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ABSTRACT

This study provides a comprehensive systematic review of federated learning as
a framework for privacy-preserving healthcare data sharing and its potential to
enable global artificial intelligence collaboration. In fotal, 124 peer-reviewed
articles were examined following the Preferred Reporting Items for Systematic
Reviews and Meta-Analyses (PRISMA) guidelines to ensure transparency, rigor,
and reproducibility. The review highlights how federated learning has evolved
from conceptual discussions to practical applications across multiple
healthcare domains, including medical imaging, electronic health records,
biosignals, and genomic analysis. Key findings indicate that federated
architectures, particularly server—client models, have become the dominant
deployment strategy, while peer-to-peer approaches are gaining attention for
their resilience and decentralization. Privacy-preserving mechanisms—such as
differential privacy, secure aggregation, and cryptographic computation—
emerged as central to ensuring compliance with regulatory and ethical
standards, with adaptive strategies allowing for an effective balance between
confidentiality and model utility. Evidence from multi-institutional collaborations
shows that federated learning not only improves predictive performance but
also enhances inclusivity, enabling smaller or resource-limited institutions to
contribute meaningfully without relinquishing data ownership. At the same fime,
empirical studies identified adversarial risks such as gradient inversion,
membership inference, and poisoning attacks, underscoring the necessity for
layered safeguards and strong governance structures. Collectively, the findings
demonstrate that federated learning is more than a technical innovation; it
represents a socio-technical paradigm that integrates privacy, equity, and
collaboration into the development of global healthcare Al This review
positions federated learning as a cornerstone for building secure, ethical, and
scalable artificial intelligence systems that address the dual imperatives of
advancing medical innovation while safeguarding patient confidentiality.
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INTRODUCTION
Federated learning is a distributed paradigm in which multiple institutions collaborate to train
machine learning models without transferring raw data from one site to another (Ma et al., 2022).
Instead of centralizing sensitive health records into a single repository, participating nodes keep data
locally and only share model updates or parameters. This structure ensures that patient-level
information remains under the custodianship of the originatfing institution while still contributing to the
creation of a stronger (Zhang et al., 2021), generalized model. Privacy-preserving mechanisms such
as noise injection, encryption, and secure aggregation further strengthen this process, ensuring that
identifiable attributes do not escape institutional boundaries. In the healthcare domain, where
regulatory, ethical, and social constraints on data mobility are intense, the value of such an
approach becomes evident. Across the globe , healthcare providers, research centers, and
pharmaceutical organizations recognize the immense potential of learning from diverse patient
cohorts while simultaneously safeguarding individual privacy (Savazzi et al., 2020). This dual
imperative—achieving collaborative learning without compromising confidentiality—forms the
cornerstone of federated learning’s role in healthcare. Internationally, it addresses the challenge of
heterogeneous legal systems, varying infrastructures, and diverse cultural attitudes toward data,
offering a practical framework for global cooperation in artificial intelligence for medicine (Liu et al.,

2022).

Figure 1: Federated Learning Framework for Healthcare
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The technical structure of federated learning relies on iterative exchanges of model parameters
between clients and a coordinating server or peer nodes (Beltrdn et al., 2023). Clients compute
updates using their local health data, then tfransmit those updates for aggregation into a global
model. This process repeats until convergence, producing a model that reflects the statistical
strength of all participants without exposing raw records (Wen et al.,, 2023). In healthcare
applications, such a system must accommodate widely varying data types: imaging, laboratory
tests, sensor streams, and textual clinical notes. Challenges arise when distributions differ substantially
across institutions, such as different disease prevalence, equipment vendors, or coding practices. To
manage this, federated learning algorithms incorporate strategies like personalized layers, adaptive
optimization, and mechanisms that stabilize training under non-identical data distributions (Farahani
& Monsefi, 2023). Alongside algorithmic refinement, privacy-preserving enhancements like
differential privacy and cryptographic aggregation reduce the risk of inference attacks. These
technical underpinnings are critical to building frust among institutions and regulators, ensuring that
collaboration can scale beyond local networks into international consortia. The global dimension of
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healthcare necessitates this type of flexible, privacy-respecting infrastructure to bring together
knowledge scattered across continents (Li et al., 2021).
The promise of federated learning in healthcare lies not only in technical design but also in its ability
to mitigate privacy risks (Rahman et al., 2020). Even when raw data remains on site, updates and
parameters can inadvertently leak information if not adequately protected. Aftacks such as
membership inference, model inversion, and gradient reconstruction have demonstrated how
adversaries might recover sensitive details from shared parameters (Qayyum et al., 2022). In clinical
contexts, where even partial leakage can expose patient identity or conditions, this risk cannot be
overlooked. To counter such threats, federated learning integrates privacy budgets, auditing
systems, and formal guarantees that bound the probability of revealing information about any
individual record (Savazzi et al., 2021). Healthcare institutions that adopt federated learning do so
not only for analytical efficiency but also to align with stringent privacy expectations from regulators,
patients, and professional bodies. The system’s ability to demonstrate mathematically grounded
protections builds confidence that shared models will not inadvertently compromise confidenftiality.
This tension between risk and safeguard illustrates the depth of innovation needed to operationalize
privacy-preserving analytics in medicine at an international scale (Li et al., 2020).
In practice, federated learning has demonstrated tangible benefits in collaborative medical
research and clinical decision support (Zhang et al., 2022). Mulfi-institutional studies on medical
imaging, forinstance, show that models trained across hospitals achieve greater generalizability and
robustness compared to those developed in isolation. By leveraging diverse datasets, these models
become less biased toward specific demographics, equipment types, or regional practices. This
capacity to integrate varied clinical contexts without exchanging raw patient records is a
tfransformative development in medical Al (Nguyen, Ding, Pham, et al., 2021). Similarly, in areas such
as infensive care monitoring, disease progression modeling, and outcome prediction, federated
learning enhances predictive accuracy by pooling distributed knowledge. The international
dimension is particularly critical: diseases manifest differently across populations (Alsamhi et al., 2024),
and effective models require exposure o this global heterogeneity. Federated learning makes it
possible to respect local privacy constraints while sfill accessing the collective power of intfernational
datasets. The healthcare sector increasingly views this model not only as a technical innovation but
also as an ethical framework for collaborative research that honors both privacy and inclusivity (Tan
et al., 2022).

