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ABSTRACT 

In human physiology, the liver is a vital organ responsible for performing critical 

functions such as bile production, bilirubin excretion, metabolism of proteins and 

carbohydrates, enzyme activation, glycogen storage, and plasma protein 

synthesis. However, it is highly susceptible to damage due to alcohol consumption, 

certain medications, and poor dietary habits. Traditional diagnostic methods for 

liver disorders, including blood tests and imaging, are time-consuming and costly, 

often delaying crucial treatment. This study introduces a machine learning-based 

prognostic framework to enhance the speed and accuracy of liver disease 

diagnosis. The proposed approach integrates advanced algorithms, including 

Random Forest, Gradient Boosting, XGBoost, and LightGBM, combined with an 

ensemble voting method to leverage their complementary strengths. Preprocessing 

techniques such as Principal Component Analysis (PCA) for dimensionality 

reduction and Synthetic Minority Oversampling Technique (SMOTE) to address class 

imbalance were employed to refine the dataset. Evaluation metrics like precision, 

recall, F1-score, accuracy, and ROC-AUC revealed the ensemble model’s superior 

performance, achieving the highest accuracy of 98% and a ROC-AUC of 0.9963, 

significantly outperforming individual models. This study offers a scalable and cost-

effective solution that reduces diagnostic time and improves predictive reliability. 

The framework provides significant advantages for medical applications, serving as 

a decision support tool to aid healthcare professionals in timely and accurate liver 

disorder diagnosis, particularly in resource-limited settings. 
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INTRODUCTION 

Liver disorders affect an estimated 2 billion individuals globally, with conditions such as cirrhosis, 

hepatitis, and nonalcoholic fatty liver disease (NAFLD) contributing to over 2 million deaths annually 

(G. L. C. Collaborators, 2021; Dyson & Hudson, 2020). These conditions are among the leading causes 

of morbidity, imposing a significant burden on healthcare systems worldwide. Early diagnosis and 

timely intervention are crucial for mitigating severe complications, yet current diagnostic 

approaches, which rely heavily on blood tests and imaging, remain time-intensive, expensive, and 

often inaccessible in resource-limited healthcare settings (Asrani, Devarbhavi, Eaton, & Kamath 

2021). Consequently, delayed interventions exacerbate the progression of liver-related conditions, 

further complicating treatment and patient outcomes (Patel & Singh, 2021). Existing diagnostic 

methods for liver disorders face critical challenges, including inefficiency, high costs, and limited 

accessibility in under-resourced settings. Computational diagnostic models, though promising, are 

often hindered by issues such as overfitting, inadequate generalizability, and poor handling of 

complex, imbalanced clinical datasets. These limitations restrict their applicability in real-world 

scenarios, necessitating the development of robust and scalable solutions (Patel & Singh, 2021); 

Chawla, Bowyer, Hall, & Kegelmeyer, 2021).The proposed research aims to develop an advanced 

machine learning-based prognostic framework for enhancing the diagnostic accuracy, robustness, 

and generalizability of liver disorder detection. This innovative approach addresses critical 

challenges in the field, including class imbalance, high-dimensional feature spaces, and overfitting, 

to provide healthcare professionals with an efficient and reliable decision support tool (Luo, Lu, Yuan, 

& Xie, 2022). The study introduces a hybrid machine learning framework that integrates ensemble 

learning algorithms, specifically Random Forest, Gradient Boosting, XGBoost, and LightGBM, with 

sophisticated data preprocessing techniques. This combination is designed to optimize data 

representation, enhance model performance, and ensure scalability for realworld clinical 

applications. The ensemble learning approach enhances predictive performance by combining 

outputs from multiple models. 

The framework has demonstrated exceptional performance, potentially setting a new benchmark 

in computational hepatology. It significantly reduces the risk of misdiagnosis through high precision 

and reliability, while its adaptable design ensures applicability across diverse healthcare 

environments and datasets. Moreover, the proposed solution reduces dependency on costly 

diagnostic tests and imaging techniques, streamlining the diagnostic process through automation 

and enabling timely interventions. This research contributes to the field of hepatology by offering a 

scalable, efficient, and innovative solution for liver disorder diagnosis (Jones & Woolfenden, 2023). By 

addressing limitations of existing methods, it advances precision medicine in hepatology and 

provides a robust decision support tool to assist clinicians in making accurate and timely diagnoses. 

