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ABSTRACT

In human physiology, the liver is a vital organ responsible for performing critical
functions such as bile production, bilirubin excretion, metabolism of proteins and
carbohydrates, enzyme activation, glycogen storage, and plasma protein
synthesis. However, it is highly susceptible to damage due to alcohol consumption,
certain medications, and poor dietary habits. Traditional diagnostic methods for
liver disorders, including blood tests and imaging, are time-consuming and costly,
often delaying crucial treatment. This study infroduces a machine learning-based
prognostic framework to enhance the speed and accuracy of liver disease
diagnosis. The proposed approach integrates advanced algorithms, including
Random Forest, Gradient Boosting, XGBoost, and LightGBM, combined with an
ensemble voting method to leverage their complementary strengths. Preprocessing
fechniques such as Principal Component Analysis (PCA) for dimensionality
reduction and Synthetic Minority Oversampling Technique (SMOTE) to address class
imbalance were employed to refine the dataset. Evaluation metrics like precision,
recall, Fl1-score, accuracy, and ROC-AUC revealed the ensemble model’s superior
performance, achieving the highest accuracy of 98% and a ROC-AUC of 0.9963,
significantly outperforming individual models. This study offers a scalable and cost-
effective solution that reduces diagnostic time and improves predictive reliability.
The framework provides significant advantages for medical applications, serving as
a decision support tool to aid healthcare professionals in timely and accurate liver
disorder diagnosis, particularly in resource-limited settings.
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INTRODUCTION
Liver disorders affect an estimated 2 billion individuals globally, with conditions such as cirrhosis,
hepatitis, and nonalcoholic fatty liver disease (NAFLD) contributing to over 2 million deaths annually
(G. L. C. Collaborators, 2021; Dyson & Hudson, 2020). These conditions are among the leading causes
of morbidity, imposing a significant burden on healthcare systems worldwide. Early diagnosis and
timely intervention are crucial for mitigating severe complications, yet current diagnostic
approaches, which rely heavily on blood tests and imaging, remain time-intensive, expensive, and
often inaccessible in resource-limited healthcare setftings (Asrani, Devarbhavi, Eaton, & Kamath
2021). Consequently, delayed interventions exacerbate the progression of liver-related conditions,
further complicating freatment and patient outcomes (Patel & Singh, 2021). Existing diagnostic
methods for liver disorders face critical challenges, including inefficiency, high costs, and limited
accessibility in under-resourced settings. Computational diagnostic models, though promising, are
often hindered by issues such as overfitting, inadequate generalizability, and poor handling of
complex, imbalanced clinical datasets. These limitations restrict their applicability in real-world
scenarios, necessitating the development of robust and scalable solutions (Patel & Singh, 2021);
Chawla, Bowyer, Hall, & Kegelmeyer, 2021).The proposed research aims to develop an advanced
machine learning-based prognostic framework for enhancing the diagnostic accuracy, robustness,
and generalizability of liver disorder detection. This innovative approach addresses critical