Figure 2: Federated Learning Secure Global Averaging
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Beyond imaging, federated learning extends its influence into other complex healthcare data
domains such as electronic health records, biosignals, genomics, and digital phenotyping (Zhang et
al., 2021). These data streams are highly sensitive and deeply personal, which makes cenftralized
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pooling impractical or even legally impermissible. Federated learning enables institutions to harness
the predictive value of longitudinal patient histories (Nguyen et al., 2022), physiological signals from
wearables, and multi-omics data while keeping the raw forms securely within local systems. This has
profound implications for chronic disease management, rare disease research, and real-time health
monitoring. The capacity to learn from broad, distributed datasets means that conditions that are
underrepresented in any single region can sfill be studied collaboratively (Rauniyar et al., 2023). This
inclusivity strengthens models while ensuring that marginalized or geographically isolated
populations are not excluded from the benefits of advanced analytics. It also emphasizes the
universality of healthcare challenges and the need for cooperative technological solutions. By
supporting cross-border analysis in ways that respect sovereignty and privacy, federated learning
becomes a unifying approach that bridges gaps between fragmented health systems (Wahab et
al., 2021).
The international dimension of federated learning requires robust interoperability standards and
governance frameworks (Shaheen et al., 2022). Healthcare systems vary widely in the data formats
they employ, the regulations they enforce, and the infrastructures they maintain. Federated learning
must therefore align with standards for clinical data representation, such as resource-oriented
models and semantic harmonization techniques (Lu et al., 2022), to enable consistent model fraining
across sites. Legal frameworks governing privacy and data profection infroduce further complexity,
requiring solutions that comply with regulations in multiple jurisdictions simultaneously. In this context,
federated learning’s in-situ analytics are advantageous, as they minimize the cross-border transfer
of identifiable information (Hanser, 2023). Organizational trust is strengthened when cryptographic
safeguards, secure aggregation, and auditable processes are combined with governance
structures that clarify accountability. Institutions participating in global federated networks must
agree not only on technical protocols but also on ethical and legal principles that underpin data
stewardship. This intersection of governance, regulation, and technology transforms federated
learning from a purely computational strategy info a comprehensive framework for international
health collaboration (Yin et al., 2020).
Ultimately, the strength of federated learning in healthcare lies in its ability to fransform institutional
diversity intfo a collective advantage (Andreux et al., 2020). Global health data is inherently
heterogeneous, reflecting differences in population genetics, clinical practices, diagnostic
equipment, and cultural contexts. Federated learning treats this heterogeneity not as an obstacle
but as a source of robustness, enabling models that generalize across boundaries (Zhu et al., 2021).
Technical strategies such as adaptive optimization, personalization, and communication-efficient
updates help manage disparities in participation and infrastructure. Privacy-preserving mechanisms
ensure that the system remains aligned with ethical expectations and legal requirements. The result
is a collaborative environment where institutions can pool their knowledge without surrendering their
autonomy over data (Bashir et al., 2023). In this way, federated learning advances the goal of
equitable healthcare innovation by ensuring that diverse voices and populations confribute to the
design of Al systems. By embedding privacy-preserving principles into its foundation, it provides a
path forward for healthcare systems around the world to engage in meaningful, secure, and large-
scale collaboration.
LITERATURE REVIEW
The rapid advancement of artificial inteligence in healthcare has created unprecedented
opportunities for predictive analytics, diagnostic support, and treatment personalization (Bohr &
Memarzadeh, 2020). Yet, these opportunities are tightly coupled with one of the most pressing
challenges in modern medicine: the need to share health data without compromising patient
privacy. Healthcare information is offen fragmented across multiple instfitutions, countries, and
regulatory environments, making centralized aggregation both technically difficult and legally
constrained. Federated learning has emerged as a fransformative approach that enables
collaborative model training across distributed data sources without requiring raw data exchange
(Goel et al., 2025). By ensuring that only model parameters or updates are shared, federated
learning preserves institutional data sovereignty while allowing the construction of high-performance
models that reflect knowledge from diverse populations.A review of the existing scholarship in this
domain reveals multiple layers of inquiry. At the foundational level, researchers have defined the
architectures, algorithms, and privacy-preserving mechanisms that underpin federated learning.
Parallel strands of research have explored how such frameworks can be applied to imaging,
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electronic health records, biosignals, genomics, and other crifical healthcare modalities. An
additional body of work interrogates the vulnerabilities of federated systems, including inference
aftacks (Noorbakhsh-Sabet et al., 2019), reconstruction threats, and communication bottlenecks,
and presents cryptographic and differential privacy-based safeguards to mitigate risks. Beyond the
technical focus, scholars also emphasize governance, interoperability, and regulatory compliance
as essenfial to global collaboration. Studies consistently point to the value of aligning federated
learning not only with technical goals of efficiency and scalability but also with broader ethical
imperatives of equity, inclusivity, and transparency.This literature review therefore examines the
trajectory of research in federated learning for healthcare data sharing, highlighting the interplay
between algorithmic innovation, privacy-preservation, and international collaboration. The review is
structured to move from theoretical definitions to technical mechanisms, then to domain-specific
applications, before addressing challenges (da Silva, 2024), safeguards, and governance
frameworks. Through this layered exploration, the review builds a comprehensive understanding of
how federated learning is positioned as a critical enabler of secure, cross-border, and large-scale
artificial intelligence in healthcare.
Foundations of Federated Learning in Healthcare
The conceptual foundations of federated learning emerged as a response to the limitations of
traditional centralized machine learning models, which rely on aggregating raw data from multiple
sources into a single repository for training (Piccialli et al., 2021). While centralized approaches allow
for large-scale pattern recognition and predictive accuracy, they intfroduce critical risks in domains
where sensitive information is involved, particularly in healthcare. Scholars initially highlighted how
cenftralization increases vulnerability to data breaches, regulatory violations, and ethical concerns
surrounding patient autonomy (Jabarulla & Lee, 2021). In contrast, federated learning
conceptualizes model development as a distributed process, where local nodes perform
computations independently and confribute only model updates or gradients fo a global
aggregator. This distinction is crucial, as it shifts the locus of control away from a central server that
could become a single point of failure and instead fosters a collaborative model of learning without
data pooling (Athanasopoulou et al., 2022). Studies consistently emphasize that federated learning
not only mitigates the privacy risks associated with centralization but also enhances scalability by
leveraging computational resources distributed across multiple sites. The conceptual departure from
cenfralized learning has positioned federated systems as both a technological innovation and a
paradigm shift in how sensitive data, such as healthcare records, can be harnessed for collective
intelligence. In this sense, federated learning is not merely a technical variant of distributed
computing but a privacy-first philosophy that redefines the balance between data accessibility and
security in clinical contexts (Bianchini et al., 2022; Ara et al., 2022).
At the heart of federated learning lies the principle of data locality, which mandates that raw data
remain within the secure infrastructure of its originating institution (Jahid, 2022; Olawade et al., 2024).
This principle directly addresses the legal and ethical challenges of fransferring medical records
across jurisdictions, particularly in environments governed by strict regulatory frameworks. The
operationalization of this principle depends on distributed optimization fechniques that aggregate
updates from multiple clients into a unified model. The federated averaging algorithm exemplifies
this approach, combining local updates in a way that approximates centralized training while
preserving data autonomy (Uddin et al., 2022; Poongodi et al., 2021). However, healthcare data is
rarely homogeneous, and the non-idenfical distribution of patient populations, diagnostic
equipment, and institutional practices complicates optimization. To address these challenges,
federated learning employs algorithmic strategies such as proximal regularization, adaptive learning
rates, and variance reduction, which stabilize model performance under highly heterogeneous
condifions. The principle of distributed optimization ensures that every institution contributes
proportionally to the collective model while maintaining independence over its sensitive data
(Branda & Scarpa, 2024; Akter & Ahad, 2022). This design reduces reliance on data fransfer protocols
that are vulnerable to interception or misuse, instead aligning computational processes with privacy-
preserving ethics. Scholars note that data locality and distributed optimization together embody the
defining philosophy of federated learning, where computational collaboration occurs without
compromising the autonomy and confidenftiality of medical data custodians (Kitsios et al., 2023;
Arifur & Noor, 2022).
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Figure 3: Federated Learning in Healthcare Systems
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Healthcare ecosystems are characterized by data fragmentation, heterogeneity, and regulatory
constraints that make cenfralized data aggregation impractical (Helm et al., 2020; Rahaman, 2022).
Patient information is stored across hospitals, laboratories, imaging centers, and regional health
networks, often using incompatible standards and formats. Federated learning directly addresses
these challenges by enabling cross-institutional collaboration without requiring homogenization or
cenftralization of records. Its relevance lies in its ability to harness statistical strength from diverse
sources, thereby producing models that generalize better across populations and clinical contexts
(Li et al., 2021; Hasan et al., 2022). Studies in medical imaging. electronic health records, and
biosignal analysis illustrate that federated learning enables broader coverage of demographic and
pathological variations while maintaining compliance with privacy laws. For example, fraining across
international institutions allows for models that capture disease manifestations in varied populations,
thereby improving diagnostic equity and accuracy (Li et al., 2021; Mubashir & Abdul, 2022).
Moreover, federated learning reduces the administrative burden associated with negotiating
complex data-sharing agreements, since raw patfient records never leave their source. Within the
broader health data ecosystem, this approach harmonizes the dual imperatives of collaboration
and protection. Its ability to operate effectively across heterogeneous infrastructures and regulatory
regimes underscores its transformative relevance, positioning it as a cornerstone of international
health informatics and Al-driven clinical research (Arora et al., 2021; Reduanul & Shoeb, 2022).
Privacy-preservation is not merely a technical feature of federated learning but its central guiding
philosophy (Lu et al., 2023). In healthcare, the confidentiality of patient data is paramount, and the
consequences of breaches extend beyond regulatory penalties to issues of trust, equity, and patient
safety. Federated learning operationalizes privacy through a layered approach that combines
technical safeguards with organizational and ethical principles (Bragazzi et al., 2020; Sazzad & Islam,
2022). Differential privacy, secure aggregation, and cryptographic protocols ensure that even the
shared model updates are resistant to adversarial attacks seeking to reconstruct sensitive
information. At the same time, institutions participating in federated networks retain sovereignty over
their datasets, aligning participation with ethical principles of data stewardship. This philosophy
distinguishes federated learning from other distributed computing frameworks by making privacy the
non-negotiable foundation of design rather than an ancillary consideration (Chalasani et al., 2023;
Noor & Momena, 2022). Scholars repeatedly highlight that the effectiveness of federated learning in
healthcare rests not only on its predictive accuracy but also on its ability to maintain public frust and
regulatory compliance. In practice, this guiding philosophy creates a framework where institutions
collaborate with confidence, knowing that their confributions are protected by rigorous safeguards.
Privacy-preservation therefore emerges as both the moral compass and the structural backbone of
federated learning in healthcare, ensuring that technological advancement proceeds hand in
hand with ethical responsibility (Adar & Md, 2023; Xu et al., 2019).
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Architectures and Algorithms for Distributed Model Training
Federated learning architectures are primarily defined by the manner in which communication and
coordination occur among participants (Wahab et al., 2021). The most common orchestration
framework is the server-client model, in which a central coordinating server aggregates updates
from multiple distributed clients and disseminates a global model. This architecture has been favored
in healthcare applications due to its relative simplicity, scalability, and straightforward monitoring of
model convergence. However (Qibria & Hossen, 2023; Qin et al., 2021), the server-client framework
also infroduces a potential bottleneck, as the server becomes a critical point of trust and a possible
vector of attack. To counter this, some scholars and practitioners have explored peer-to-peer
frameworks, where participating nodes coordinate directly with each other without reliance on a
single cenfral aggregator. Peer-to-peer orchestration fosters resilience against single-point failures
(Istiaque et al., 2023; Zhang et al., 2021), distributes control more equitably, and aligns with ethical
imperatives of decentralization in healthcare data governance. Yet, it infroduces challenges in
synchronizing updates, maintaining consistency, and preventing collusion or malicious manipulation
by adversarial nodes. Both approaches illustrate frade-offs: server-client systems offer simplicity and
confrol but raise questions about cenfral authority, while peer-to-peer models encourage
democratized collaboration but require sophisticated consensus mechanisms. Within healthcare,
where institutions vary widely in technical capability, legal obligations, and frust levels, these
orchestration frameworks must be evaluated not just for technical efficiency but also for alignment
with regulatory and ethical expectations (Mansura Akter, 2023; Zhang et al., 2021). The ongoing
evolution of architectures reflects an attempt to balance coordination, resilience, and inclusivity in

global health data collaborations.