RELATED WORKS 

Advancements in machine learning (ML) and deep learning (DL) have significantly improved liver 

disease prediction, surpassing traditional diagnostic methods in accuracy and efficiency. However, 

challenges remain in managing high-dimensional datasets and optimizing model performance 

through hyperparameter tuning. Ghosh et al. (2024) and Hanif and Khan (2022) proposed a machine 

learning framework for liver cirrhosis prediction using Random Forest, Decision Tree, and Support 

Vector Machine (SVM) models. Leveraging the Liver Cirrhosis dataset, their approach achieved a 

highest accuracy of 97% with Random Forest, demonstrating robust predictive capabilities but 

lacking advanced hyperparameter tuning methods, such as GridSearchCV, which could further 

enhance model optimization and reliability. 

Lin et al. (2009) proposed a machine-learning monitoring system to predict mortality and classify 

patients with noncancer end-stage liver disease (ESLD). Utilizing supervised models such as Random 

Forest and Adaptive Boosting on a retrospective dataset of 1214 patients for training and 689 

patients for validation, the Random Forest model achieved the highest ROC-AUC of 0.852. Key 

predictors included blood urea nitrogen, bilirubin, and sodium, complemented by clustering 

techniques to differentiate acute death and palliative care groups. While the system demonstrated 

strong predictive performance, further validation and optimization could enhance its clinical 

applicability in ESLD management. 

Ghazal et al. (2022) proposed an intelligent machine learning model for early prediction of liver 

disease, addressing the high costs and time-consuming nature of traditional diagnostic methods. The 

study evaluated multiple ML algorithms, developing a comprehensive predictive framework that 
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achieved an accuracy of 88.4% and a miss-rate of 11.6%. While the model demonstrated reliable 

performance, further enhancements such as advanced feature engineering and hyperparameter 

optimization could improve its diagnostic precision and clinical utility. 

Sorino et al. (2020) proposed a machine learning framework for diagnosing Non-Alcoholic Fatty Liver 

Disease (NAFLD) using a meta-learner approach to identify the best predictive algorithm. Utilizing a 

dataset of 2970 subjects and testing with eight ML algorithms, Support Vector Machine (SVM) 

emerged as the most effective model. Among three predictive models, the highest accuracy of 77% 

was achieved with Model 3, comprising BRI, GLUCOSE, GGT, SEX, and AGE as predictors. Despite 

robust performance, further optimization could enhance predictive accuracy and reduce variance, 

making the SVM model a promising yet improvable solution for NAFLD diagnosis and cost reduction. 

Afrin et al. (2021) proposed a machine learning-based framework for liver disease prediction utilizing 

algorithms such as Logistic Regression, Decision Tree, Random Forest, AdaBoost, KNN, Gradient 

Boosting, Linear Discriminant Analysis, and Support Vector Machine (SVM). Employing the LASSO 

feature selection technique, the study identified highly correlated attributes for liver disease. With 10-

fold crossvalidation, the Decision Tree algorithm demonstrated the best performance, achieving an 

accuracy of 94.3%, along with precision, sensitivity, and F1-score values of 92%, 99%, and 96%, 

respectively. While the framework effectively integrates feature selection to improve predictive 

accuracy, further exploration of advanced ensemble techniques could enhance its robustness and 

applicability. 

Tahmasebi et al. (2023) proposed an ultrasound-based machine learning model for detecting 

nonalcoholic fatty liver disease (NAFLD) as an alternative to invasive biopsies or MR-based fat 

quantification. Using ultrasound images collected from 120 subjects and validated against MRI-

derived proton density fat fraction (PDFF) findings, the AutoML-based model achieved an accuracy 

of 83.4%, with a specificity of 94.6% and a sensitivity of 72.2%. The study demonstrated high positive 

predictive value (PPV) of 93.1% and an average agreement of 92% for individual subjects. While the 

model showed promising results as a cost-effective and noninvasive screening tool, further 

enhancements in sensitivity could improve its diagnostic utility for high-risk patients. 