challenges in the field, including class imbalance, high-dimensional feature spaces, and overfitting,
to provide healthcare professionals with an efficient and reliable decision support tool (Luo, Lu, Yuan,
& Xie, 2022). The study introduces a hybrid machine learning framework that integrates ensemble
learning algorithms, specifically Random Forest, Gradient Boosting, XGBoost, and LightGBM, with
sophisticated data preprocessing techniques. This combination is designed to optimize data
representation, enhance model performance, and ensure scalability for realworld clinical
applications. The ensemble learning approach enhances predictive performance by combining
outputs from multiple models.
The framework has demonstrated exceptional performance, potentially setting a new benchmark
in computational hepatology. It significantly reduces the risk of misdiagnosis through high precision
and reliability, while its adaptable design ensures applicability across diverse healthcare
environments and datasets. Moreover, the proposed solution reduces dependency on costly
diagnostic tests and imaging techniques, streamlining the diagnostic process through automation
and enabling timely interventions. This research contributes to the field of hepatology by offering a
scalable, efficient, and innovative solution for liver disorder diagnosis (Jones & Woolfenden, 2023). By
addressing limitations of existing methods, it advances precision medicine in hepatology and
provides a robust decision support tool to assist clinicians in making accurate and fimely diagnoses.
RELATED WORKS
Advancements in machine learning (ML) and deep learning (DL) have significantly improved liver
disease prediction, surpassing traditional diagnostic methods in accuracy and efficiency. However,
challenges remain in managing high-dimensional datasets and optimizing model performance
through hyperparameter tuning. Ghosh et al. (2024) and Hanif and Khan (2022) proposed a machine
learning framework for liver cirrhosis prediction using Random Forest, Decision Tree, and Support
Vector Machine (SVM) models. Leveraging the Liver Cirrhosis dataset, their approach achieved a
highest accuracy of 97% with Random Forest, demonstrating robust predictive capabilities but
lacking advanced hyperparameter tuning methods, such as GridSearchCV, which could further
enhance model optimization and reliability.
Lin et al. (2009) proposed a machine-learning monitoring system to predict mortality and classify
patients with noncancer end-stage liver disease (ESLD). Utilizing supervised models such as Random
Forest and Adaptive Boosting on a refrospective dataset of 1214 patients for training and 689
patients for validation, the Random Forest model achieved the highest ROC-AUC of 0.852. Key
predictors included blood urea nitrogen, bilirubin, and sodium, complemented by clustering
techniques to differentiate acute death and palliative care groups. While the system demonstrated
stfrong predictive performance, further validation and optimization could enhance its clinical
applicability in ESLD management.
Ghazal et al. (2022) proposed an intelligent machine learning model for early prediction of liver
disease, addressing the high costs and time-consuming nature of traditional diagnostic methods. The
study evaluated multiple ML algorithms, developing a comprehensive predictive framework that

