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ABSTRACT 

This study systematically reviews the application of artificial intelligence (AI)-

driven predictive maintenance in petroleum and power systems, with a focus on 

Random Forest regression as a reliability engineering tool. Predictive 

maintenance, defined as the integration of real-time monitoring with analytical 

forecasting, has become essential for minimizing downtime, reducing costs, and 

improving safety in energy infrastructures. Using the Preferred Reporting Items for 

Systematic Reviews and Meta-Analyses (PRISMA) methodology, 92 peer-

reviewed studies published between 2000 and 2024 were identified and 

analyzed across major databases. The review synthesized literature on 

conceptual frameworks, including distinctions between corrective, preventive, 

condition-based, and predictive maintenance, as well as core reliability metrics 

such as mean time to failure (MTTF), mean time between failures (MTBF), and 

remaining useful life (RUL). The findings demonstrated that Random Forest 

regression consistently balanced predictive accuracy, robustness, and 

interpretability compared with other machine learning methods, including 

neural networks, support vector machines, and gradient boosting. Applications 

in petroleum systems emphasized drilling reliability, well integrity, pipeline 

monitoring, and refinery optimization, while power system studies focused on 

turbine reliability, transformer fault prediction, renewable energy components, 

and smart grid stability. The integration of predictive maintenance with Internet 

of Things (IoT) sensors, digital twins, and cloud-based platforms was identified as 

a key enabler of real-time reliability analytics. However, persistent challenges 

remain in terms of scalability, interpretability, and sector-specific customization. 

This review contributes by consolidating current evidence, identifying research 

gaps, and offering practical recommendations for enhancing reliability and 

sustainability in petroleum and power industries. 
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INTRODUCTION 

Predictive maintenance refers to a data-driven strategy designed to forecast the potential failure of 

equipment based on continuous monitoring, condition analysis, and statistical modeling. This 

approach allows industries to perform interventions only when necessary, thereby reducing 

downtime and optimizing costs compared to traditional reactive or time-based preventive 

maintenance. Unlike corrective maintenance, which responds after a breakdown, or preventive 

maintenance, which follows predetermined schedules regardless of machine health, predictive 

maintenance emphasizes real-time insights derived from machine behavior to align repair actions 

with actual conditions (Kumar et al., 2018). Within this context, reliability engineering emerges as the 

discipline that quantifies system performance under specified conditions, seeking to ensure 

components achieve dependable operation over their lifecycle. The primary role of reliability 

engineering is to evaluate and design processes that minimize the likelihood of failure while 

simultaneously maintaining safety and efficiency in industrial systems (Baptista et al., 2018). The 

combination of predictive maintenance and reliability engineering creates a structured framework 

where asset management is guided by probabilistic modeling, system diagnostics, and degradation 

analysis. Such integration is particularly valuable in high-risk sectors such as petroleum and power 

systems, where equipment failure can lead to catastrophic financial, safety, and environmental 

consequences. The application of artificial intelligence, specifically machine learning models like 

Random Forest regression, has enhanced predictive maintenance by enabling the interpretation of 

high-dimensional sensor data, capturing nonlinear fault behaviors, and supporting reliable decision-

making for engineers (Zhang et al., 2019). Together, predictive maintenance and reliability 

engineering form the methodological foundation for modern frameworks that aim to ensure 

operational continuity in critical energy infrastructures. 

 
Figure 1: Predictive Maintenance and Reliability Framework 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Petroleum and power industries represent two of the most vital infrastructures in global economies, 

directly influencing energy supply, industrial productivity, and economic stability. A disruption in 

petroleum operations such as drilling, refining, or transportation can trigger substantial ripple effects 

across international supply chains and global oil markets. Similarly, power systems, whether thermal, 

nuclear, hydroelectric, or renewable, must operate reliably to sustain societal functions ranging from 

healthcare to transportation and communications. The international significance of predictive 

maintenance in these industries lies in its ability to minimize downtime, prevent catastrophic failures, 

and extend the operational lifespan of critical equipment (Bousdekis et al., 2021). For petroleum 
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industries, predictive maintenance reduces the risk of oil spills and explosions, which have both 

environmental and economic repercussions at a global scale. In power systems, predictive 

maintenance enhances grid reliability and prevents blackouts that may disrupt millions of households 

and industrial facilities. Many countries, including energy leaders such as the United States, China, 

and Saudi Arabia, have invested heavily in AI-driven predictive maintenance to modernize 

infrastructure and strengthen resilience. International organizations, such as the World Bank and 

United Nations Industrial Development Organization (UNIDO), emphasize the adoption of advanced 

reliability frameworks to support sustainable industrialization and energy access (Qi et al., 2022).  