Figure 4: Federated Learning Orchestration in Healthcare
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At the algorithmic core of most federated learning systems is the Federated Averaging (FedAvg)
algorithm (Beltrdn et al., 2023; Hasan et al., 2023). FedAvg enables clients to perform multiple local
gradient updates before transmitting model parameters to the central aggregator, which then
computes a weighted average to update the global model. This innovation reduces communication
costs, enhances scalability, and ensures that models converge more efficiently even in the presence
of limited bandwidth. In healthcare (Masud et al., 2023; Nguyen, Ding, Pathirana, et al., 2021), where
connectivity may be inconsistent across hospitals or countries, FedAvg provides a practical
foundation for collaborative learning. However, FedAvg is not without limitations. It can struggle in
contexts where data across sites is highly non-identical, leading to slower convergence and potential
biases in the global model. To address these limitations, a series of variants have emerged. For
example, algorithms that adjust learning rates adaptively (Khan et al., 2021; Sultan et al., 2023),
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algorithms that incorporate proximal terms to stabilize training, and algorithms that use variance
reduction techniques all seek to mitigate the challenges inherent in heterogeneous environments. In
practice, these adaptations enable federated systems to maintain high levels of accuracy across
clinical datasets that differ substantially in scale, quality, and distribution. As a result, FedAvg and its
derivatives remain the cornerstone of federated healthcare research, providing the mathematical
backbone for distributed optimization while inspiring confinual refinements to address the
complexities of medical data (Hossen et al., 2023; Zhu et al., 2021).
One of the most persistent challenges in federated learning is the issue of non-identical,
independently distributed (non-lID) data across participating institutions (Aledhari et al., 2020). In
healthcare, this challenge is particularly acute because patient demographics, disease prevalence,
diagnostic practices, and instrumentation vary widely across regions and organizations. Such
heterogeneity often leads to client drift, where local updates diverge significantly from the globall
objective, resulting in unstable or biased models. To mitigate these issues, researchers have proposed
a variety of strategies (Tawfiqul, 2023; Paragliola & Coronato, 2022). Some approaches incorporate
proximal terms into optimization to constrain local updates and maintain alignment with the global
model. Others use data augmentation techniques to simulate more balanced distributions or
reweight client contributions based on dataset size and variability. Clustering-based methods also
group clients with similar data distributions, training specialized sub-models that can then be merged
into a more robust global model. Additionally (Shamima et al., 2023; Sattler et al., 2019), variance
reduction techniques and adaptive aggregation rules help minimize the distortions caused by
extreme heterogeneity. In clinical contexts, where fairness and generalization are critical, these
methods ensure that federated models do not disproportionately reflect the characteristics of
dominant or data-rich institutions. Handling non-lID data is therefore not simply a technical
optimization problem but a central concern for ensuring that federated learning systems in
healthcare produce models that are equitable, reliable, and representative of global patient
populations (Li et al., 2020; Ashraf & Ara, 2023).
While federated learning aspires to create global models that serve diverse populations, the reality
of healthcare practice often demands institution-specific adaptation (Sanjai et al., 2023; Yang et al.,
2022). Hospitals, clinics, and research centers may face unique patient populations, disease patterns,
or technological environments that require models tuned to their local contexts. Personalization
strategies have emerged as a critical response to this need. One approach is fine-tuning, in which
institutions use the shared global model as a starting point and then adjust parameters on local data
to achieve better alignment with their own population (Liu et al., 2022; Akter et al., 2023). Another
strategy involves multi-task learning, where the federated process jointly optimizes global parameters
and site-specific objectives, allowing each institution to benefit from shared knowledge while
retaining local specialization. Layer-wise personalization is also common, with shared representations
learned globally while higher-level layers are customized locally. These strategies ensure that
federated learning is not merely about producing a single universal model but about enabling
flexible adaptation across heterogeneous environments (Razzak et al., 2024; Gafni et al., 2022). In
healthcare, this is especially important for equity: institutions with rare disease populations, resource-
limited infrastructures, or culturally specific health challenges can sfill derive meaningful utility from
federated participation. Personalization therefore bridges the gap between collective inteligence
and local relevance, ensuring that federated learning supports not just the global advancement of
healthcare Al but also the nuanced realities of diverse clinical ecosystems (Chen et al., 2021).
Privacy-Preserving Mechanisms in Federated Healthcare
Differential privacy has emerged as one of the most important tools for ensuring confidentiality in
federated healthcare environments (Ziyao Liu et al., 2022). It provides a formal mathematical
framework that guarantees that the conftribution of any single individual within a dataset cannot be
distinguished with high probability, even if adversaries have access to external information. In
practice, this is achieved by injecting carefully calibrated noise info model gradients, updates, or
outputs during the federated training process (Eltaras et al., 2023; Istiaque et al., 2024). The challenge
in healthcare contexts lies in striking a balance between the strength of the privacy guarantee and
the preservation of clinical utility. Excessive noise can obscure subtle but clinically relevant patterns,
particularly in rare disease datasets or small institutional cohorts. To address this, researchers have
proposed adaptive noise calibration, where the magnitude of perturbation varies according to
factors such as dataset size, sensitivity of features, or phase of training (Chen et al., 2025). In some
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approaches, privacy budgets are explicitly fracked, ensuring that cumulative exposure remains

bounded across multiple training rounds. Healthcare-specific adaptations of differential privacy

recognize that different modalities—such as medical images, genomic sequences, and structured

clinical records—present unique risks of re-identfification and thus require tailored calibration

strategies. As a result, differential privacy has become a foundational layer of federated healthcare

learning, embedding rigorous protections intfo the very fabric of model updates while

acknowledging the domain-specific tfrade-offs between data protection and model performance
(Awan et al., 2023; Akter & Shaiful, 2024).

Figure 5: Secure Aggregation in Federated Learning
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Secure aggregation protocols serve as another critical pillar of privacy-preserving federated learning
in healthcare (Manzoor et al., 2024). These protocols ensure that a central server, or any adversary
observing communication, can only access the aggregated sum of client updates rather than
individual contributions. In practice, this means that even if one client’s update were intercepted, it
would be computationally infeasible to isolate its contents without access to the full aggregation
process (Hasan et al., 2024; Wang et al., 2024). This mechanism is especially valuable in clinical
networks where institutions may be hesitant to expose even model parameters derived from sensitive
patient data. By protecting updates during transmission, secure aggregation builds trust among
participants and reduces the attack surface for adversaries. Protocols typically employ random
masking, secret sharing, or distributed key generation to achieve privacy guarantees, ensuring that
no single party—including the central coordinator—can reconstruct the original updates (Aljrees et
al., 2023). The healthcare context adds unique dimensions to the use of secure aggregation, since
participating institutions often differ in computational resources and network reliability. Lightweight
implementations are necessary for hospitals with limited infrastructure, while robust error-handling
ensures that partial failures do not compromise the aggregation process. The presence of secure
aggregation thus transforms federated learning info a fruly collaborative framework, assuring
stakeholders that their contributions cannot be individually scrutinized and thereby lowering barriers
to international cooperation (Abaoud et al., 2023).