353


https://researchinnovationjournal.com/index.php
https://doi.org/10.63125/13dazp67

American Journal of Scholarly Research and Innovation
Volume 04, Issue 01 (2025)
Page No: 352-362
elSSN: 3067-2163
Doi: 10.63125/13dazpé7
achieved an accuracy of 88.4% and a miss-rate of 11.6%. While the model demonstrated reliable
performance, further enhancements such as advanced feature engineering and hyperparameter
optimization could improve its diagnostic precision and clinical ufility.
Sorino et al. (2020) proposed a machine learning framework for diagnosing Non-Alcoholic Fatty Liver
Disease (NAFLD) using a meta-learner approach to identify the best predictive algorithm. Utilizing a
dataset of 2970 subjects and festing with eight ML algorithms, Support Vector Machine (SVM)
emerged as the most effective model. Among three predictive models, the highest accuracy of 77%
was achieved with Model 3, comprising BRI, GLUCOSE, GGT, SEX, and AGE as predictors. Despite
robust performance, further optimization could enhance predictive accuracy and reduce variance,
making the SYM model a promising yet improvable solution for NAFLD diagnosis and cost reduction.
Afrin et al. (2021) proposed a machine learning-based framework for liver disease prediction utilizing
algorithms such as Logistic Regression, Decision Tree, Random Forest, AdaBoost, KNN, Gradient
Boosting, Linear Discriminant Analysis, and Support Vector Machine (SVM). Employing the LASSO
feature selection technique, the study identified highly correlated aftributes for liver disease. With 10-
fold crossvalidation, the Decision Tree algorithm demonstrated the best performance, achieving an
accuracy of 94.3%, along with precision, sensitivity, and Fl1-score values of 92%, 99%, and 96%,
respectively. While the framework effectively integrates feature selection to improve predictive
accuracy, further exploration of advanced ensemble fechniques could enhance its robustness and
applicability.
Tahmasebi et al. (2023) proposed an ultrasound-based machine learning model for detecting
nonalcoholic fatty liver disease (NAFLD) as an alternative to invasive biopsies or MR-based fat
quantification. Using ultrasound images collected from 120 subjects and validated against MRI-
derived proton density fat fraction (PDFF) findings, the AutoML-based model achieved an accuracy
of 83.4%, with a specificity of 94.6% and a sensitivity of 72.2%. The study demonstrated high posifive
predictive value (PPV) of 93.1% and an average agreement of 92% for individual subjects. While the
model showed promising results as a cost-effective and noninvasive screening tool, further
enhancements in sensitivity could improve its diagnostic utility for high-risk patients.
Atsawarungruangkit et al. (2021) proposed machine learning models to predict nonalcoholic fafty
liver disease (NAFLD) using the NHANES 1988-1994 dataset, which included 3235 participants and 30
NAFLD-related factors. Among the 24 algorithms applied, the ensemble of RUS-boosted trees
achieved the highest F1 score (0.56) and an accuracy of 71.1% in the testing phase. A simpler
interpretable model, coarse trees, attained a higher accuracy of 74.9% but with a lower F1 score
(0.33). While the ensemble model offered better overall performance, the coarse frees model,
leveraging only fasting C-peptide and waist circumference, demonstrated the value of simplicity in
clinical applications despite trade-offs in predictive accuracy. Straw et al. (2022) studied the
presence of sex bias in liver disease prediction models using the Indian Liver Patient Dataset (ILPD).
They recreated machine learning models such as Random Forest, Support Vector Machine (SVM),
Gaussian Na“ive Bayes, and Logistic Regression, testing them on both sex-balanced and
unbalanced datasets, with and without feature selection. The models showed accuracies between
71.31% (Logistic Regression) and 79.40% (SVM). However, they found that females had a higher
chance of being misdiagnosed due to higher false negative rates (FNR), with Random Forest and
Logistic Regression showing the largest gaps. The study highlights the importance of identifying and
addressing biases in Al models to ensure fair and accurate healthcare solutions for all patients. In
comparison to the aforementioned studies,, our research integrates traditional models like Logistic
Regression, Random Forest, and XGBoost with advanced techniques such as PCA, SMOTE, and
GridSearchCV for optimization. Our framework offers a scalable, robust, and efficient solution for liver
disease prediction in real-world healthcare settings.
METHODOLOGY
In this study, The “Liver Disease Patient Dataset” (Shrivastava, 2024), sourced from Kaggle, contains
clinical data from 583 patients. It includes demographic information and critfical laboratory markers
such as age, gender, bilirubin levels, alkaline phosphatase, and albumin. The dataset supports binary
classification for liver disease diagnosis. Its availability and comprehensive attributes make it well-
suited for predictive modeling in hepatology. Figure 2 represents the distribution plot highlights key
patterns in the selected features. Age shows a normal distribution centered between 30-60 years.
Total Proteins peaks above 2.0 warranting further analysis. Figure 3 represents the pair plot illustrating
relationships between Age, Total Proteins, Albumin, and A G Ratio, colored by the target variable.
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Age shows a clear unimodal distribution, while Total Proteins and Albumin exhibit positive correlations.

Moreover, strong correlations are observed between Total Bilirubin and Direct Bilirubin (0.89) and

between Total Proteins, Albumin, and A G Ratio (moderate correlations of 0.68-0.78). Age shows a

normal distribution centered between 30-60 years. Total Proteins peaks around 7.0, while Albumin

exhibits a bimodal pattern near 3.5 and 4.0. A G Ratio is skewed, clustering around 1.0, with sidos. A

G Ratiois skewed with lower variance. No strong separability between classes is observed, suggesting
potential challenges in direct classification.