Maintenance practices have evolved significantly over the past century, reflecting industrial 

demands for efficiency, safety, and reliability. The earliest approaches were reactive, commonly 

termed corrective maintenance, in which systems were repaired only after breakdowns occurred, 

resulting in costly downtimes and increased safety risks. Preventive maintenance followed as a 

scheduled approach aimed at preventing failures before they happened, though it often led to 

excessive maintenance activities and unnecessary part replacements. Condition-based 

maintenance marked an important advancement by enabling industries to monitor key indicators 

such as vibration, oil quality, and temperature to assess equipment health in real time. However, 

condition-based approaches were still limited by their inability to fully capture complex degradation 

dynamics and nonlinear behaviors in large-scale systems. The integration of prognostics and health 

management systems signaled the next major shift, enabling more accurate predictions of 

equipment failures and remaining useful life based on multivariate data (Gonzalez-Jimenez et al., 

2021). With the rapid growth of computational power and the rise of artificial intelligence, predictive 

maintenance today is increasingly recognized as an advanced engineering methodology that 

synthesizes condition monitoring with machine learning, statistical analysis, and system modeling. This 

historical trajectory demonstrates how predictive maintenance has matured from reactive measures 

into a structured, data-driven reliability framework capable of safeguarding critical petroleum and 

power infrastructures. 

Artificial intelligence has become central to predictive maintenance due to its ability to model 

nonlinear, uncertain, and high-dimensional datasets. Traditional methods of reliability engineering 

relied heavily on statistical distributions and fault tree analysis, but these approaches often fell short 

in managing the complexities of modern petroleum and power system (Alsina et al., 2018). Machine 

learning models such as artificial neural networks, support vector machines, and ensemble 

algorithms have been increasingly applied to address these challenges. Random Forest regression 

has emerged as particularly effective because it constructs ensembles of decision trees, producing 

robust predictions resistant to overfitting (Niu, 2017). This makes Random Forest suitable for analyzing 

large sensor datasets while maintaining interpretability through variable importance measures. 

Applications of Random Forest in petroleum industries include drilling equipment fault analysis and 

production optimization, while in power systems it has been used for transformer diagnostics and 

turbine performance monitoring (Badihi et al., 2022). Furthermore, the algorithm’s ability to handle 

heterogeneous data types enhances its role within reliability engineering frameworks, where 

monitoring variables range from vibration amplitude to fluid pressure. By enabling engineers to 

detect patterns and prioritize maintenance activities, Random Forest strengthens the link between 

artificial intelligence and applied reliability engineering practices. The petroleum industry is 

characterized by extreme operational environments where equipment reliability is a critical 

determinant of safety and profitability. Offshore drilling rigs, refineries, and pipeline systems are 

exposed to high pressures, corrosive fluids, and mechanical stresses that increase the likelihood of 

equipment degradation (Wu et al., 2018). Pumps, compressors, and valves often experience 

progressive wear that, if left undetected, may result in costly failures or catastrophic accidents. 

Predictive maintenance strategies using AI have been applied to monitor these components and 

predict anomalies, allowing for timely interventions (Davari et al., 2021).  

Random Forest regression has proven particularly useful in petroleum applications, where it has been 

used to identify anomalies in drilling data, predict well failures, and improve refinery throughput 

efficiency. For example, offshore platforms employing predictive frameworks benefit from reduced 

downtime and enhanced worker safety while minimizing the risk of oil spills that carry severe 

environmental consequences (Davari et al., 2021). As petroleum operations expand globally in 

regions such as the Middle East, North America, and West Africa, the application of Random Forest 
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predictive maintenance enhances both technical sustainability and economic stability (Sayyad et 

al., 2021). 
Figure 2:  AI-Driven Predictive Maintenance Framework 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Moreover, power systems play a crucial role in sustaining modern economies and social 

infrastructure, where failures can have immediate and widespread consequences. Equipment such 

as turbines, transformers, and circuit breakers are vital components whose reliability determines grid 

stability and overall system resilience. Predictive maintenance in power systems enables operators 

to detect early signs of degradation, preventing cascading failures that might result in blackouts 

affecting millions (Jiang et al., 2018). Machine learning models, particularly Random Forest 

regression, have been applied to improve predictive accuracy in detecting insulation degradation 

in transformers and efficiency losses in turbines (Qibria & Hossen, 2023). In renewable energy systems 

such as wind and solar, predictive frameworks reduce downtime by detecting anomalies in 

gearboxes, inverters, and blades. Integration with Internet of Things (IoT) sensors and smart grid 

architectures further enhances predictive capabilities, providing real-time data that improves 

forecasting accuracy (Istiaque et al., 2023; Wang et al., 2019). As energy transition initiatives expand 

globally, predictive maintenance using AI ensures efficient and reliable performance across 

conventional and renewable power infrastructures (Akter, 2023). 