Atsawarungruangkit et al. (2021) proposed machine learning models to predict nonalcoholic fatty 

liver disease (NAFLD) using the NHANES 1988–1994 dataset, which included 3235 participants and 30 

NAFLD-related factors. Among the 24 algorithms applied, the ensemble of RUS-boosted trees 

achieved the highest F1 score (0.56) and an accuracy of 71.1% in the testing phase. A simpler 

interpretable model, coarse trees, attained a higher accuracy of 74.9% but with a lower F1 score 

(0.33). While the ensemble model offered better overall performance, the coarse trees model, 

leveraging only fasting C-peptide and waist circumference, demonstrated the value of simplicity in 

clinical applications despite trade-offs in predictive accuracy. Straw et al. (2022) studied the 

presence of sex bias in liver disease prediction models using the Indian Liver Patient Dataset (ILPD). 

They recreated machine learning models such as Random Forest, Support Vector Machine (SVM), 

Gaussian Na¨ıve Bayes, and Logistic Regression, testing them on both sex-balanced and 

unbalanced datasets, with and without feature selection. The models showed accuracies between 

71.31% (Logistic Regression) and 79.40% (SVM). However, they found that females had a higher 

chance of being misdiagnosed due to higher false negative rates (FNR), with Random Forest and 

Logistic Regression showing the largest gaps. The study highlights the importance of identifying and 

addressing biases in AI models to ensure fair and accurate healthcare solutions for all patients. In 

comparison to the aforementioned studies,, our research integrates traditional models like Logistic 

Regression, Random Forest, and XGBoost with advanced techniques such as PCA, SMOTE, and 

GridSearchCV for optimization. Our framework offers a scalable, robust, and efficient solution for liver 

disease prediction in real-world healthcare settings. 

METHODOLOGY 

In this study, The “Liver Disease Patient Dataset” (Shrivastava, 2024), sourced from Kaggle, contains 

clinical data from 583 patients. It includes demographic information and critical laboratory markers 

such as age, gender, bilirubin levels, alkaline phosphatase, and albumin. The dataset supports binary 

classification for liver disease diagnosis. Its availability and comprehensive attributes make it well-

suited for predictive modeling in hepatology. Figure 2 represents the distribution plot highlights key 

patterns in the selected features. Age shows a normal distribution centered between 30–60 years. 

Total Proteins peaks above 2.0 warranting further analysis. Figure 3 represents the pair plot illustrating 

relationships between Age, Total Proteins, Albumin, and A G Ratio, colored by the target variable. 
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Age shows a clear unimodal distribution, while Total Proteins and Albumin exhibit positive correlations. 

Moreover, strong correlations are observed between Total Bilirubin and Direct Bilirubin (0.89) and 

between Total Proteins, Albumin, and A G Ratio (moderate correlations of 0.68–0.78). Age shows a 

normal distribution centered between 30–60 years. Total Proteins peaks around 7.0, while Albumin 

exhibits a bimodal pattern near 3.5 and 4.0. A G Ratio is skewed, clustering around 1.0, with sidos. A 

G Ratio is skewed with lower variance. No strong separability between classes is observed, suggesting 

potential challenges in direct classification.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1:  Workflow diagram across the whole procedure 
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Figure 2: Distribution of Target Variable 

Figure 3: Pair Plot 
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Figure 4 represents the correlation heatmap highlights the relationships between features. The target 

variable (Result) shows weak correlations with all features, indicating potential challenges in using 

simple linear models for classification. Principal Component Analysis (PCA) was applied to reduce 

the dataset’s dimensionality while retaining 95% of its variance. After standardizing the features using 

StandardScaler, the dataset was projected into a lower-dimensional space, resulting in X 

components. This step mitigated the risk of overfitting and enhanced computational efficiency 

during model training. PCA was consistently applied to both training and test datasets to ensure 

uniformity. To address the inherent class imbalance in the dataset, SMOTE (Synthetic Minority 