Cryptographic technigues such as homomorphic encryption and secure multiparty computation
provide advanced methods for protecting sensitive information in federated healthcare
environments (Tawfiqul et al., 2024; Tarig et al., 2024). Homomorphic encryption allows computations
to be performed directly on encrypted data, meaning that a server can aggregate model updates
without ever accessing their plaintext form. This property ensures strong confidentiality but infroduces
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computational overhead that can become a barrier in resource-constrained clinical settings (Ma et
al., 2020; Subrato & Md, 2024). Multiparty computation, by contrast, distributes computations across
several parties such that no single participant can access the full information, yet the collective
process yields correct outputs. Together, these cryptographic techniques strengthen the security of
federated systems against both external adversaries and semi-honest participants. Their relevance
in healthcare lies in their ability to uphold privacy even in environments where institutions do noft fully
trust one another but still seek the benefits of shared model development (Ashiqur et al., 2025;
Moshawrab et al., 2023). Advances in optimization, compression, and lightweight cryptographic
primitives have made these tools more practical for large-scale deployments, though efficiency
remains a persistent concern. Importantly, these methods are not mutually exclusive but can be
layered with differential privacy and secure aggregation to create multi-tiered defenses. In sensitive
healthcare applications (Hasan, 2025; Rahmati & Pagano, 2025), where breaches carry severe
consequences for patfients and institutions alike, cryptographic methods serve as essential
safeguards that complement and reinforce other privacy-preserving strategies.
Federated Learning in Medical Imaging Applications
Radiology has been one of the most fertile domains for demonstrating the power of federated
learning because of its data-intensive nature and its reliance on highly sensitive patient imaging
records (Sultan et al., 2025; Sandhu et al., 2023). Traditional centralized learning approaches in
radiology often encounter maijor barriers related to the transfer of raw images across institutions,
which is restricted by privacy regulations and logistical challenges. Federated learning addresses this
limitation by enabling cross-institutional collaboration where hospitals and imaging centers can train
models collectively without exchanging raw image data (Lakhan et al., 2023). This framework allows
institutions of varying sizes and resources to contribute to a shared model, pooling their collective
knowledge fo achieve befter diagnostic accuracy and robustness. In practice, federated
approaches have been applied to tasks such as lung disease detection, neuroimaging analysis, and
cardiovascular risk assessment, with institutions reporting significant performance gains compared o
models frained on single-center data (Sanjai et al., 2025; Yang et al., 2023). Cross-institutional
collaboration in radiology also enhances inclusivity, as smaller hospitals with limited datasets benefit
from parficipating in models frained on larger, more diverse imaging cohorts. By respecting privacy
boundaries while enabling broad cooperation, federated learning has become a transformative
mechanism for radiology research networks, creating opportunities to generate clinically useful
models that reflect a wide range of patient populations and imaging modalities (Khan et al., 2025).
One of the most impactful applications of federated learning in medical imaging lies in the domain
of tumor segmentation, lesion detection, and disease classification (Huang et al., 2022).
Segmentation of tumors in modalities such as MRI or CT scans requires access to large, annotated
datasets that capture the variability of tumor shapes, sizes, and imaging condifions across patfients.
Federated learning enables multiple institutions to collaborate on these tasks without pooling raw
data, significantly increasing the statistical power available for model training (Khalil et al., 2023). In
tumor segmentation, federated models have been shown to rival or surpass the accuracy of
centralized models by leveraging diverse data from multiple hospitals. Similarly, lesion detection
tasks, including identifying pulmonary nodules or brain lesions, benefit from federated strategies that
expose the global model to variations in imaging protocols and patient populations (Holzinger et al.,
2023). Disease classification, such as predicting malignancy in oncology or diagnosing chronic
respiratory conditions, also demonstrates improved generalizability when trained on federated
datasets. These tasks are crucial for clinical decision support, where precise detection and
classification directly influence treatment planning and patient outcomes. By uniting scattered
imaging data into a cohesive, privacy-preserving framework, federated learning not only expands
diagnostic capabilities but also accelerates progress in personalized medicine, enabling clinicians
to make better-informed decisions while respecting confidentiality requirements (Holzinger et al.,
2023).
Electronic Health Records (EHRs)
Electronic health records encode rich longitudinal information that is central to clinical prediction
problems such as hospital readmission, in-hospital mortality, length-of-stay, deterioration, and
comorbidity indexing (Zhang et al., 2018). Federated learning reframes these tasks by allowing
instifutions to conftribute to shared models without disclosing raw records, thereby preserving data
stewardship while enlarging the effective training cohort. In practice, sites train local classifiers or
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survival models on structured fields (diagnoses, procedures, medications, laboratory values, vitals,
utilization history) and transmit parameter updates for aggregation (Yang et al., 2022). This
collaborative setup supports common objectives—binary readmission within 30 days, risk of sepsis
onset, cardiovascular events, adverse drug reactions, or composite morbidity scores—while
respecting institutional constraints around patient confidentiality. Methodologically, model families
span penalized generalized linear models for interpretability, gradient-boosted decision frees for
tabular heterogeneity, and deep architectures that can blend structured and free-text notes.
Central concerns include outcome definition harmonization, label latency, and class imbalance,
which are addressed with site-specific reweighting, threshold calibration, and focal losses
communicated through aggregation rather than raw counts (Duan et al., 2019). Calibration is
treated as a first-class metric alongside discrimination; participating hospitals frequently apply post-
aggregation recalibration to align risk estimates with local prevalence while maintaining shared
feature representations. Feature engineering emphasizes robust abstractions that transfer across
coding systems—grouped diagnosis clusters, medication classes, and normalized laboratory
indices—to reduce brittfleness. Governance overlays ensure that covariates with high re-
identification risk are transformed or excluded locally. Across these tasks, federated training reliably
outperforms single-site baselines by capturing broader epidemiologic variability, and approaches
parity with centralized learning when non-identical distributions are handled through appropriate
opfimization and weighting (Xiang et al., 2019). The result is a privacy-preserving pathway for
developing clinically useful predictors of readmission, risk, and comorbidity that are responsive to
local practice patterns yet grounded in multi-institution evidence.