Integrating predictive maintenance into reliability engineering frameworks requires methods that 

provide both predictive accuracy and interpretability(Hasan et al., 2023). Random Forest regression 

addresses this by constructing multiple decision trees and aggregating their outputs, thereby 

reducing variance and enhancing robustness compared to single-model approaches. This 

ensemble-based methodology enables probabilistic modeling of degradation and remaining useful 

life, aligning with standard reliability metrics such as mean time to failure (MTTF) and mean time 

between failures (MTBF)(Masud et al., 2023). By ranking feature importance, Random Forest also 

provides engineers with clear insights into which operational variables most strongly affect system 

reliability, allowing for targeted monitoring and maintenance planning (Sultan et al., 2023; Merkt, 

2019). In petroleum systems, this has been applied to prioritize monitoring of drilling pressures and fluid 

dynamics, while in power systems, it has been used to track transformer temperature and turbine 

vibration (Hossen et al., 2023; Sakib & Wuest, 2018). The integration of Random Forest with Internet of 
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Things (IoT) platforms and digital twins enhances real-time decision-making capabilities, enabling 

predictive frameworks that directly support industrial asset management strategies. Thus, Random 

Forest regression emerges not only as a powerful machine learning algorithm but also as a 

methodological foundation within reliability engineering frameworks across petroleum and power 

systems. 

LITERATURE REVIEW 

The literature on predictive maintenance and reliability engineering has expanded rapidly in recent 

decades, reflecting the growing importance of data-driven methods in optimizing industrial 

operations. Traditional maintenance frameworks, once reliant on corrective and preventive 

strategies, have shifted toward predictive and condition-based approaches that integrate 

advanced monitoring and computational techniques (Ji & Sun, 2022). In petroleum and power 

systems, this shift is particularly significant due to the high operational risks, substantial economic 

stakes, and global implications of system failures. The emergence of artificial intelligence and 

machine learning has further transformed this field by enabling the analysis of large-scale sensor 

datasets and by modeling nonlinear degradation behaviors that conventional methods struggled 

to capture. Random Forest regression, an ensemble-based learning algorithm, has been increasingly 

adopted as a powerful tool in this context because of its robustness, interpretability, and predictive 

accuracy in complex engineering environments (Wong et al., 2020). The existing body of research 

covers a wide range of themes, including the theoretical underpinnings of predictive maintenance, 

the methodological advances in machine learning applications, and sector-specific 

implementations in petroleum and power systems. To provide a structured understanding of this 

interdisciplinary domain, this literature review is organized into distinct thematic sections, each 

addressing a critical aspect of AI-driven predictive maintenance within a reliability engineering 

framework (Yang et al., 2019). By systematically reviewing these domains, the literature review 

establishes a comprehensive foundation for analyzing the role of Random Forest regression in 

improving reliability outcomes in petroleum and power infrastructures. 

Predictive Maintenance and Reliability Engineering 

Maintenance strategies in industrial engineering have historically been categorized into corrective, 

preventive, predictive, and condition-based approaches, each reflecting a distinct philosophy of 

managing system reliability. Corrective maintenance is the most basic form Adar and Md (2023), 

performed only after a failure occurs, often leading to high downtime and repair costs. Preventive 

maintenance, introduced as a response to these inefficiencies, involves scheduling interventions at 

fixed intervals regardless of system health, aiming to minimize failures but frequently resulting in 

unnecessary part replacements and over-maintenance. Predictive maintenance, by contrast, 

employs monitoring and analytical tools to forecast failure probability, aligning maintenance 

activities with actual equipment conditions and thus reducing costs and risks (Tao et al., 2018). 

Condition-based maintenance, closely related to predictive approaches, emphasizes continuous or 

periodic assessment of indicators such as vibration, temperature, and lubrication quality, providing 

actionable insights for timely intervention (Jardine, Lin, & Banjevic, 2006). Scholars have argued that 

predictive and condition-based maintenance represent evolutionary advancements over 

traditional strategies by introducing statistical rigor and real-time monitoring into industrial asset 

management. Comparative studies reveal that predictive maintenance reduces unplanned 

downtime more effectively than preventive maintenance, particularly in high-value sectors such as 

petroleum and power. Moreover, the reliability-centered framework often integrates multiple 

strategies, recognizing that corrective, preventive, and predictive actions may coexist depending 

on asset criticality and operational environment (Liao & Köttig, 2016). This classification highlights how 

definitions and distinctions provide not only theoretical clarity but also practical foundations for 

developing advanced maintenance systems that support reliability engineering principles. 

Reliability engineering has long been regarded as a cornerstone of lifecycle management for 

industrial systems, particularly in sectors where operational continuity and safety are paramount. It is 

defined as the systematic application of engineering principles to ensure that systems and 

components perform their intended functions for a specified time under defined conditions . 

Reliability engineering frameworks emphasize quantitative metrics such as mean time to failure 

(MTTF), mean time between failures (MTBF), and reliability functions derived from probabilistic models. 

These metrics provide decision-makers with tools to evaluate performance trade-offs between 

design, maintenance, and replacement policies. Studies have demonstrated that the integration of 
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reliability engineering into lifecycle management reduces overall ownership costs and increases 

asset availability, particularly in complex systems such as turbines, compressors, and drilling rigs. 

