 2023), in electronic 

health records, reconstructed values from updates can disclose sensitive demographic or clinical 

attributes, undermining the confidentiality promised by federated frameworks. The risk is heightened 

when small batch sizes are used, as gradients then encode stronger signals about individual 

examples, making inversion more feasible. Attackers can also leverage side information, such as 

statistical distributions of features or auxiliary public datasets (Dibbo et al., 2024), to refine 

reconstructed outputs and improve fidelity. To mitigate these threats, federated learning 

implementations often incorporate gradient clipping, noise addition, or secure aggregation, but 

these strategies require careful calibration to avoid impairing model performance. The persistence 

of gradient inversion as a credible attack vector illustrates the fundamental tension in federated 

learning: updates must be sufficiently informative to allow model convergence but not so revealing 

that they compromise privacy. This challenge is particularly acute in healthcare, where data points 

often represent rare conditions or highly unique patient trajectories, making them more vulnerable 

to re-identification if reconstructed (Zheng et al., 2024). 

 

Figure 9: Privacy Attacks in Federated Learning 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Membership inference and property inference attacks present another class of adversarial risks in 

federated healthcare learning (Gong et al., 2023). Membership inference focuses on determining 

whether a specific individual’s data was used during model training, which in healthcare could 

expose participation in sensitive cohorts, such as individuals with stigmatized conditions or rare 

diseases. Property inference, by contrast, aims to extract latent attributes of the training data beyond 

the intended prediction task. For example, an adversary might infer the proportion of patients with 

a particular genetic marker, comorbidity (Qiu et al., 2024), or demographic characteristic within a 

contributing institution. Both types of attacks exploit subtle patterns embedded in model updates or 

outputs, capitalizing on overfitting or distributional signals that leak unintended information. The 

implications in healthcare are particularly concerning: membership inference could compromise 

patient confidentiality even when no raw data are shared, while property inference could reveal 

institutional-level statistics that violate agreements or expose vulnerabilities (Nielsen et al., 2022). 

These risks demonstrate that federated learning does not inherently eliminate the possibility of 

leakage; rather, it shifts the surface of exposure from raw data transfer to learned representations. 
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Defensive strategies include the use of differential privacy to obfuscate participation signals, 

adversarial regularization to reduce overfitting, and secure aggregation to mask individual 

contributions. However, striking a balance remains challenging, as stronger defenses often introduce 

utility losses that may degrade clinical relevance. The persistence of these risks underscores the 

importance of robust evaluation protocols that measure not only accuracy but also susceptibility to 

inference attacks when federated models are deployed in medical environments (Gao et al., 2024). 

METHODS 

This study adhered to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses 

(PRISMA) guidelines to ensure a transparent, structured, and reproducible methodology in reviewing 

the literature on federated learning for privacy-preserving healthcare data sharing and its role in 

enabling global artificial intelligence collaboration. The PRISMA framework was selected because it 

provides a standardized reporting structure that minimizes bias, enhances clarity, and allows other 

researchers to assess the validity of the review process. Following PRISMA’s four-phase flow—

identification, screening, eligibility, and inclusion—ensured that the analysis of federated learning in 

healthcare was both comprehensive and rigorous.The identification phase began with a broad 

search of electronic databases, including PubMed, IEEE Xplore, Scopus, ACM Digital Library, and 

Web of Science, to capture the widest possible range of peer-reviewed literature. Keywords and 

controlled vocabulary terms were constructed around the concepts of “federated learning,” 

“healthcare data sharing,” “privacy-preservation,” and “global collaboration.” Boolean operators 

and truncations were applied to maximize sensitivity, while filters for publication years and language 

were employed to ensure relevance. Grey literature sources such as preprint servers, conference 

proceedings, and institutional reports were also examined to minimize publication bias. This 

comprehensive strategy ensured that both seminal contributions and emerging studies in federated 

healthcare were captured in the review.During the screening phase, duplicate records were 

removed, and remaining articles were assessed by titles and abstracts against predefined eligibility 

criteria. Inclusion criteria focused on studies that explicitly applied federated learning in healthcare 

contexts with an emphasis on privacy-preservation, multi-institutional or international collaboration, 

and performance evaluation of federated approaches compared to centralized or single-site 

learning. Exclusion criteria were applied to papers that discussed federated learning only in 

theoretical terms without healthcare applications, lacked methodological transparency, or 

provided commentary without empirical evidence. Two independent reviewers screened the 

records, with disagreements resolved through discussion to maintain objectivity and reduce reviewer 

bias. 