Figure 6: Electronic Health Records Data Integration
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EHR data are inherently temporal, irregular, and mulfi-scale: encounters arrive sporadically,
laboratory panels cluster around episodes of care, and vital signs stream at high frequency during
admissions (Goudarzvand et al., 2019). Federated learning systems must therefore accommodate
sequences with missingness patterns that are informative rather than random. Time-aware
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architectures represent intervals explicitly through decay mechanisms, elapsed-time embeddings,
or continuous-time formulations so that gaps and bursts conftribute signal rather than noise. For
structured streams, models synthesize event tokens (diagnoses, orders, administrations) with
timestamps and values, while textual notes provide narrative context through local embeddings that
remain on site (Wang et al., 2022). To stabilize cross-site training, institutions align units, reference
ranges, and code vocabularies info coarse-grained concepts; remaining discrepancies are
absorbed by representation layers trained collaboratively. Irregular sampling is addressed through
interpolation networks, attention over event sets, or segment-level summarization that produces
compact visit embeddings. Sequence length variation is mitigated through hierarchical encoders
that compress lifetime history into visit- and problem-level summaries before aggregation.
Communication constraints motivate local accumulation of gradients over multiple mini-batches or
curriculum schedules that emphasize high-impact windows (admission, peri-operative, discharge) to
conserve bandwidth (Poongodi et al., 2020). Missingness indicators are modeled explicitly, allowing
the network to learn patterns of ordering behavior and care pathways that correlate with outcomes.
Self-supervised objectives—masked event prediction, contrastive visit representation, next-k-event
forecasting—are trained federatively to pretrain encoders before supervised fine-tuning, improving
data efficiency at smaller sites. Throughout, privacy is preserved by confining tokenized sequences
and raw timestamps fto local infrastructure; only model updates flow outward, optionally with
clipping and noise to bound information leakage. This combination of time-sensitive modeling and
privacy-aware coordination enables robust sequence learning despite the irregularity and
heterogeneity that characterize real-world EHRs (Harerimana et al., 2019).
Because hospitals serve distinct populations and follow different clinical workflows, a single global
model may not capture site-specific nuances in documentation, ordering habits, or resource
availability (Ma et al., 2023). Personalization in federated EHR modeling addresses this by separating
shared representations from adaptable components that reflect local context. Common designs
freeze a global backbone trained across all sites—capturing universal clinical semantics—and
aftach lightweight, site-specific heads that calibrate predictions to local prevalence and practice.
Layer-wise personalization fine-tunes only a subset of parameters (for example, adapters or low-rank
factors) to achieve rapid adaptation with minimal privacy risk and communication cost (Rao et al.,
2022). Multi-task formulations treat each institution as a related task, jointly optimizing a shared
encoder while allowing task-dependent decoders to learn localized decision boundaries. Clustered
personalization groups similar hospitals based on update statistics or proxy covariates, yielding
regional sub-models that balance diversity with statistical efficiency. When label spaces diverge,
mapping layers reconcile local codes to shared concepts while preserving downstream gradients
for local labels that lack global analogs (Zhang et al., 2020). Post-hoc recalibration methods—such
as isofonic or temperature scaling—align risk outputs with site-level outcome frequencies without
perturbing shared features. Personalization also advances equity: institutions with rare disease
caseloads or limited resources adapt the global prior to scarce local evidence, improving ufility
without compromising privacy. From an optimization perspective, constraints or proximal penalties
prevent over-fitting during local adaptatfion, and periodic re-anchoring to the shared backbone
mitigates drift. Collectively, these strategies convert federation from a one-size-fits-all paradigm info
a spectrum where institutions inherit a strong common model yet retain the flexibility to express their
unigue clinical signatures (Meduri et al., 2025).
Comparisons between federated and centralized fraining in EHR contexts hinge on three axes:
predictive performance, calibration and fairness, and operational feasibility (Meduri et al., 2025).
When data distributions across sites are moderately aligned and non-identical effects are handled
through weighted aggregation or proximal optimization, federated models typically achieve
discrimination metrics close to centralized counterparts while substantially outperforming single-site
models. In highly heterogeneous settings, centralized pooling can enjoy a small advantage in
discrimination, but this gap narrows with personalization layers, client clustering, and robust
aggregation (Gupta et al., 2020). Calibration often favors localized post-processing: federated
models supply well-structured features, and sites apply lightweight recalibration to achieve reliable
absolute risk estimates. Fairness assessments examine subgroup performance by age, sex, race,
language, or insurance status; federation broadens exposure to diverse cohorts and reduces over-
fitting fo dominant populations, though auditing remains essential to detect site-specific disparities.
Operationally, centralized pipelines face legal agreements, de-identification costs, and data
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transfer risks that grow super-linearly with partners, whereas federated pipelines exchange only
updates and thus reduce governance friction (Siebra et al., 2024). Communication and
cryptographic overheads are real but predictable, and can be amortized through periodic
averaging, update compression, and client sampling. Privacy-enhancing measures impose
accuracy frade-offs; nonetheless, for many readmission and risk tasks, carefully calibrated noise and
secure aggregation retain clinically acceptable performance. Importantly, external validation
across non-participating hospitals tends to favor models trained with federated diversity, reflecting
resilience to covariate shift. Taking these dimensions together (Ziyi Liu et al., 2022), federation offers
a pragmatic equilibrium: performance approaching centralized training, markedly better than
single-site baselines, with superior privacy alignment and cross-system scalability—attrioutes that are
particularly salient when collaborating institutions span jurisdictions and infrastructures
Biosignals and Wearable Data
Federated learning has gained particular traction in biosignal domains where confinuous
cardiopulmonary and neurological monitoring generates high-volume, privacy-sensitive data
(Gahlan & Sethia, 2025). Cardiovascular use cases include arrhythmia detection from single-lead
and multi-lead electrocardiography, photoplethysmography-based estimation of heart rate
variability, atrial fibrillation screening, heart failure decompensation risk stratification, and
cardiorespiratory fitness assessment using wearable signals and contextual activity features.
Respiratory applications leverage plethysmography waveforms (Jiang et al., 2025), acoustic sensors,
and accelerometry to characterize breathing rate, variability, cough burden, and nocturnal
desaturation profiles relevant to chronic obstructive pulmonary disease and sleep-disordered
breathing. In neurology, wearable and near-wearable systems capture electroencephalography for
seizure detection, inertial signals for fremor quantification in movement disorders, and multimodal
sfreams for gaif, balance, and freezing episodes. These tasks benefit from diverse signal
morphologies arising from differences in anatomy, comorbidities, device placement, and lifestyle—
diversity that typically resides across many institutions and vendors. Federated learning aligns with
this distribution by training shared models on locally held waveforms and derived features (Li ef al.,
2024), so that rare patterns—paroxysmal events, subtle prodromal changes, or medication side
effects—contribute fo model capacity without exposing raw telemetry. Methodologically, pipelines
combine waveform preprocessing (filtering, beat detection, artifact suppression), hand-crafted
temporal features (time—frequency descriptors, morphological indices), and representation learning
via convolutional or transformer encoders that operate on fixed windows or event segments.
Sequence-aware objectives accommodate sparsely labeled events by pairing weak labels (e.g.,
device-flagged episodes) with adjudicated subsets, while class imbalance is addressed through
focal or cost-sensitive losses applied locally and harmonized during aggregation. Evaluation
emphasizes patient-level sensitivity and false alarm burden, calibration across device cohorts, and
robustness to motion artifacts and skin-contact variability (Alzakari et al., 2024). By situating learning
at the source, federated approaches reduce the need to cenftralize raw biosignals—often the most
identifying layer of personal physiology—yet sfill capture cross-population regularities essential for
clinically reliable cardiopulmonary and neurological monitoring.
Mobile phones, smartwatches, adhesive patches, and home loT devices create a naturally
federated landscape where computation, storage, and sensing co-locate with the individual (Jin et
al., 2025). Distributed learning in this setting must reconcile intermittent connectivity, constrained
compute, battery limits, and heterogeneous hardware while coordinating thousands to millions of
clients. Orchestration commonly relies on event-driven rounds scheduled during charging, Wi-Fi
availability, or low-usage windows, with partial participation to accommodate churn.
Communication efficiency is a first-order design goal: model update size is reduced via sparsification
(Zeleke & Bochicchio, 2024), quantization, sketching, and low-rank adapters, often combined with
periodic averaging to amortize uplinks. Asynchronous or semi-synchronous schemes prevent
stragglers from stalling progress, while hierarchical federation aggregates at local gateways (e.g.,
home hub or clinic server) before contributing to a regional or global coordinator, reducing long-
haul fraffic and enforcing data locality fiers. On-device learning emphasizes privacy by keeping raw
sfreams—accelerometry, gyroscope, PPG, ECG, ambient audio features—on the device; only
clipped and possibly noised gradients leave the perimeter. To counter non-stationarity in daily life,
client drift controls and replay buffers stabilize opfimization when behavior, medication, or
environment shift abruptly (Elbachir et al., 2024). Self-supervised pretraining on-device (masked
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waveform reconstruction, confrastive segments, predictive coding) extracts structure from

unlabeled windows, enabling downstream fine-tuning for tasks such as fall detection, apnea events,

or arrhythmia classification with relatively few clinician-verified labels. Sensor fusion strategies align

asynchronous modalities through learned time warping, attention over event sets, and late-fusion

heads that tolerate missing channels. Reliability layers include out-of-distribution detectors and

confidence-aware heads to throttle alerts when signal quality degrades. Throughout, telemetry

governance is encoded in client policies that bound training frequency, cap uplink volume, and

enforce retention limits for infermediate features (Zhang et al., 2024). The result is a distributed

learning substrate that respects the operational realities of mobile and loT sensors while enabling
statistically powerful, privacy-preserving model improvement across broad user bases.

Figure 7: Federated Learning Framework for Privacy-Preserving Biosignal Monitoring
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Streaming biosignals from personal devices raise distinct privacy challenges that extend beyond
traditional health records (Supriya et al., 2023). Continuous telemetry can reveal routines, locations,
social interactions, sleep-wake cycles, and sensitive health states; even when identifiers are
removed, linkage attacks across time, devices, or auxiliary datasets can re-associate signals with
individuals. In federated pipelines, the primary exposure shifts from raw data to update streams,
which remain vulnerable to inference risks such as membership and property inference or gradient-
based reconstruction if safeguards are weak. Timing channels may leak engagement patterns, while
per-round participation itself can become a quasi-identifier for rare conditions (Umair et al., 2023).
Robust privacy engineering therefore layers mulfiple controls: transport-level encryption to protect
updates in flight; secure aggregation so that only masked sums are visible to coordinators; clipping
to bound the sensitivity of any single client’s confribution; and calibrated noise addition that enforces
user-level privacy budgets over many rounds. Because streaming contexts can involve frequent
participation, longitudinal privacy accounting must prevent cumulative exposure from eroding
guarantees, with opt-out and consent refresh mechanisms that respect dynamic preferences.
Device co-use in households, shared phones, or caregiver-patient pairings introduces additional
ambiguity about data provenance and authorization, motivating on-device access controls and
audit logs that are human-readable (Umair et al., 2023). Side-channel protections address sensor
fingerprints and model-update metadata that could reveal device type or condition category.
Policy constraints limit retention of infermediate features, prohibit raw audio or high-fidelity waveform
export, and require on-device redaction of background speech or personally revealing arfifacts
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extracted from ambient sensors. Finally, privacy must be balanced with safety: designs incorporate
local anomaly detection and clinician-visible summaries without exposing granular fraces beyond
the individual's control. In aggregate, these measures acknowledge that personal biosignals are
among the most identifying forms of data and that privacy assurance in sireaming contexts depends
on careful protocol design as much as on formal guarantees (Whig et al., 2025).
Federated Approaches in Genomics and Multi-Omics Data
Genomics and other omics disciplines generate data of extreme dimensionality, offen containing
millions of features per sample (Perakakis et al., 2018). Whole genome sequences, transcriptomic
profiles, proteomic quantifications, and metabolomic signatures present an analytical space where
the number of variables far exceeds the number of individuals. This imbalance creates unique
computational and stafistical challenges for federated learning. Traditional machine learning
algorithms can overfit quickly when faced with high-dimensional omics data, producing models that
fail to generalize across institutions or populations (Kaur et al., 2021). Within a federated framework,
the problem is compounded by non-identfical data distributions across laboratories, differences in
sequencing platforms, and variability in pre-processing pipelines. Dimensionality reduction strategies,
such as feature selection, autoencoders, and embedding methods (Tsimenidis et al., 2022), are often
infegrated into federated workflows to address these concerns. These methods allow participating
instifutions fo exchange compressed representations rather than raw, high-dimensional vectors,
which reduces communication overhead while maintaining informative content. Additionally,
federated optimization algorithms must manage the instability that arises from sparse but large-scale
features, ensuring that local updates do not diverge dramatically from the global objective. The
challenge of high-dimensionality in omics datasets highlights the need for architectures capable of
balancing efficiency, stability, and accuracy while preserving the privacy of participants. As
federated learning matures (Mirza et al., 2019), its capacity to manage this scale of complexity
positions it as a uniquely powerful tool for genomics research where traditional centralized data
sharing remains impractical.