Reliability-centered maintenance (RCM) further institutionalized these principles by prioritizing 

maintenance decisions according to equipment criticality and failure consequences. Later research 

emphasized the link between reliability engineering and safety, particularly in industries such as oil 

and gas, where equipment failures can lead to environmental hazards and human fatalities. In 

power systems, reliability analysis has been essential for grid stability, providing frameworks for 

evaluating component performance and system redundancy. Lifecycle-focused approaches 

extend beyond operational phases to incorporate design, procurement, and decommissioning, 

reflecting the pervasive influence of reliability engineering throughout industrial systems. Thus, 

reliability engineering ensures that predictive maintenance strategies are not isolated practices but 

integral elements of comprehensive lifecycle management. 

 
Figure 3: Industrial Maintenance Strategies Classification Framework 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The integration of predictive maintenance into reliability engineering frameworks has been a 

significant advancement in asset management practices. Reliability-centered maintenance (RCM) 

provides a structured methodology to determine the most effective maintenance strategy for each 

component based on criticality and failure modes. Within this framework, predictive maintenance is 

often prioritized for critical components, as it allows failures to be anticipated before they occur, thus 

reducing the risk of costly disruptions. Predictive approaches employ statistical and machine learning 

models to forecast degradation, aligning closely with probabilistic reliability assessments such as 

failure rate distributions and hazard functions. Empirical studies show that integrating predictive 

maintenance into reliability-centered practices reduces maintenance costs by 25–30% compared 

to preventive-only strategies in large industrial plants. In petroleum systems, predictive maintenance 

integrated into reliability frameworks has been shown to mitigate risks of blowouts and pipeline leaks, 

while in power systems, it supports grid stability and reduces unplanned outages. Scholars have 

emphasized that predictive maintenance provides both operational and financial benefits, as it 

extends mean time between failures (MTBF) and reduces mean time to repair (MTTR). Integration 

also enhances decision-making by linking condition monitoring outputs, such as vibration or 

thermographic data, with reliability metrics used in maintenance planning. By situating predictive 

maintenance within reliability engineering frameworks, industries achieve a structured balance 

between system safety, asset longevity, and economic efficiency. 
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Theoretical Frameworks Underpinning Reliability-Centered Maintenance 

Reliability metrics have long served as foundational tools for quantifying the dependability of 

industrial systems, enabling engineers to assess performance, schedule maintenance, and optimize 

asset management. Mean Time to Failure (MTTF) is one of the earliest measures, representing the 

expected time before a component experiences its first failure, typically applied to non-repairable 

systems. For repairable systems, Mean Time Between Failures (MTBF) is widely adopted, measuring 

the average operating time between successive failures and thus informing decisions about 

maintenance frequency and spare parts management. Remaining Useful Life (RUL) extends beyond 

these average-based measures by estimating the time until a specific unit reaches the end of its 

functional life, a metric especially relevant in condition-based and predictive maintenance 

systems.Researchers have demonstrated that RUL provides more actionable insights for decision-

making by linking degradation models to probabilistic reliability functions. Comparative studies 

highlight that while MTBF provides broad system-level insights, RUL offers individualized prognostics 

that align better with modern maintenance strategies. These metrics have been central to reliability-

centered maintenance (RCM), forming the quantitative backbone of performance assessment 

frameworks across industries such as petroleum, aerospace, and power systems. Weibull analysis, 

Markov processes, and Bayesian updating have also been used in conjunction with MTTF and RUL to 

refine estimations in systems where failure modes are diverse and complex. Thus, MTTF, MTBF, and 

RUL serve as indispensable metrics, shaping the theoretical basis of reliability-centered approaches. 

Fault Tree Analysis (FTA) is a deductive reliability modeling method that systematically evaluates 

potential causes of system failures by linking component faults in a hierarchical structure. Developed 

initially for aerospace and nuclear systems, FTA provides engineers with a graphical and probabilistic 

means of tracing how basic events can propagate into top-level failures. Its ability to model complex 

interdependencies has made it a widely used tool in petroleum and power systems, where failures 

can stem from multiple, interacting causes . FTA applies Boolean logic to decompose system failures 

into combinations of subsystems, making it suitable for both qualitative assessments of vulnerability 

and quantitative estimations of system reliability (Lakemond & Holmberg, 2022; Tawfiqul, 2023). 

Empirical studies have applied FTA to offshore oil rigs, pipeline systems, and refineries to analyze 

catastrophic events such as blowouts or fires. In power engineering, FTA has been used to assess grid 

stability and transformer reliability, providing a means to identify critical failure paths and allocate 

maintenance resources. Comparisons with other models show that FTA is particularly useful for 

identifying single points of failure, but less effective in capturing dynamic interactions or time-

dependent degradation (Shamima et al., 2023; Signoret & Leroy, 2021). Hybrid methods, combining 

FTA with Markov processes or Monte Carlo simulations, have addressed some of these limitations by 

enhancing quantitative accuracy. Despite criticisms of its static nature, FTA remains central in 

reliability-centered frameworks as a rigorous method for analyzing causes and consequences of 

system failures. 