Figure 1: Workflow diagram across the whole procedure
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Figure 2: Distribution of Target Variable
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Figure 4 represents the correlation heatmap highlights the relationships between features. The target
variable (Result) shows weak correlations with all features, indicating potential challenges in using
simple linear models for classification. Principal Component Analysis (PCA) was applied to reduce
the dataset’s dimensionality while retaining 95% of its variance. After standardizing the features using
StandardScaler, the dataset was projected info a lower-dimensional space, resulting in X
components. This step mitigated the risk of overfitling and enhanced computational efficiency
during model training. PCA was consistently applied to both fraining and test datasets to ensure
uniformity. To address the inherent class imbalance in the dataset, SMOTE (Synthetic Minority
Oversampling Technique) was applied after PCA. This technique generates synthetic samples for the
minority class by interpolating between existing samples, resulting in a balanced dataset. SMOTE
enhanced the recall and F1-score for the minority class, ensuring the model’s robustness in identifying
liver disorder cases. The combination of PCA and SMOTE proved instrumental in achieving superior
model performance. PCA reduced dimensionality, eliminating noise and mitigating overfitting, while
SMOTE balanced the class distribution, significantly enhancing recall and F1-score metrics. These
preprocessing steps contributed to the ensemble model’s outstanding accuracy of 98% and a ROC-
AUC of 0.9963
Figure 4: Correlation Heatmap
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B. Model Training

The model fraining phase involves leveraging diverse machine learning algorithms, including Logistic
Regression, SVM, Random Forest, Gradient Boosting, XGBoost, LightGBM, KNN, and MLP, to predict
the target variable effectively. For selected models, such as Random Forest, Gradient Boosting,
XGBoost, and LightGBM, hyperparameter optimization is conducted using GridSearchCV with 5-fold
cross-validation to enhance performance and generalization, evaluated via the ROC AUC metric.
Each model is trained on the resampled and preprocessed training set to address class imbalance
using SMOTE, ensuring robust learning. Finally, an ensemble model is constructed using a
VotingClassifier that combines the predictions of Logistic Regression, Random Forest, and XGBoost
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via soft voting, capitalizihg on their complementary strengths to achieve superior classification
performance. This systematic approach ensures a rigorous evaluation of individual models and the
ensemble, providing a well-rounded predictive framework.
C. Model Architecture
The implemented model architecture comprises a range of machine learning algorithms designed
to handle the binary classification task effectively. Each model was selected for its ability fo capture
various patterns, from linear relationships to complex non-linear dependencies. The architectures
include:
1) Logistic Regression:
A linear model that predicts the probability of the targetclass using a sigmoid activation function.
Regularization (L2) is applied to prevent overfitting, with the strength controlled by a parameter (C
=0.1).
2) Support Vector Machine (SVM): A non-linear model using a radial basis function (RBF) kernel to
create a decision boundary. Regularization (C = 1) and kernel coefficient (y = 'scale’) balance
margin width and model complexity.
3) Random Forest:
An ensemble technique combining multiple decision trees trained on random subsets of the data.
The final prediction is based on averaging the oufput of all frees. The model is configured with 100
tfrees, a maximum depth of 10, and feature selection based on the square root of the total features.
4) Gradient Boosting:
A boosting technique that builds decision trees sequen-tially, each focusing on correcting the errors
of the previous one. The model uses 100 trees, a learning rate of 0.1, and a maximum tree depth of
5 to enhance predictive performance.

Table 1: Model Performance Comparison

Model Accuracy Precision Recall F1-Score ROC-AUC
Logistic 71.00% 66.00% 87.00% 75.00% 0.76
Regression
SVM 75.00% 68.00% 93.00% 79.00% 0.80
Random Forest 95.00% 92.00% 98.00% 95.00% 0.97
Gradient 98.00% 98.00% 98.00% 98.00% 0.98
Boosting
XGBoost 98.00% 98.00% 98.00% 98.00% 0.98
LightGBM 97.00% 97.00% 97.00% 97.00% 0.97
KNN 93.00% 90.00% 97.00% 93.00% 0.94
MLP 96.00% 96.00% 97.00% 96.00% 0.96
Ensemble Model  98.00% 97.00% 99.00% 98.00% 0.9963
5) XGBoost:

An advanced gradient boosting algorithm that includes regularization terms to reduce overfitting. It
incrementally improves predictions by minimizing the loss function while applying constraints on tree
complexity.

6) LightGBM:

A fast gradient boosting framework optimized for largedatasets. It grows frees leaf-wise based on
the most significant splits, making it efficient and scalable for high-dimensional data.