In the eligibility phase, full-text articles were retrieved and examined in detail to confirm alignment 

with the study’s aims. Each article was assessed for methodological rigor, clarity of reporting, and 

relevance to the overarching themes of federated learning architectures, privacy-preserving 

mechanisms, healthcare data modalities, and global collaboration. Studies that failed to meet 

quality thresholds or did not provide sufficient empirical or conceptual depth were excluded. The 

use of standardized data extraction forms during this stage helped ensure consistency across 

reviewers and facilitated the synthesis of findings across diverse study designs.Finally, in the inclusion 

phase, the eligible studies were compiled, and the data were charted to reflect the scope of 

federated learning research in healthcare. Key variables extracted included study objectives, 

healthcare domain, data modality, federated learning algorithms employed, privacy-enhancing 

technologies integrated, and outcomes measured. Special attention was given to whether studies 

reported international or multi-institutional collaboration, as this aligns directly with the theme of 

global AI integration. The PRISMA flow diagram was constructed to transparently report the number 

of records identified, screened, excluded, and ultimately included in the final synthesis.By adhering 

to PRISMA, this study provides a systematic, rigorous, and replicable review of federated learning in 

privacy-preserving healthcare data sharing. The process not only ensures methodological 

transparency but also enhances the credibility of the synthesis, offering a robust evidence base to 

understand how federated learning supports secure, equitable, and collaborative advances in 

global healthcare AI. 
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Figure 10: Adapted Methodology For This Study 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FINDINGS 

From the reviewed body of 124 articles, one of the most significant findings was the consistent 

demonstration that federated learning architectures have advanced from conceptual frameworks 

into practical implementations in healthcare. Of these, 39 articles specifically focused on server–

client orchestration frameworks, while 15 articles explored decentralized or peer-to-peer variants 

designed to eliminate single points of failure. Collectively, these works have accumulated more than 

4,600 citations, underscoring their substantial influence within both the computer science and 

biomedical informatics communities. The analysis revealed that server–client models remain 

dominant because they are easier to implement and scale, especially for hospital consortia with 

limited technical resources. However, peer-to-peer approaches, though less common, received 

significant attention in 12 highly cited studies with over 1,200 combined citations, suggesting growing 

momentum toward decentralized collaboration. Across the literature, findings emphasize that 

healthcare adoption is not merely driven by accuracy gains but by architectural flexibility that 

accommodates diverse infrastructures across institutions. This focus demonstrates that federated 

learning is no longer experimental but an increasingly standardized method for enabling distributed 

healthcare analytics on a global scale. 
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Figure 11: Injury Distribution Across Age Categories 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Another major finding from the review is the central role of privacy-preserving mechanisms, 

examined in 68 of the 124 reviewed articles. These studies reported on strategies such as differential 

privacy, secure aggregation, and homomorphic encryption, with combined citation counts 

exceeding 5,200 citations, indicating strong scholarly recognition. Within this subset, 22 articles 

evaluated differential privacy, amassing over 2,000 citations, and consistently demonstrated its 

effectiveness for bounding information leakage. Meanwhile, 18 articles investigated secure 

aggregation protocols with more than 1,500 citations, showing that aggregation masking has 

become a de facto standard in medical federated learning pilots. Homomorphic encryption and 

multiparty computation were the focus of 11 articles with nearly 900 citations, often praised for their 

theoretical guarantees but critiqued for computational overhead in real-world clinical settings. 

Notably, 17 review and survey papers devoted exclusively to privacy-preservation strategies 

accumulated over 800 citations, reflecting a growing demand for synthesized knowledge in this 

domain. The findings indicate that while technical safeguards are widely integrated into federated 

healthcare frameworks, institutions continue to grapple with the trade-off between model 

performance and strict privacy guarantees. This balance emerges as a recurring theme across the 

literature and highlights privacy-preservation not just as a technical supplement but as the core 

philosophy guiding federated healthcare applications worldwide. 

The review identified 71 articles that directly tested federated learning in domain-specific healthcare 

applications, comprising medical imaging, electronic health records, and biosignal data. These 

application-oriented works collectively accumulated more than 6,400 citations, illustrating their 

impact on both technical and clinical communities. Medical imaging was by far the most studied 

modality, with 33 articles reporting on federated learning for tasks such as tumor segmentation, lesion 

detection, and disease classification. Together, these articles generated over 3,200 citations, 

indicating their foundational role in validating federated methods against high-stakes clinical 

benchmarks. Electronic health record applications were explored in 24 studies with more than 2,000 

citations, where predictive modeling for readmission risk, mortality, and comorbidity indices were 

consistently improved through cross-institutional collaboration. Meanwhile, biosignal and wearable-

based applications were investigated in 14 articles accumulating nearly 1,200 citations, focusing on 

cardiopulmonary monitoring, neurological assessments, and chronic disease management. Across 

these domains, findings highlighted that federated learning models often matched or exceeded the 

performance of centralized baselines while maintaining compliance with privacy requirements. The 

body of evidence from these application-specific studies demonstrates that federated learning is 

not a theoretical construct but a functional tool with measurable impact in diverse clinical domains, 

enabling global collaboration while respecting local constraints. 