Failure Mode and Effects Analysis (FMEA) and Reliability Block Diagrams (RBD) represent two 

complementary approaches to reliability modeling that have been widely adopted in reliability-

centered maintenance practices. FMEA is an inductive method designed to identify potential failure 

modes, their causes, and effects, thereby prioritizing preventive actions based on severity, 

occurrence, and detection rankings. This structured approach allows industries to rank risks and 

allocate maintenance resources effectively, making it a cornerstone in industries ranging from 

aerospace to petroleum. In petroleum engineering, FMEA has been applied to drilling equipment, 

compressors, and pipeline systems to mitigate the risk of critical accidents (Pan et al., 2022; Ashraf & 

Ara, 2023). In power systems, FMEA has been used to assess vulnerabilities in substations, transmission 

lines, and renewable energy equipment. Reliability Block Diagrams (RBD), by contrast, provide a 

visual modeling technique where components are represented as blocks connected in series or 

parallel to capture system-level reliability. RBD has been particularly effective in large power 

generation systems, where redundancy and parallel structures play a key role in ensuring system 

availability. Studies demonstrate that combining FMEA with RBD offers both qualitative insights and 

quantitative reliability measures, providing a comprehensive framework for reliability-centered 

maintenance. Empirical evidence suggests that while FMEA excels in identifying risks at the 

component level, RBD offers a system-level perspective, making their integration particularly 

valuable in complex infrastructures such as petroleum refineries and smart grids (Rogith et al., 2017; 

https://researchinnovationjournal.com/index.php
https://doi.org/10.63125/477x5t65


American Journal of Scholarly Research and Innovation 

Volume 04, Issue 01 (2025) 

Page No:  363-391 

eISSN: 3067-2163 

Doi: 10.63125/477x5t65 
 

370 

 

Sanjai et al., 2023). Together, these approaches strengthen the theoretical foundations of reliability-

centered maintenance by bridging micro-level failure analysis with macro-level system modeling. 

Artificial Intelligence and Machine Learning in Predictive Maintenance 

The application of predictive maintenance has historically transitioned from statistical models to 

artificial intelligence (AI)-driven frameworks, reflecting the growing complexity of industrial systems 

and the availability of high-frequency sensor data (Ara et al., 2022; Akter et al., 2023). Early 

approaches relied heavily on statistical reliability models such as Weibull analysis, proportional 

hazards models, and Markov processes to estimate time-to-failure and system reliability (Jahid, 2022; 

Mzougui & Elfelsoufi, 2019). These models offered interpretable metrics such as mean time between 

failures (MTBF) but often assumed constant failure rates and independent events, assumptions not 

well-suited for complex environments (Razzak et al., 2024; Uddin et al., 2022). As data availability 

increased, regression models and Bayesian updating were introduced to capture more nuanced 

degradation patterns. However, statistical methods struggled with nonlinearities and 

multidimensional sensor data generated by modern industrial equipment (Baklouti et al., 2019; Akter 

& Ahad, 2022).  

 
Figure 4: Evolution of Maintenance Management 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This limitation encouraged the adoption of AI-based approaches capable of modeling complex 

failure dynamics. Neural networks were among the earliest AI methods applied in predictive 

maintenance, demonstrating superior accuracy in pattern recognition and failure classification 

compared to regression-based techniques (Istiaque et al., 2024; Arifur & Noor, 2022). Support vector 

machines (SVMs) further expanded applications by effectively handling small sample sizes and high-

dimensional feature spaces. Ensemble learning methods, such as Random Forests, marked another 

stage in this evolution, offering robustness against overfitting and improved interpretability (Akter & 

Shaiful, 2024; Rahaman, 2022). Reviews consistently show that AI-driven methods outperform 

traditional statistical models in predictive maintenance tasks across petroleum, aerospace, and 

power sectors. The transition from statistical to AI-driven models represents a paradigm shift in 
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predictive maintenance, enabling more precise prognostics and reliability-centered decision-

making (Hasan et al., 2024; Hasan et al., 2022; Hossen & Atiqur, 2022). 

Machine learning (ML) techniques have been extensively compared in predictive maintenance 

research, with each method offering distinct strengths and limitations depending on the system and 

data characteristics (Tawfiqul et al., 2022). Neural networks have demonstrated strong capabilities 

in pattern recognition and classification, particularly in rotating machinery diagnostics and fault 

detection tasks. Their nonlinear modeling capacity makes them effective, though they are often 

criticized for their “black-box” nature and sensitivity to hyperparameters (Kamrul & Omar, 2022). 