Figure 8: Federated Learning in Genomic Integration
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Collaboration across research laboratories and clinical centers is essential in genomics, as no single
instifution can capture the diversity and scale of data needed for robust biological discovery (Ng et
al., 2023). Yet, sharing raw genomic sequences presents profound privacy concerns, given that DNA
is inherently identifiable and immutable. Federated learning provides a mechanism for laboratories
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to collaborate on model training without disclosing raw sequences, thus preserving participant
confidentiality. Under this paradigm (Dhondalay et al., 2018), each laboratory processes its genomic
data locally, extracting features such as single nucleotide variants, expression levels, or methylation
patterns, and confributes only model updates to a central aggregator or peer-to-peer system. This
structure allows institutions to retain control over raw data while benefiting from the statistical power
of mulfi-center collaboration. Importantly (Wang, 2018), federated systems also facilitate
standardization across laboratories by encouraging consistent model architectures and fraining
objectives, even when local preprocessing pipelines differ. Cross-laboratory federated collaboration
thus enhances reproducibility and accelerates discovery by pooling knowledge while circumventing
the ethical and legal barriers associated with genomic data exchange. In practice, this means that
large-scale studies of polygenic risk, molecular subtyping, or biomarker discovery can be conducted
at a global level, with diverse laboratories contributing to the same federated initiative (El-
Manzalawy et al.,, 2018). The result is a collaborative ecosystem where valuable insights are
generated collectively, yet raw genomic sequences remain securely within the originating institution.
Rare diseases represent an area where federated learning in genomics has tfransformative potential
(Agarwal et al., 2024). Because cases are distributed sparsely across the globe, no single institution
typically has enough data to train effective predictive or diagnostic models. Federated approaches
allow geographically dispersed hospitals and laboratories to pool analytical capacity without
sharing raw genomic sequences, thereby enabling the study of rare variants and disease signatures
that would otherwise remain underpowered (Almutiri et al., 2024). By aggregating insights from
distributed cohorts, federated models can detect subtle genotype—-phenotype relationships and
provide more accurate assessments of pathogenicity. This collaborative model also advances
equity, ensuring that patients with rare conditions are not excluded from the benefits of genomic
medicine due to the scarcity of cases af individual sites (Walach et al., 2018). Beyond rare diseases,
federated learning also confributes to broader population genomics by facilitating the inclusion of
diverse ancestral groups. Tradifional centralized datasets often underrepresent populations from low-
resource seftings, which can exacerbate health disparities in genetic risk prediction. Federated
parficipation allows global cohorts to confribute to model development without relinquishing
sovereignty over sensitive data, generating insights that are more representatfive of humanity's
genomic diversity (Torres-Martos et al., 2023). These applications demonstrate how federated
learning simultaneously addresses the dual challenges of data scarcity in rare conditions and
inclusivity in population genomics, offering a more comprehensive approach to understanding
human genetic variation.
Federated learning in genomics requires navigating a complex landscape of computational
efficiency and privacy preservation (Chafai et al., 2024). Genomic data are not only high-
dimensional but also highly sensitive, raising the stakes for privacy leakage during model training.
Techniques such as differential privacy, secure aggregation, and homomorphic encryption can
safeguard data, but they impose computational overnead that may slow convergence and
increase communication costs. In high-throughput environments, where lIaboratories process
thousands of samples, this overhead can become a bottleneck (Chafai et al., 2024). Conversely,
prioritizing speed and efficiency without adequate safeguards risks exposing sensitive genetic
information, with consequences that extend beyond the individual to biological relatives. Balancing
these competing demands is therefore central to federated genomic analysis. Compression
strategies, gradient clipping, and adaptive noise calibration are employed to reduce computational
load while preserving meaningful information. Hybrid approaches that combine partial encryption
with selective differential privacy provide flexible layers of protection tailored to the specific sensitivity
of genomic features. Importantly (Ahmed et al., 2024), privacy-preserving strategies must account
for the longitudinal nature of genomics research, where models may be retrained or reused multiple
times across studies, accumulating potential leakage. Successful federated genomics frameworks
are those that integrate strong privacy assurances with practical efficiency, enabling large-scale,
collaborative discovery while maintaining frust among participants (Alemu et al., 2025). The trade-
offs between utility and privacy are noft static but context-dependent, requiring careful calibration
to ensure that federated genomic models remain both scientifically valuable and ethically
responsible.
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Adversarial Threats and Privacy Risks in Healthcare FL

Gradient inversion and reconstruction attacks represent some of the most prominent threats to
privacy in federated learning, particularly in sensitive healthcare contexts (Yang et al., 2025). These
aftacks exploit the gradients or weight updates shared during collaborative fraining rounds to
reconstruct original data samples or approximate patient-specific records. In medical imaging, for
instance, adversaries can reverse-engineer pixel-level structures from gradients, revealing diagnostic
features that may correspond to actual patients. Similarly (Hatamizadeh et al., 2023), in electronic
health records, reconstructed values from updates can disclose sensitive demographic or clinical
afttributes, undermining the confidentiality promised by federated frameworks. The risk is heightened
when small batch sizes are used, as gradients then encode stronger signals about individual
examples, making inversion more feasible. Attackers can also leverage side information, such as
statistical distributions of features or auxiliary public datasets (Dibbo et al., 2024), to refine
reconstructed outputs and improve fidelity. To mitigate these threats, federated learning
implementations often incorporate gradient clipping, noise addition, or secure aggregation, but
these strategies require careful calibration to avoid impairing model performance. The persistence
of gradient inversion as a credible attack vector illustrates the fundamental tension in federated
learning: updates must be sufficiently informative to allow model convergence but not so revealing
that they compromise privacy. This challenge is partficularly acute in healthcare, where data points
often represent rare conditions or highly unique patient trajectories, making them more vulnerable

to re-identification if reconstructed (Zheng et al., 2024).

Figure 9: Privacy Attacks in Federated Learning
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Membership inference and property inference attacks present another class of adversarial risks in
federated healthcare learning (Gong et al., 2023). Membership inference focuses on determining
whether a specific individual's data was used during model training, which in healthcare could
expose participation in sensitive cohorts, such as individuals with stigmatized conditions or rare
diseases. Property inference, by contrast, aims to extract latent attributes of the training data beyond
the infended prediction task. For example, an adversary might infer the proportion of patients with
a particular genetic marker, comorbidity (Qiu et al., 2024), or demographic characteristic within a
contributing institution. Both types of attacks exploit subtle patterns embedded in model updates or
outputs, capitalizing on overfitting or distributional signals that leak unintended information. The
implications in healthcare are particularly concerning: membership inference could compromise
patient confidentiality even when no raw data are shared, while property inference could reveal
instifutional-level statistics that violate agreements or expose vulnerabilities (Nielsen et al., 2022).
These risks demonstrate that federated learning does not inherently eliminate the possibility of
leakage; rather, it shifts the surface of exposure from raw data transfer to learned representations.
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Defensive strategies include the use of differential privacy to obfuscate participation signals,
adversarial regularization to reduce overfitting, and secure aggregation to mask individual
contributions. However, striking a balance remains challenging, as stronger defenses often infroduce
utility losses that may degrade clinical relevance. The persistence of these risks underscores the
importance of robust evaluation protocols that measure not only accuracy but also susceptibility to
inference attacks when federated models are deployed in medical environments (Gao et al., 2024).
METHODS
This study adhered to the Preferred Reporting ltems for Systematic Reviews and Meta-Analyses
(PRISMA) guidelines to ensure a fransparent, structured, and reproducible methodology in reviewing
the literature on federated learning for privacy-preserving healthcare data sharing and its role in
enabling global artificial intelligence collaboration. The PRISMA framework was selected because it
provides a standardized reporting structure that minimizes bias, enhances clarity, and allows other
researchers to assess the validity of the review process. Following PRISMA's four-phase flow—
identification, screening, eligibility, and inclusion—ensured that the analysis of federated learning in
healthcare was both comprehensive and rigorous.The identification phase began with a broad
search of electronic databases, including PubMed, IEEE Xplore, Scopus, ACM Digital Library, and
Web of Science, to capture the widest possible range of peer-reviewed literature. Keywords and
controlled vocabulary terms were constructed around the concepts of “federated learning,”
“"healthcare data sharing,” “privacy-preservation,” and “global collaboration.” Boolean operators
and truncations were applied to maximize sensitivity, while filters for publication years and language
were employed to ensure relevance. Grey literature sources such as preprint servers, conference
proceedings, and institutional reports were also examined to minimize publication bias. This
comprehensive strategy ensured that both seminal contributions and emerging studies in federated
healthcare were captured in the review.During the screening phase, duplicate records were
removed, and remaining articles were assessed by fitles and abstracts against predefined eligibility
criteria. Inclusion criteria focused on studies that explicitly applied federated learning in healthcare
contfexts with an emphasis on privacy-preservation, multi-institutional or international collaboration,
and performance evaluation of federated approaches compared to centralized or single-site
learning. Exclusion criteria were applied to papers that discussed federated learning only in
theoretical terms without healthcare applications, lacked methodological transparency, or
provided commentary without empirical evidence. Two independent reviewers screened the
records, with disagreements resolved through discussion to maintain objectivity and reduce reviewer
bias.
In the eligibility phase, full-text articles were retrieved and examined in detail to confirm alignment
with the study’s aims. Each article was assessed for methodological rigor, clarity of reporting, and
relevance to the overarching themes of federated learning architectures, privacy-preserving
mechanisms, healthcare data modalities, and global collaboratfion. Studies that failed to meet
quality thresholds or did not provide sufficient empirical or conceptual depth were excluded. The
use of standardized data extraction forms during this stage helped ensure consistency across
reviewers and facilitated the synthesis of findings across diverse study designs.Finally, in the inclusion
phase, the eligible studies were compiled, and the data were charted to reflect the scope of
federated learning research in healthcare. Key variables extracted included study objectives,
healthcare domain, data modality, federated learning algorithms employed, privacy-enhancing
technologies integrated, and outcomes measured. Special attention was given to whether studies
reported international or multi-institutional collaboration, as this aligns directly with the theme of
global Al integration. The PRISMA flow diagram was constructed to fransparently report the number
of records idenfified, screened, excluded, and ultimately included in the final synthesis.By adhering
to PRISMA, this study provides a systematic, rigorous, and replicable review of federated learning in
privacy-preserving healthcare data sharing. The process not only ensures methodological
fransparency but also enhances the credibility of the synthesis, offering a robust evidence base to
understand how federated learning supports secure, equitable, and collaborative advances in
global healthcare Al.
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Figure 10: Adapted Methodology For This Study
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FINDINGS