Oversampling Technique) was applied after PCA. This technique generates synthetic samples for the 

minority class by interpolating between existing samples, resulting in a balanced dataset. SMOTE 

enhanced the recall and F1-score for the minority class, ensuring the model’s robustness in identifying 

liver disorder cases. The combination of PCA and SMOTE proved instrumental in achieving superior 

model performance. PCA reduced dimensionality, eliminating noise and mitigating overfitting, while 

SMOTE balanced the class distribution, significantly enhancing recall and F1-score metrics. These 

preprocessing steps contributed to the ensemble model’s outstanding accuracy of 98% and a ROC-

AUC of 0.9963 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B. Model Training 

The model training phase involves leveraging diverse machine learning algorithms, including Logistic 

Regression, SVM, Random Forest, Gradient Boosting, XGBoost, LightGBM, KNN, and MLP, to predict 

the target variable effectively. For selected models, such as Random Forest, Gradient Boosting, 

XGBoost, and LightGBM, hyperparameter optimization is conducted using GridSearchCV with 5-fold 

cross-validation to enhance performance and generalization, evaluated via the ROC AUC metric. 

Each model is trained on the resampled and preprocessed training set to address class imbalance 

using SMOTE, ensuring robust learning. Finally, an ensemble model is constructed using a 

VotingClassifier that combines the predictions of Logistic Regression, Random Forest, and XGBoost 

Figure 4: Correlation Heatmap 
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via soft voting, capitalizing on their complementary strengths to achieve superior classification 

performance. This systematic approach ensures a rigorous evaluation of individual models and the 

ensemble, providing a well-rounded predictive framework. 

C. Model Architecture 

The implemented model architecture comprises a range of machine learning algorithms designed 

to handle the binary classification task effectively. Each model was selected for its ability to capture 

various patterns, from linear relationships to complex non-linear dependencies. The architectures 

include: 

1) Logistic Regression: 

A linear model that predicts the probability of the targetclass using a sigmoid activation function. 

Regularization (L2) is applied to prevent overfitting, with the strength controlled by a parameter (C 

=0.1). 

2) Support Vector Machine (SVM): A non-linear model using a radial basis function (RBF) kernel to 

create a decision boundary. Regularization (C = 1) and kernel coefficient (γ = ’scale’) balance 

margin width and model complexity. 

3) Random Forest: 

An ensemble technique combining multiple decision trees trained on random subsets of the data. 

The final prediction is based on averaging the output of all trees. The model is configured with 100 

trees, a maximum depth of 10, and feature selection based on the square root of the total features. 

4) Gradient Boosting: 

A boosting technique that builds decision trees sequen-tially, each focusing on correcting the errors 

of the previous one. The model uses 100 trees, a learning rate of 0.1, and a maximum tree depth of 

5 to enhance predictive performance. 

 

Table 1: Model Performance Comparison 

Model Accuracy Precision Recall F1-Score ROC-AUC 

Logistic 

Regression 

71.00% 66.00% 87.00% 75.00% 0.76 

SVM 75.00% 68.00% 93.00% 79.00% 0.80 

Random Forest 95.00% 92.00% 98.00% 95.00% 0.97 

Gradient 

Boosting 

98.00% 98.00% 98.00% 98.00% 0.98 

XGBoost 98.00% 98.00% 98.00% 98.00% 0.98 

LightGBM 97.00% 97.00% 97.00% 97.00% 0.97 

KNN 93.00% 90.00% 97.00% 93.00% 0.94 

MLP 96.00% 96.00% 97.00% 96.00% 0.96 

Ensemble Model 98.00% 97.00% 99.00% 98.00% 0.9963 

 

5) XGBoost: 

An advanced gradient boosting algorithm that includes regularization terms to reduce overfitting. It 

incrementally improves predictions by minimizing the loss function while applying constraints on tree 

complexity. 

6) LightGBM: 

A  fast gradient boosting framework optimized for largedatasets. It grows trees leaf-wise based on 

the most significant splits, making it efficient and scalable for high-dimensional data. 

7) K-Nearest Neighbors (KNN): 

A non-parametric algorithm that assigns a class labelbased on the majority vote of the k = 5 nearest 

neighbors in the feature space. 