Support Vector Machines (SVMs) emerged as another widely used method, particularly valued for 

their robustness in high-dimensional feature spaces and small-sample conditions, making them 

suitable for early applications in vibration and acoustic analysis (Chaari et al., 2016; Mubashir & 

Abdul, 2022).  

 
Figure 5: The Evolution of Predictive Maintenance 

 

Ensemble-based models, such as Random Forest, have gained attention due to their ability to 

construct multiple decision trees, improving generalization, reducing overfitting, and providing 

interpretability through feature importance scores (Tawfiqul et al., 2024; Reduanul & Shoeb, 2022). 

Gradient boosting algorithms, including XGBoost and LightGBM, have shown high predictive 

accuracy in comparative studies, although they often require intensive tuning and are less 

interpretable than Random Forest. Meta-analyses reveal that while deep learning models such as 

convolutional neural networks achieve state-of-the-art performance in specific contexts, ensemble 

methods maintain superior balance between accuracy, efficiency, and transparency for 

engineering applications (Sazzad & Islam, 2022). Thus, comparative literature emphasizes that the 

choice of ML technique is context-dependent, influenced by system complexity, data type, and the 

trade-off between interpretability and accuracy (Noor & Momena, 2022). 

Artificial intelligence methods, particularly machine learning, have demonstrated significant 

advantages in handling nonlinearities, large-scale sensor data, and stochastic degradation 

processes inherent in industrial systems. Traditional reliability models often assumed linear 

degradation patterns and constant hazard rates, conditions rarely observed in petroleum and power 

industries (Kühl et al., 2022). Machine learning algorithms, by contrast, can model nonlinear 

interactions among multiple variables, enabling accurate prognostics even under highly dynamic 

operating conditions. Neural networks excel in identifying complex fault signatures across vibration, 

acoustic, and thermal signals, while SVMs provide effective classification in high-dimensional spaces 

with limited samples. Random Forest algorithms stand out for their scalability and ability to process 

heterogeneous datasets, producing robust predictions while offering interpretability through feature 

importance. Gradient boosting further improves predictive accuracy by sequentially minimizing 

errors, though at the expense of transparency (Gupta et al., 2021; Subrato & Md, 2024). Applications 

in petroleum systems show that AI methods can integrate real-time sensor data from pumps, 
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compressors, and pipelines to identify degradation trajectories more effectively than statistical 

models (Nichols et al., 2019). In power systems, AI models improve transformer fault detection, turbine 

efficiency monitoring, and renewable energy reliability forecasting. The ability to incorporate 

stochastic variability through probabilistic learning further enhances AI’s effectiveness in predictive 

maintenance across diverse environments (Helm et al., 2020; Ashiqur et al., 2025). Collectively, these 

studies demonstrate the superior adaptability of AI-driven methods for complex, data-rich industrial 

contexts. 

Random Forest Regression in Reliability Engineering Applications 

Random Forest regression is an ensemble-based learning algorithm introduced by Cioffi et al, (2020), 

built upon the concept of combining multiple decision trees to improve predictive accuracy and 

stability. The method employs bootstrap aggregating, or bagging, where training datasets are 

sampled with replacement, and individual decision trees are trained on these subsets. Predictions 

from all trees are then aggregated through averaging for regression or majority voting for 

classification, significantly reducing variance compared to single decision tree models. The algorithm 

incorporates random feature selection at each split, which ensures diversity among the trees and 

enhances generalization (Hasan, 2025; Riedl, 2019). This combination of bagging and random 

feature selection makes Random Forest highly robust, especially in high-dimensional, noisy datasets 

typical in industrial maintenance contexts. In reliability engineering, the ability to capture nonlinear 

degradation trends is particularly valuable because system failures often arise from interacting 

variables rather than isolated causes. Studies comparing ensemble models with single models 

confirm that Random Forest consistently produces lower prediction errors and better handles 

multicollinearity in predictor variables. Random Forest has thus been applied across multiple domains 

such as transformer reliability prediction, drilling equipment fault analysis, and turbine performance 

modeling (Goldenberg et al., 2019; Sultan et al., 2025). These studies highlight the algorithm’s 

theoretical basis as well as its practical effectiveness in reliability-centered predictive maintenance. 

 
Figure 6: Random Forest Predictive Maintenance Framework 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

One of the most frequently cited strengths of Random Forest regression lies in its resistance to 

overfitting, a common drawback of decision trees and deep learning models when applied to small 
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or noisy datasets. By aggregating predictions across multiple trees and introducing randomness in 

both data sampling and feature selection, Random Forest reduces the risk of memorizing training 

data while maintaining high predictive accuracy (Joshi, 2020; Sanjai et al., 2025). This property has 

proven particularly useful in predictive maintenance, where training datasets often contain 

unbalanced or sparse failure data. Another advantage is interpretability. Unlike black-box neural 

networks, Random Forest allows for the calculation of feature importance, quantifying the 

contribution of each variable to prediction outcomes. This functionality provides engineers with 

actionable insights about the most influential parameters affecting equipment degradation, such as 

vibration frequency, oil temperature, or load variations (Ullah et al., 2020). Adaptability to mixed data 

types further strengthens Random Forest’s applicability in reliability engineering, as it can process 

numerical sensor data alongside categorical variables such as operating modes and maintenance 

logs. Comparative studies show that Random Forest maintains stability even when faced with missing 

data, outliers, or high-dimensional predictor sets (Dimiduk et al., 2018). This combination of resistance 

to overfitting, interpretability, and adaptability has made Random Forest an effective and reliable 

tool across diverse predictive maintenance applications. 