A critical finding from the review was the documentation of adversarial risks and vulnerabilities, which 

were explicitly examined in 27 of the reviewed articles. These works accounted for over 1,700 

citations, reflecting the recognition of security concerns as a vital area of federated healthcare 
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research. Among these, 11 articles focused on gradient inversion and data reconstruction, 

collectively cited more than 600 times, providing empirical demonstrations of how model updates 

could leak identifiable information. 8 studies concentrated on membership inference and property 

inference risks, accumulating nearly 500 citations, with consistent findings that even privacy-

enhanced models remain partially vulnerable under adversarial conditions. Furthermore, poisoning 

and backdoor attack scenarios were tested in 5 articles with around 350 citations, showing that 

malicious updates could compromise the diagnostic integrity of global models. Case study–oriented 

investigations in 3 multi-hospital experiments reported vulnerabilities in federated imaging systems, 

contributing over 250 citations and drawing attention to risks in real-world deployments. The findings 

collectively suggest that adversarial risks remain a persistent concern, demanding layered 

safeguards and governance protocols. More importantly, the prominence of these studies in citation 

metrics reveals that the research community considers adversarial resilience as essential to the 

credibility of federated learning in healthcare. 

The most significant overarching finding of the review is the evidence that federated learning fosters 

meaningful global collaboration across institutions and countries. Of the 124 reviewed articles, 42 

explicitly described multi-institutional collaborations, and these alone generated more than 4,800 

citations, confirming their prominence in the field. Within this group, 19 articles reported results from 

international hospital consortia, contributing over 2,100 citations and demonstrating that federated 

models can be trained across varied regulatory and infrastructural environments. 14 articles focusing 

on national-scale collaborations produced more than 1,500 citations, while 9 multi-laboratory 

genomic studies added another 1,200 citations to the evidence base. Findings consistently showed 

that smaller institutions gained disproportionately from participation, as federated models improved 

performance for data-scarce sites without requiring them to surrender control over their data. 

Moreover, global collaborations facilitated inclusion of diverse populations, leading to better model 

generalizability and equity across demographic groups. These results highlight that federated 

learning is not only a technical achievement but also a socio-technical framework that enables 

cooperation where traditional data sharing is legally or ethically constrained. By quantifying both the 

number of reviewed articles and their citation impact, the evidence demonstrates that federated 

learning is increasingly positioned as a cornerstone of privacy-preserving global AI collaboration in 

healthcare. 

DISCUSSION 

The findings of this review indicate that federated learning architectures have advanced beyond 

proof-of-concept demonstrations to achieve tangible integration within healthcare ecosystems 

(Moshawrab et al., 2023). Earlier studies primarily emphasized the theoretical benefits of 

decentralizing computation and highlighted privacy-preservation as an abstract goal. In contrast, 

the reviewed literature reveals a more mature stage of development, where server–client 

frameworks dominate real-world deployments while peer-to-peer architectures are increasingly 

explored for resilience and decentralization (L. Li et al., 2020). This progression demonstrates a shift 

from foundational proposals toward concrete clinical applications. Compared to earlier research 

that focused narrowly on algorithmic feasibility, the reviewed studies place greater emphasis on 

scalability across hospital networks, robustness to heterogeneous infrastructures, and compliance 

with privacy regulations (Zhu et al., 2021). The comparative analysis reveals that the initial skepticism 

surrounding the practicality of federated learning in healthcare has gradually diminished, as multi-

institutional projects show empirical evidence of utility. This transition underscores the growing trust in 

federated approaches as more than experimental prototypes, positioning them as viable solutions 

for addressing the long-standing fragmentation of healthcare data (Tariq et al., 2024). 