8) Multi-Layer Perceptron (MLP): 

A feedforward neural network consisting of two hiddenlayers with 64 and 32 units, respectively, and 

ReLU activation. It leverages a fully connected architecture to model complex, non-linear 

relationships in the data. 

9) Ensemble Voting Classifier: 

https://researchinnovationjournal.com/index.php
https://doi.org/10.63125/13dazp67


American Journal of Scholarly Research and Innovation 

Volume 04, Issue 01 (2025) 

Page No:  352-362 

eISSN: 3067-2163 

Doi: 10.63125/13dazp67 

359 

 

combined model that integrates predictions from Lo-gistic Regression, Random Forest, and XGBoost. 

Using soft voting, it averages the class probabilities from all models to determine the final prediction. 

Figure 5: ROC and Precision -Recall Curve Analysis 

 
 

D. Hyperparameter Optimization 

Hyperparameter tuning is conducted using GridSearchCV for Random Forest, Gradient Boosting, 

XGBoost, and LightGBM to optimize their performance. A 10-fold cross-validation (cv = 10) strategy 

is implemented to prevent overfitting and ensure robust selection of hyperparameters. The tuning 

process evaluates models using the ROC AUC metric, which prioritizes their ability to distinguish 

between classes effectively, ensuring optimal configurations for downstream tasks. 

 

Table 2: Comparison Performance with Related Works 

Study Best Model(s) Accuracy (%) 

Hanif et al. (2022) Random Forest 97.0 

Lin et al. (2020) Random Forest 85.2 (ROC-AUC) 

Ghazal et al. (2022) Multiple ML Algorithms 88.4 

Sorino et al. (2020) Support Vector Machine (SVM) 77.0 

Afrin et al. ((2021) Decision Tree 94.3 

Tahmasebi et al. (2023) AutoML-based Model 83.4 

Atsawarungruangkit et al. (2021) RUS-Boosted Trees 74.9 

Straw et al. (2022) Support Vector Machine (SVM) 79.4 

Proposed Work Random Forest, XGBoost, Ensemble Model 98.0(Accuracy), 99.63 

(ROC-AUC) 

 

A. Perfornamce Analysis 

The proposed ensemble model for liver disease prediction achieved an impressive accuracy of 98% 

and an exceptional ROC-AUC score of 0.9963, outperforming benchmarks like Hanif et al.’s Random 

Forest (97% accuracy) and Lin et al.’s model (ROC-AUC 0.852). Key factors behind this performance 

include SMOTE for balancing classes, PCA for reducing dimensionality while retaining 95% variance, 

and GridSearchCV for fine-tuning hyperparameters. The ensemble combined Random Forest, 

XGBoost, and Gradient Boosting with soft voting, leveraging their strengths to improve accuracy and 

robustness. Logistic Regression captured linear relationships, while tree-based models handled non-

linear patterns and class imbalance. 

These preprocessing steps significantly enhanced recall and F1-scores for minority classes, while soft 

voting reduced model variance and bias. Compared to methods like Afrin et al.’s Decision Tree 

framework (94.3% accuracy) and Ghazal et al.’s multi-model system (88.4% accuracy), this model 

demonstrates superior scalability, reliability, and clinical applicability. Its high ROC-AUC score 

highlights its precision in distinguishing positive and negative cases, making it a promising diagnostic 

tool for liver disease. 
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B.  Distinctive Features and Contributions 

This study stands out by integrating advanced preprocessing and an innovative ensemble learning 

framework for liver disease prediction. Unlike previous models like Hanif et al.’s Random Forest, which 

lacked robust handling of class imbalance and dimensionality reduction, this approach combines 

SMOTE and PCA to improve learning on imbalanced datasets and reduce overfitting. The ensemble 

leverages soft voting to combine Logistic Regression, Random Forest, and XGBoost, each selected 

for its unique strengths: Logistic Regression for linear relationships, Random Forest for handling non-

linear patterns and noise, and XGBoost for optimizing performance on imbalanced data. This synergy 

resulted in superior accuracy and ROC-AUC scores compared to simpler methods. 