Petroleum Industry Applications of Predictive Maintenance 

The upstream segment of the petroleum industry, encompassing exploration and drilling, faces 

significant reliability challenges due to extreme environmental conditions, high mechanical loads, 

and complex geological uncertainties. Drilling rig reliability has been a major focus, as failures in drill 

bits, mud pumps, or top drives can result in costly downtime and safety risks. Predictive maintenance 

approaches have been applied to monitor drilling parameters such as weight on bit, rate of 

penetration, and torque, allowing identification of patterns indicative of tool wear or mechanical 

failure (Sircar et al., 2021). Well integrity is another critical concern, as failures in casing, cementing, 

or wellhead systems can lead to catastrophic blowouts or uncontrolled hydrocarbon releases. 

Machine learning models, including Random Forest and support vector machines, have been used 

to detect anomalies in well pressure, flow rates, and acoustic emissions, supporting proactive 

maintenance of well integrity. Reservoir monitoring has also benefited from predictive methods, 

where seismic and production data are analyzed to forecast equipment stress and optimize 

extraction strategies (Janiesch et al., 2021). Studies highlight that predictive maintenance in 

upstream operations reduces non-productive time, enhances safety, and provides better control 

over drilling and extraction processes. Thus, predictive frameworks have become integral in 

addressing the reliability demands of upstream petroleum operations. 

Midstream operations, which include the transportation and storage of hydrocarbons, are highly 

dependent on the reliability of pipelines, compressor stations, and storage facilities. Pipelines are 

prone to corrosion, leaks, and third-party damages, making predictive monitoring essential for 

ensuring operational safety and environmental protection (Jing et al., 2018). Condition monitoring 

techniques such as acoustic sensors, magnetic flux leakage, and distributed fiber-optic sensing have 

been applied for early leak and corrosion detection, with machine learning models enhancing fault 

classification and severity prediction. Compressor stations, which maintain pressure in pipeline 

networks, are critical components that often experience mechanical and thermal stresses. Predictive 

maintenance using vibration and temperature data has been shown to detect anomalies in 

compressors before catastrophic failures occur (Lima et al., 2016). AI models such as Random Forest 

and gradient boosting have been used to model nonlinear degradation in compressor operations, 

offering superior accuracy over regression-based techniques. Transport safety within midstream 

operations also benefits from predictive approaches, where vehicle telemetry and scheduling data 

are analyzed to reduce delays and prevent mechanical failures in fleet operations. Integration of 

IoT-enabled sensors in midstream infrastructure has further supported real-time predictive monitoring, 

aligning condition assessment with reliability engineering frameworks. Collectively, these studies 

illustrate the value of predictive maintenance in maintaining safe and efficient midstream petroleum 

operations. 

Downstream operations, including refining and distribution, demand high levels of reliability due to 

the complexity of processing units and the severe safety implications of equipment failures. Refinery 

throughput optimization relies on the continuous operation of critical assets such as distillation 

columns, heat exchangers, and catalytic crackers, where predictive maintenance has been 

applied to improve efficiency and minimize downtime (Wang et al., 2020). Pumps and valves, 

frequently subject to cavitation, corrosion, and wear, represent common points of failure in refineries. 
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Predictive monitoring using vibration, acoustic, and oil analysis has been shown to provide early 

warning of failures, with machine learning models further enhancing predictive accuracy. AI-driven 

models such as Random Forest have been used to identify influential parameters affecting pump 

reliability, while neural networks and gradient boosting have optimized predictive classification of 

valve failures (Olaizola et al., 2022). Hazard prevention is a central concern in refineries, where 

accidents such as explosions or fires carry severe risks. Predictive maintenance frameworks 

integrated with reliability-centered approaches have been applied to minimize hazardous events 

by continuously monitoring critical safety systems. Empirical studies in large refineries demonstrate 

that predictive frameworks not only reduce equipment downtime but also significantly lower risks of 

catastrophic failures (Al-Douri et al., 2022). The literature confirms that predictive maintenance has 

become an essential tool for downstream petroleum operations, combining safety, economic, and 

operational benefits. 