7) K-Nearest Neighbors (KNN):

A non-parametric algorithm that assigns a class labelbased on the majority vote of the k = 5 nearest
neighbors in the feature space.

8) Multi-Layer Perceptron (MLP):

A feedforward neural network consisting of two hiddenlayers with 64 and 32 units, respectively, and
RelLU activation. It leverages a fully connected architecture to model complex, non-linear
relationships in the data.

9) Ensemble Voting Classifier:
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combined model that intfegrates predictions from Lo-gistic Regression, Random Forest, and XGBoost.

Using soft voting, it averages the class probabilities from all models to determine the final prediction.
Figure 5: ROC and Precision -Recall Curve Analysis
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D. Hyperparameter Optimization

Hyperparameter tuning is conducted using GridSearchCV for Random Forest, Gradient Boosting,
XGBoost, and LightGBM to optimize their performance. A 10-fold cross-validation (cv = 10) strategy
is implemented to prevent overfitting and ensure robust selection of hyperparameters. The tuning
process evaluates models using the ROC AUC metric, which prioritizes their ability to distinguish
between classes effectively, ensuring optimal configurations for downstream tasks.

Table 2: Comparison Performance with Related Works

Study Best Model(s) Accuracy (%)

Hanif et al. (2022) Random Forest 97.0

Lin et al. (2020) Random Forest 85.2 (ROC-AUC)

Ghazal et al. (2022) Multiple ML Algorithms 88.4

Sorino et al. (2020) Support Vector Machine (SVM) 77.0

Afrin et al. ((2021) Decision Tree 94.3

Tahmasebi et al. (2023) AutoML-based Model 83.4

Atsawarungruangkit et al. (2021) RUS-Boosted Trees 74.9

Straw et al. (2022) Support Vector Machine (SVM) 79.4

Proposed Work Random Forest, XGBoost, Ensemble Model 98.0(Accuracy), 99.63
(ROC-AUC)

A. Perfornamce Analysis

The proposed ensemble model for liver disease prediction achieved an impressive accuracy of 98%
and an exceptional ROC-AUC score of 0.9963, outperforming benchmarks like Hanif et al.’s Random
Forest (97% accuracy) and Lin et al.’s model (ROC-AUC 0.852). Key factors behind this performance
include SMOTE for balancing classes, PCA for reducing dimensionality while retaining 95% variance,
and GridSearchCV for fine-tuning hyperparameters. The ensemble combined Random Forest,
XGBoost, and Gradient Boosting with soft voting, leveraging their strengths to improve accuracy and
robustness. Logistic Regression captured linear relationships, while tree-based models handled non-
linear patterns and class imbalance.