GridSearchCV ensured optimal hyperparameter tuning for each model, enhancing the ensemble’s 

predictive power and adaptability. The framework’s ability to generalize across datasets and its 

suitability for resource-limited clinical settings highlight its practical relevance. By addressing gaps in 

prior work and introducing a robust, scalable ensemble paradigm, this study makes a meaningful 

contribution to computational hepatology. 

C. Model-Specific AUC and Ensemble Insights 

While individual models like XGBoost achieved a perfect ROC-AUC of 1.0, the ensemble approach 

remains valuable for its robustness and generalizability (Uddin et al. 2025). The ensemble model’s 

slightly lower ROC-AUC (0.9963) reflects the averaging mechanism of soft voting, which prioritizes 

balanced performance over reliance on a single model. This trade-off reduces overfitting and 

dataset bias, ensuring more reliable predictions across diverse datasets. In clinical applications, 

where stability and generalizability are crucial, the ensemble method addresses the limitations of 

individual models, making it a practical and effective solution in computational hepatology 

(Abubakkar et al. 2025). 

D. Challenges and Mitigation 

The proposed framework tackles key challenges in clinical diagnostics, such as overfitting and class 

imbalance. Overfitting was minimized using PCA for dimensionality reduction and rigorous 

hyperparameter tuning with GridSearchCV. Ensemble methods further mitigated overfitting by 

averaging predictions, balancing biases and variances. To address class imbalance, SMOTE 

generated synthetic samples for the minority class, significantly improving recall and F1-scores for 

liver disorder cases (Hossain et al. 2024). While the model demonstrated strong performance on the 

current dataset, further validation on larger, more diverse datasets is essential to confirm its 

generalizability across different populations and clinical settings (Sadik et al. 2025). 

E. ROC-AUC and Precision-Recall Curves 

Figure 5 showcases the performance of models using ROC and Precision-Recall (PR) curves. The 

ensemble model, Gradient Boosting, XGBoost, and LightGBM achieved perfect AUC scores of 1.00, 

highlighting their exceptional precision, recall, and discriminatory power. Random Forest and MLP 

followed with AUCs of 0.99, while KNN achieved 0.98. In contrast, Logistic Regression (ROC-AUC = 

0.75, PR-AUC = 0.68) and SVM (ROC-AUC = 0.80, PR-AUC = 0.72) performed poorly due to their 

limitations in capturing non-linear relationships and handling class imbalance. These results underline 

the superiority of tree-based ensemble methods, particularly the ensemble model, which combines 

predictions from multiple algorithms to achieve remarkable accuracy and generalizability (Sharif, 

Uddin & Abubakkar, 2024). This robustness makes it a practical and reliable tool for liver disease 

diagnosis in clinical settings (Sharif et al. 2024). 

F. Clinical Releveances 

The ensemble model’s exceptional accuracy and perfect ROC-AUC and PR-AUC scores 

demonstrate its reliability for liver disease diagnosis. Its ability to minimize false positives and false 

negatives ensures timely and accurate detection, reducing the risk of misdiagnosis. By leveraging 

readily available clinical data, the model provides a costeffective, scalable alternative to traditional 

diagnostic methods, making it particularly valuable in resource-limited settings. This high-

performance framework supports faster decisionmaking, improving patient outcomes and enabling 

effective early interventions in clinical practice. 

CONCLUSION AND FUTURE WORKS 

This study presents a robust machine learning framework for liver disease prediction, with the 

ensemble model combining Logistic Regression, Random Forest, and XGBoost achieving a 

remarkable ROC-AUC of 0.9963 and 98% accuracy. Gradient Boosting and XGBoost also 

demonstrated strong performances, emphasizing the effectiveness of treebased methods for clinical 
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data (Sadik et al. 2025). Preprocessing techniques like SMOTE and PCA, along with hyperparameter 

tuning via GridSearchCV, further enhanced model reliability. Future work will focus on expanding 

datasets to improve generalizability, integrating real-time data from wearable devices, and 

exploring hybrid models like combining neural networks with treebased approaches (Nayyem et al, 

2024). Incorporating explainable AI methods, such as SHAP or LIME, will ensure transparency and 

foster clinical trust for broader adoption in liver disease diagnostics 
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