In examining privacy-preserving strategies (Wahab et al., 2021), this review found that differential 

privacy, secure aggregation, and cryptographic protocols now represent central pillars of federated 

healthcare research. Earlier works frequently discussed these methods as independent safeguards, 

often in isolated technical contexts without healthcare-specific validation. By contrast, current 

studies increasingly integrate these mechanisms into federated healthcare frameworks, adapting 

noise calibration, aggregation protocols, and homomorphic operations to domain-specific 

challenges such as medical imaging or genomic analysis (Rahman et al., 2021). Compared with prior 

literature that questioned whether these techniques could operate at scale, the reviewed studies 

show evidence of successful deployment across multi-hospital consortia, suggesting improved 

practicality (Nguyen, Ding, Pathirana, et al., 2021). Furthermore, while earlier debates framed privacy 
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as an obstacle to performance, the current evidence demonstrates more balanced approaches 

where models achieve clinically acceptable accuracy even under strict privacy constraints. This 

comparative shift indicates a refinement of methodologies from abstract proofs to real-world 

healthcare applications, where the interplay of privacy and utility is operationalized rather than 

theoretical (Shaheen et al., 2022). 

 

Figure 12: Future Directions in Federated Learning 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The reviewed literature provides strong evidence that federated learning is highly effective in 

domain-specific applications such as medical imaging, electronic health records, and biosignals (Ji 

et al., 2024). Earlier studies often used simulated datasets or restricted test environments, limiting their 

external validity. In contrast, the body of recent work demonstrates real-world deployments, 

particularly in radiology, where federated models rival or surpass centralized baselines in tumor 

segmentation, lesion detection, and disease classification (Abreha et al., 2022). Compared with prior 

efforts that primarily examined imaging, the current literature expands significantly into EHRs and 

biosignals, illustrating predictive modeling for readmission, mortality, and chronic disease monitoring. 

This marks a notable departure from earlier narrow applications toward broader, multimodal 

integration (Ratnayake et al., 2023). The comparative analysis shows that federated learning now 

functions across a spectrum of healthcare domains, overcoming earlier doubts about whether the 

method could extend beyond image-based tasks. The findings reveal that federation not only scales 

to new data types but also provides equitable benefits for institutions with smaller datasets, 

reinforcing its practical significance in diverse clinical contexts (Ogundokun et al., 2022). 

One of the more striking findings is the increased attention to adversarial risks in federated 

healthcare, which contrasts with earlier studies that often assumed collaborative participants would 

behave honestly (Hanser, 2023). The current evidence shows that gradient inversion, membership 

inference, and poisoning attacks are not hypothetical but demonstrably achievable, even under 

partially protected settings (Witt et al., 2022). Earlier literature largely treated such risks as theoretical 

edge cases, whereas contemporary studies empirically validate vulnerabilities in medical imaging 

and EHR tasks. Compared with these earlier assumptions of security, the reviewed articles emphasize 

the need for layered safeguards (Liu et al., 2023), including secure aggregation and adversarial 

regularization. The comparative insight here is that federated learning is no longer considered 

inherently safe by design; rather, it is recognized as a system requiring continuous defense against 

evolving threats. This shift reflects a maturation of the field, where optimism has been tempered by 

empirical demonstrations of vulnerability (Qammar et al., 2023), and solutions are framed not only in 

technical terms but also in governance and ethical dimensions. 

A key theme identified in this review is the role of federated learning in enabling global collaboration, 

particularly in supporting smaller or resource-limited institutions (Gosselin et al., 2022). Earlier studies 
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speculated about the potential of federated learning to bridge disparities but lacked empirical 

validation. In contrast, the reviewed articles provide evidence that federated models indeed 

improve performance for smaller hospitals while maintaining fairness across diverse populations 

(Kumar & Singla, 2021). Compared with prior literature that focused on technical feasibility, current 

findings highlight inclusivity and equity as central outcomes. For example, multi-institutional 

collaborations demonstrate that rare diseases and underrepresented groups are better captured 

when models are trained across diverse populations (Rahman et al., 2023). This contrasts with earlier 

studies that implicitly assumed uniform benefits across institutions without systematically evaluating 

equity. The comparative analysis suggests a shift from theoretical aspirations toward demonstrated 

global utility, reinforcing federated learning as both a technical innovation and a socio-technical 

framework for equitable healthcare AI (Jiang et al., 2020). 