From the reviewed body of 124 artficles, one of the most significant findings was the consistent
demonstration that federated learning architectures have advanced from conceptual frameworks
info practical implementations in healthcare. Of these, 39 articles specifically focused on server—
client orchestration frameworks, while 15 arficles explored decentralized or peer-to-peer variants
designed to eliminate single points of failure. Collectively, these works have accumulated more than
4,600 citations, underscoring their substantial influence within both the computer science and
biomedical informatics communities. The analysis revealed that server—client models remain
dominant because they are easier to implement and scale, especially for hospital consortia with
limited technical resources. However, peer-to-peer approaches, though less common, received
significant attention in 12 highly cited studies with over 1,200 combined citations, suggesting growing
momentum toward decentralized collaboration. Across the literafure, findings emphasize that
healthcare adoption is not merely driven by accuracy gains but by architectural flexibility that
accommodates diverse infrastructures across institfutions. This focus demonstrates that federated
learning is no longer experimental but an increasingly standardized method for enabling distributed
healthcare analytics on a global scale.
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Figure 11: Injury Distribution Across Age Categories
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Another major finding from the review is the central role of privacy-preserving mechanisms,
examined in 68 of the 124 reviewed articles. These studies reported on strategies such as differential
privacy, secure aggregation, and homomorphic encryption, with combined citation counts
exceeding 5,200 citations, indicating strong scholarly recognition. Within this subset, 22 arficles
evaluated differential privacy, amassing over 2,000 citations, and consistently demonstrated its
effectiveness for bounding information leakage. Meanwhile, 18 articles investigated secure
aggregation protocols with more than 1,500 citations, showing that aggregation masking has
become a de facto standard in medical federated learning pilots. Homomorphic encryption and
multiparty computation were the focus of 11 articles with nearly 900 citations, often praised for their
theoretfical guarantees but critiqued for computational overhead in real-world clinical setftings.
Notably, 17 review and survey papers devoted exclusively to privacy-preservation strategies
accumulated over 800 citations, reflecting a growing demand for synthesized knowledge in this
domain. The findings indicate that while technical safeguards are widely integrated info federated
healthcare frameworks, insfitutions confinue to grapple with the trade-off between model
performance and strict privacy guarantees. This balance emerges as a recurring theme across the
literature and highlights privacy-preservation not just as a technical supplement but as the core
philosophy guiding federated healthcare applications worldwide.

The review identified 71 articles that directly tested federated learning in domain-specific healthcare
applications, comprising medical imaging, electronic health records, and biosignal data. These
application-criented works collectively accumulated more than 6,400 citations, illustrating their
impact on both technical and clinical communities. Medical imaging was by far the most studied
modality, with 33 articles reporting on federated learning for tasks such as tumor segmentation, lesion
detection, and disease classification. Together, these articles generated over 3,200 citations,
indicating their foundational role in validating federated methods against high-stakes clinical
benchmarks. Electronic health record applications were explored in 24 studies with more than 2,000
citations, where predictive modeling for readmission risk, mortality, and comorbidity indices were
consistently improved through cross-institutional collaboration. Meanwhile, biosignal and wearable-
based applications were investigated in 14 arficles accumulating nearly 1,200 citations, focusing on
cardiopulmonary monitoring, neurological assessments, and chronic disease management. Across
these domains, findings highlighted that federated learning models often matched or exceeded the
performance of cenfralized baselines while maintaining compliance with privacy requirements. The
body of evidence from these application-specific studies demonstrates that federated learning is
not a theoretical construct but a functional tool with measurable impact in diverse clinical domains,
enabling global collaboration while respecting local constraints.

A crifical finding from the review was the documentation of adversarial risks and vulnerabilities, which
were explicitly examined in 27 of the reviewed articles. These works accounted for over 1,700
citations, reflecting the recognition of security concerns as a vital area of federated healthcare
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research. Among these, 11 arficles focused on gradient inversion and data reconstruction,
collectively cited more than 600 times, providing empirical demonstrations of how model updates
could leak identifiable information. 8 studies concentrated on membership inference and property
inference risks, accumulating nearly 500 citations, with consistent findings that even privacy-
enhanced models remain partially vulnerable under adversarial conditions. Furthermore, poisoning
and backdoor attack scenarios were tested in 5 articles with around 350 citations, showing that
malicious updates could compromise the diagnostic integrity of global models. Case study-oriented
investigations in 3 multi-hospital experiments reported vulnerabilities in federated imaging systems,
contributing over 250 citations and drawing attention to risks in real-world deployments. The findings
collectively suggest that adversarial risks remain a persistent concern, demanding layered
safeguards and governance protocols. More importantly, the prominence of these studies in citation
meftrics reveals that the research community considers adversarial resilience as essential to the
credibility of federated learning in healthcare.
The most significant overarching finding of the review is the evidence that federated learning fosters
meaningful global collaboration across institutions and countries. Of the 124 reviewed articles, 42
explicitly described mulfi-institutional collaborations, and these alone generated more than 4,800
citations, confirming their prominence in the field. Within this group, 19 arficles reported results from
international hospital consortia, conftributing over 2,100 citations and demonstrating that federated
models can be trained across varied regulatory and infrastructural environments. 14 articles focusing
on national-scale collaborations produced more than 1,500 citations, while 9 multi-laboratory
genomic studies added another 1,200 citations to the evidence base. Findings consistently showed
that smaller institutions gained disproportionately from participation, as federated models improved
performance for data-scarce sites without requiring them to surrender control over their data.
Moreover, global collaborations facilitated inclusion of diverse populations, leading fo better model
generalizability and equity across demographic groups. These results highlight that federated
learning is not only a technical achievement but also a socio-technical framework that enables
cooperation where traditional data sharing is legally or ethically constrained. By quantifying both the
number of reviewed articles and their citation impact, the evidence demonstrates that federated
learning is increasingly positioned as a cornerstone of privacy-preserving global Al collaboration in
healthcare.
DISCUSSION
The findings of this review indicate that federated learning architectures have advanced beyond
proof-of-concept demonstrations to achieve tangible integration within healthcare ecosystems
(Moshawrab et al., 2023). Earlier studies primarily emphasized the theoretical benefits of
decentralizing computation and highlighted privacy-preservation as an abstract goal. In contrast,
the reviewed literature reveals a more mature stage of development, where server—client
frameworks dominate real-world deployments while peer-to-peer architectures are increasingly
explored for resilience and decentralization (L. Li et al., 2020). This progression demonstrates a shift
from foundational proposals toward concrete clinical applications. Compared to earlier research
that focused narrowly on algorithmic feasibility, the reviewed studies place greater emphasis on
scalability across hospital networks, robustness to heterogeneous infrastructures, and compliance
with privacy regulations (Zhu et al., 2021). The comparative analysis reveals that the initial skepticism
surrounding the practicality of federated learning in healthcare has gradually diminished, as mulfi-
institutional projects show empirical evidence of utility. This fransition underscores the growing trust in
federated approaches as more than experimental prototypes, positioning them as viable solutions
for addressing the long-standing fragmentation of healthcare data (Tarig et al., 2024).
In examining privacy-preserving strategies (Wahab et al., 2021), this review found that differential
privacy, secure aggregation, and cryptographic protocols now represent central pillars of federated
healthcare research. Earlier works frequently discussed these methods as independent safeguards,
often in isolated technical contexts without healthcare-specific validation. By confrast, current
studies increasingly integrate these mechanisms into federated healthcare frameworks, adapting
noise calibration, aggregation protocols, and homomorphic operations to domain-specific
challenges such as medical imaging or genomic analysis (Rahman et al., 2021). Compared with prior
literature that questioned whether these techniques could operate at scale, the reviewed studies
show evidence of successful deployment across multi-hospital consortia, suggesting improved
practicality (Nguyen, Ding, Pathirana, et al., 2021). Furthermore, while earlier debates framed privacy
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as an obstacle to performance, the current evidence demonstrates more balanced approaches

where models achieve clinically acceptable accuracy even under strict privacy constraints. This

comparative shift indicates a refinement of methodologies from abstract proofs to real-world

healthcare applications, where the interplay of privacy and utility is operationalized rather than
theoretical (Shaheen et al., 2022).