These preprocessing steps significantly enhanced recall and Fl-scores for minority classes, while soft
voting reduced model variance and bias. Compared to methods like Afrin et al.’s Decision Tree
framework (94.3% accuracy) and Ghazal et al.’s multi-model system (88.4% accuracy), this model
demonstrates superior scalability, reliability, and clinical applicability. Its high ROC-AUC score
highlights its precision in distinguishing positive and negative cases, making it a promising diagnostic
tool for liver disease.
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B. Distinctive Features and Contributions
This study stands out by integrating advanced preprocessing and an innovative ensemble learning
framework for liver disease prediction. Unlike previous models like Hanif et al.’s Random Forest, which
lacked robust handling of class imbalance and dimensionality reduction, this approach combines
SMOTE and PCA to improve learning on imbalanced datasets and reduce overfitting. The ensemble
leverages soft voting to combine Logistic Regression, Random Forest, and XGBoost, each selected
for its unique strengths: Logistic Regression for linear relationships, Random Forest for handling non-
linear patterns and noise, and XGBoost for optimizing performance onimbalanced data. This synergy
resulted in superior accuracy and ROC-AUC scores compared to simpler methods.
GridSearchCV ensured optimal hyperparameter tuning for each model, enhancing the ensemble’s
predictive power and adaptability. The framework’s ability to generalize across datasets and its
suitability for resource-limited clinical settings highlight its practical relevance. By addressing gaps in
prior work and infroducing a robust, scalable ensemble paradigm, this study makes a meaningful
contribution to computational hepatology.
C. Model-Specific AUC and Ensemble Insights
While individual models like XGBoost achieved a perfect ROC-AUC of 1.0, the ensemble approach
remains valuable for its robustness and generalizability (Uddin et al. 2025). The ensemble model’s
slightly lower ROC-AUC (0.9963) reflects the averaging mechanism of soft voting, which prioritizes
balanced performance over reliance on a single model. This tfrade-off reduces overfitting and
dataset bias, ensuring more reliable predictions across diverse datasets. In clinical applications,
where stability and generalizability are crucial, the ensemble method addresses the limitations of
individual models, making it a practical and effective solution in computational hepatology
(Abubakkar et al. 2025).
D. Challenges and Mitigation
The proposed framework tackles key challenges in clinical diagnostics, such as overfitting and class
imbalance. Overfitting was minimized using PCA for dimensionality reduction and rigorous
hyperparameter tuning with GridSearchCV. Ensemble methods further mitigated overfitting by
averaging predictions, balancing biases and variances. To address class imbalance, SMOTE
generated synthetfic samples for the minority class, significantly improving recall and F1-scores for
liver disorder cases (Hossain et al. 2024). While the model demonstrated strong performance on the
current dataset, further validation on larger, more diverse datasets is essentfial to confirm its
generalizability across different populations and clinical settings (Sadik et al. 2025).
E. ROC-AUC and Precision-Recall Curves
Figure 5 showcases the performance of models using ROC and Precision-Recall (PR) curves. The
ensemble model, Gradient Boosting, XGBoost, and LightGBM achieved perfect AUC scores of 1.00,
highlighting their exceptional precision, recall, and discriminatory power. Random Forest and MLP
followed with AUCs of 0.99, while KNN achieved 0.98. In contrast, Logistic Regression (ROC-AUC =
0.75, PR-AUC = 0.68) and SVM (ROC-AUC = 0.80, PR-AUC = 0.72) performed poorly due to their
limitations in capturing non-linear relationships and handling class imbalance. These results underline
the superiority of free-based ensemble methods, particularly the ensemble model, which combines
predictions from multiple algorithms to achieve remarkable accuracy and generalizability (Sharif,
Uddin & Abubakkar, 2024). This robustness makes it a practical and reliable tool for liver disease
diagnosis in clinical settings (Sharif et al. 2024).
F. Clinical Releveances
The ensemble model’'s exceptional accuracy and perfect ROC-AUC and PR-AUC scores
demonstrate its reliability for liver disease diagnosis. Its ability o minimize false positives and false
negatives ensures timely and accurate detection, reducing the risk of misdiagnosis. By leveraging
readily available clinical data, the model provides a costeffective, scalable alternative to traditional
diagnostic methods, making it particularly valuable in resource-limited settings. This high-
performance framework supports faster decisionmaking, improving patient outcomes and enabling
effective early interventions in clinical practice.
CONCLUSION AND FUTURE WORKS
This study presents a robust machine learning framework for liver disease prediction, with the
ensemble model combining Logistic Regression, Random Forest, and XGBoost achieving a
remarkable ROC-AUC of 0.9963 and 98% accuracy. Gradient Boosting and XGBoost also
demonstrated strong performances, emphasizing the effectiveness of treebased methods for clinical
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data (Sadik et al. 2025). Preprocessing techniques like SMOTE and PCA, along with hyperparameter
tuning via GridSearchCV, further enhanced model reliability. Future work will focus on expanding
datasets to improve generalizability, integrating real-time data from wearable devices, and
exploring hybrid models like combining neural networks with treebased approaches (Nayyem et al,
2024). Incorporating explainable Al methods, such as SHAP or LIME, will ensure transparency and
foster clinical trust for broader adopftion in liver disease diagnostics
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