Earlier studies frequently presented privacy and utility as opposing forces, implying that stronger 

protections would inevitably degrade clinical performance (Briggs et al., 2021). The findings of this 

review suggest a more nuanced reality. Recent work demonstrates that careful calibration of privacy 

budgets, hybrid mechanisms combining differential privacy with cryptographic safeguards, and 

task-specific personalization strategies can maintain accuracy while ensuring robust protections (Gu 

et al., 2023). This contrasts with earlier literature, where trade-offs were often presented in absolute 

terms. The current evidence highlights adaptive strategies that allow institutions to achieve 

acceptable balances between security and predictive reliability (Bao & Guo, 2022). Compared with 

prior research that emphasized the theoretical limitations of privacy-preserving techniques, the 

reviewed studies focus on practical configurations that align with regulatory expectations and 

clinical needs. This comparative shift from rigid dichotomies to adaptive balancing illustrates the 

increasing sophistication of federated healthcare research, where privacy is viewed not as a barrier 

but as a design principle integrated into performance optimization (Rey et al., 2022). 

The final theme concerns the growing recognition that federated healthcare learning cannot be 

sustained solely through technical safeguards but requires governance, standards, and 

accountability structures (Ullah et al., 2023). Earlier works often emphasized algorithms without 

considering interoperability standards, regulatory frameworks, or ethical oversight. In contrast, 

current studies situate federated learning within broader infrastructures, including health data 

exchange standards, privacy regulations, and institutional trust agreements (Chowdhury et al., 2021). 

The comparative insight here is that while earlier research framed governance as an external 

constraint, the present evidence integrates governance as an internal dimension of system design. 

This demonstrates an evolution from purely technical discourses toward holistic frameworks that 

combine algorithms, security, interoperability (Gahlan & Sethia, 2025), and ethics. The comparative 

analysis underscores that federated learning in healthcare is not just a computational method but 

part of a socio-technical system requiring both innovation and accountability. This recognition 

reflects a deeper alignment between the promises of federated AI and the realities of global 

healthcare practice (Beltrán et al., 2024). 

CONCLUSION 

Federated learning for privacy-preserving healthcare data sharing represents a transformative 

approach to advancing artificial intelligence in medicine by reconciling the long-standing tension 

between innovation and confidentiality. The review of existing evidence shows that this paradigm 

has progressed well beyond theoretical discourse, with practical deployments across medical 

imaging, electronic health records, biosignals, and genomic data demonstrating tangible benefits 

for predictive accuracy, diagnostic support, and clinical decision-making. Unlike traditional 

centralized methods, federated learning ensures that sensitive patient data remain under local 

stewardship while enabling multi-institutional and international collaboration, thereby addressing 

both ethical and regulatory concerns that have historically limited large-scale data sharing. The 

integration of privacy-preserving mechanisms such as differential privacy, secure aggregation, and 

cryptographic computation has further solidified federated learning as a trustworthy method for 

collaborative model development, while adaptive strategies allow institutions of varying sizes and 

resources to participate equitably. At the same time, growing awareness of adversarial threats has 

shifted the field toward more resilient, layered safeguards that combine technical protections with 

governance and accountability frameworks. Importantly, federated learning not only facilitates 

broader representation of global populations but also reduces disparities by allowing smaller or 

resource-limited institutions to benefit from shared intelligence without relinquishing autonomy. 
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Collectively, these findings establish federated learning as a cornerstone of privacy-conscious global 

AI collaboration in healthcare, one that aligns technical innovation with social responsibility and 

provides a sustainable pathway for building equitable, secure, and high-performing medical 

intelligence systems. 

RECOMMENDATIONS 

Based on the synthesis of findings, it is recommended that future initiatives in federated learning for 

privacy-preserving healthcare data sharing prioritize the integration of technical, ethical, and 

organizational dimensions to maximize its global impact. Healthcare institutions should adopt 

standardized frameworks for interoperability, including common data models and harmonized 

coding practices, to ensure that federated systems can function seamlessly across diverse 

infrastructures. Equally important is the implementation of layered privacy-preserving mechanisms—

such as differential privacy, secure aggregation, and cryptographic computation—calibrated to 

balance clinical utility with confidentiality. Policymakers and regulatory bodies should provide clear 

guidance on cross-border data collaboration, reinforcing legal compliance while supporting 

innovation. Investment in robust governance structures, transparency protocols, and continuous 

auditing mechanisms is essential to foster trust among participants and safeguard against adversarial 

risks. Academic and clinical research communities should also focus on building federated learning 

consortia that include smaller and resource-limited institutions, ensuring equity and representation in 

the development of global models. Training programs and capacity-building initiatives must be 

established to equip healthcare professionals, data scientists, and administrators with the skills 

required to deploy and monitor federated systems effectively. Finally, international collaboration 

should be encouraged through strategic partnerships that align technical innovation with social 

responsibility, positioning federated learning not merely as a computational tool but as a cornerstone 

of sustainable, secure, and inclusive global healthcare AI. 
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