Figure 12: Future Directions in Federated Learning
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The reviewed literature provides strong evidence that federated learning is highly effective in
domain-specific applications such as medical imaging, electronic health records, and biosignals (Ji
et al., 2024). Earlier studies often used simulated datasets or restricted test environments, limiting their
external validity. In contrast, the body of recent work demonstrates real-world deployments,
parficularly in radiology, where federated models rival or surpass centralized baselines in tumor
segmentation, lesion detection, and disease classification (Abreha et al., 2022). Compared with prior
efforts that primarily examined imaging, the current literature expands significantly info EHRs and
biosignails, illustrating predictive modeling for readmission, mortality, and chronic disease monitoring.
This marks a notable departure from earlier narrow applications toward broader, multimodal
integration (Ratnayake et al., 2023). The comparative analysis shows that federated learning now
functions across a spectrum of healthcare domains, overcoming earlier doubts about whether the
method could extend beyond image-based tasks. The findings reveal that federation not only scales
fo new data types but also provides equitable benefits for institutions with smaller datasets,
reinforcing its practical significance in diverse clinical contexts (Ogundokun et al., 2022).

One of the more striking findings is the increased attention to adversarial risks in federated
healthcare, which contrasts with earlier studies that offen assumed collaborative participants would
behave honestly (Hanser, 2023). The current evidence shows that gradient inversion, membership
inference, and poisoning attacks are not hypothetical but demonstrably achievable, even under
partially protected settings (Witt et al., 2022). Earlier literature largely freated such risks as theoretical
edge cases, whereas contemporary studies empirically validate vulnerabilities in medical imaging
and EHR tasks. Compared with these earlier assumptions of security, the reviewed articles emphasize
the need for layered safeguards (Liu et al., 2023), including secure aggregation and adversarial
regularization. The comparative insight here is that federated learning is no longer considered
inherently safe by design; rather, it is recognized as a system requiring continuous defense against
evolving threats. This shiff reflects a maturation of the field, where optimism has been tempered by
empirical demonstrations of vulnerability (Qammar et al., 2023), and solutions are framed not only in
technical terms but also in governance and ethical dimensions.

A key theme identified in this review is the role of federated learning in enabling global collaboration,
particularly in supporting smaller or resource-limited institutions (Gosselin et al., 2022). Earlier studies
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speculated about the potential of federated learning to bridge disparities but lacked empirical
validation. In contrast, the reviewed articles provide evidence that federated models indeed
improve performance for smaller hospitals while maintaining fairness across diverse populations
(Kumar & Singla, 2021). Compared with prior literature that focused on technical feasibility, current
findings highlight inclusivity and equity as central outcomes. For example, multi-institutional
collaborations demonstrate that rare diseases and underrepresented groups are better captured
when models are trained across diverse populations (Rahman et al., 2023). This contrasts with earlier
studies that implicitly assumed uniform benefits across institutions without systematically evaluating
equity. The comparative analysis suggests a shift from theoretical aspirations toward demonstrated
global utility, reinforcing federated learning as both a technical innovation and a socio-technical
framework for equitable healthcare Al (Jiang et al., 2020).
Earlier studies frequently presented privacy and utility as opposing forces, implying that stronger
protections would inevitably degrade clinical performance (Briggs et al., 2021). The findings of this
review suggest a more nuanced reality. Recent work demonstrates that careful calibration of privacy
budgets, hybrid mechanisms combining differential privacy with cryptographic safeguards, and
task-specific personalization strategies can maintain accuracy while ensuring robust protections (Gu
et al., 2023). This contrasts with earlier literature, where trade-offs were often presented in absolute
terms. The current evidence highlights adaptive strategies that allow institutions tfo achieve
acceptable balances between security and predictive reliability (Bao & Guo, 2022). Compared with
prior research that emphasized the theoretical limitations of privacy-preserving techniques, the
reviewed studies focus on practical configurations that align with regulatory expectations and
clinical needs. This comparative shift from rigid dichotomies to adaptive balancing illustrates the
increasing sophistication of federated healthcare research, where privacy is viewed not as a barrier
but as a design principle integrated info performance optimization (Rey et al., 2022).
The final theme concerns the growing recognition that federated healthcare learning cannot be
sustained solely through technical safeguards but requires governance, standards, and
accountability structures (Ullah et al., 2023). Earlier works offen emphasized algorithms without
considering inferoperability standards, regulatory frameworks, or ethical oversight. In confrast,
current studies situate federated learning within broader infrastructures, including health data
exchange standards, privacy regulations, and institutional trust agreements (Chowdhury et al., 2021).
The comparative insight here is that while earlier research framed governance as an external
constraint, the present evidence integrates governance as an internal dimension of system design.
This demonstrates an evolution from purely technical discourses toward holistic frameworks that
combine algorithms, security, interoperability (Gahlan & Sethia, 2025), and ethics. The comparative
analysis underscores that federated learning in healthcare is not just a computational method but
part of a socio-technical system requiring both innovation and accountability. This recognifion
reflects a deeper alignment between the promises of federated Al and the realities of global
healthcare practice (Beltrdn et al., 2024).
CONCLUSION
Federated learning for privacy-preserving healthcare data sharing represents a transformative
approach to advancing artificial inteligence in medicine by reconciling the long-standing tension
between innovation and confidentiality. The review of existing evidence shows that this paradigm
has progressed well beyond theoretical discourse, with practical deployments across medical
imaging, electronic health records, biosignals, and genomic data demonstrating tangible benefits
for predictive accuracy, diagnostic support, and clinical decision-making. Unlike traditional
centralized methods, federated learning ensures that sensitive patient data remain under local
stewardship while enabling multi-institutional and international collaboration, thereby addressing
both ethical and regulatory concerns that have historically limited large-scale data sharing. The
integration of privacy-preserving mechanisms such as differential privacy, secure aggregation, and
cryptographic computation has further solidified federated learning as a trustworthy method for
collaborative model development, while adaptive strategies allow institutions of varying sizes and
resources to participate equitably. At the same fime, growing awareness of adversarial threats has
shifted the field toward more resilient, layered safeguards that combine technical protections with
governance and accountability frameworks. Importantly, federated learning not only facilitates
broader representation of global populatfions but also reduces disparities by allowing smaller or
resource-limited institutions to benefit from shared intelligence without relinquishing autonomy.
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Collectively, these findings establish federated learning as a cornerstone of privacy-conscious global
Al collaboration in healthcare, one that aligns technical innovation with social responsibility and
provides a sustainable pathway for building equitable, secure, and high-performing medical
intelligence systems.
RECOMMENDATIONS
Based on the synthesis of findings, it is recommended that future initiatives in federated learning for
privacy-preserving healthcare data sharing prioritize the integration of technical, ethical, and
organizational dimensions to maximize its global impact. Healthcare institutions should adopt
standardized frameworks for interoperability, including common data models and harmonized
coding practices, to ensure that federated systems can function seamlessly across diverse
infrastructures. Equally important is the implementation of layered privacy-preserving mechanisms—
such as differential privacy, secure aggregation, and cryptographic computation—calibrated to
balance clinical utility with confidentiality. Policymakers and regulatory bodies should provide clear
guidance on cross-border data collaboration, reinforcing legal compliance while supporting
innovation. Investment in robust governance structures, fransparency protocols, and confinuous
auditing mechanisms is essential to foster tfrust among participants and safeguard against adversarial
risks. Academic and clinical research communities should also focus on building federated learning
consortia that include smaller and resource-limited institutions, ensuring equity and representation in
the development of global models. Training programs and capacity-building initiatives must be
established to equip healthcare professionals, data scientists, and administrators with the skills
required to deploy and monitor federated systems effectively. Finally, international collaboration
should be encouraged through strategic partnerships that align technical innovation with social
responsibility, positioning federated learning not merely as a computational tool but as a cornerstone
of sustainable, secure, and inclusive global healthcare Al.
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