 
   Figure 7:  Petroleum Industry Application of Predictive Maintenance 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Case studies provide concrete evidence of the effectiveness of AI-driven predictive maintenance 

in petroleum operations, illustrating how machine learning enhances traditional reliability 

engineering practices. In offshore drilling platforms, Random Forest and support vector machines 

have been employed to analyze drilling parameters, reducing non-productive time and improving 

rig reliability. Reservoir monitoring case studies demonstrate the use of neural networks and gradient 

boosting for optimizing well performance and predicting equipment degradation under variable 

geological conditions (Al-Douri et al., 2020). Midstream case studies highlight the application of IoT-

enabled predictive frameworks for leak detection and compressor monitoring in large pipeline 

networks, improving safety and reducing unplanned downtime. Downstream applications include 

refinery case studies where Random Forest and ensemble models were integrated with condition 

monitoring to optimize throughput and reduce hazardous incidents. Comparative evaluations show 

that AI-driven predictive systems consistently outperform traditional regression and statistical models 

in terms of both predictive accuracy and cost savings (Murphy, 2017). Several case studies also 

highlight the interpretability advantage of Random Forest, where feature importance analysis 

identified critical operational variables such as pressure, vibration, and chemical composition, 

supporting targeted maintenance actions. Collectively, case-based evidence underscores how AI-

driven predictive maintenance enhances operational reliability across upstream, midstream, and 

downstream petroleum operations. 
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Power Systems Applications of Predictive Maintenance 

Thermal power plants rely on turbines, boilers, and generators as critical components, making 

predictive maintenance indispensable for operational reliability. Turbine blade failures are 

particularly common due to high temperatures, corrosion, and fatigue stresses, with vibration analysis 

and thermographic imaging widely used to detect cracks and material degradation (Mao et al., 

2019). Predictive models employing machine learning have demonstrated improved accuracy in 

identifying early blade faults compared to rule-based systems, with Random Forest and support 

vector machines applied to analyze vibration and acoustic emission data. Boiler reliability is another 

focal point, as failures in tubes, refractory linings, or combustion systems can significantly disrupt plant 

performance. Statistical reliability models such as Weibull analysis have been combined with 

condition monitoring data to predict boiler tube failures, while AI-driven techniques have enhanced 

predictive accuracy under varying load conditions. Generators, which are subject to insulation 

breakdown, rotor imbalance, and cooling failures, have also benefited from predictive monitoring. 

Studies highlight the role of Random Forest regression and neural networks in predicting generator 

faults using current, temperature, and vibration signals (Fabiano et al., 2022). Comparative literature 

indicates that predictive approaches in thermal plants reduce forced outages and enhance 

efficiency by optimizing maintenance scheduling. Collectively, research underscores the 

importance of predictive maintenance frameworks in improving turbine, boiler, and generator 

reliability, making them central to thermal power plant sustainability. 

Renewable power systems, particularly wind and solar, present unique reliability challenges that 

have made predictive maintenance an essential tool for ensuring stable energy output. Wind 

turbines are prone to gearbox failures, which account for a significant portion of downtime and 

maintenance costs. Vibration and acoustic emission analysis has been extensively employed to 

monitor gearbox health, with Random Forest, neural networks, and gradient boosting methods 

applied to improve fault detection accuracy (Katopodis & Sfetsos, 2019). Blade monitoring has also 

been critical, as structural cracks, icing, and surface erosion lead to reduced aerodynamic 

efficiency and potential catastrophic failures. Thermographic imaging, strain sensors, and AI-based 

models have enhanced detection of blade degradation. Generator reliability in wind turbines has 

been improved by predictive monitoring of insulation resistance, rotor dynamics, and bearing 

conditions, with Random Forest models achieving high accuracy in fault classification (Fabiano et 

al., 2022). In solar systems, predictive maintenance has been applied to detect inverter failures, 

which are the most frequent cause of downtime. Machine learning approaches analyzing current, 

voltage, and thermal data have proven effective in predicting inverter degradation and module 

failures. Comparative studies show that AI-driven predictive maintenance significantly enhances 

energy yield in renewable systems by preventing unplanned outages and reducing maintenance 

costs. Literature confirms the critical role of predictive frameworks in ensuring reliability of renewable 

energy assets under variable operating conditions. 

The integration of predictive maintenance into smart grid systems has been a growing area of study, 

addressing the reliability demands of transmission and distribution networks. Transmission lines are 

exposed to weather, mechanical stress, and electrical loading conditions that can cause insulator 

contamination, conductor fatigue, and tower failures. Predictive monitoring using thermal imaging, 

corona discharge detection, and machine learning models has proven effective in identifying 

potential failures before they escalate. Transformers, as critical nodes in transmission systems, are 

frequently monitored using dissolved gas analysis and vibration signals, with Random Forest and 

ensemble learning models demonstrating superior accuracy in fault diagnosis (Katopodis & Sfetsos, 

2019). In distribution systems, predictive maintenance has been applied to circuit breakers, relays, 

and underground cables, where condition monitoring combined with AI enhances fault localization 

and improves system reliability. IoT-enabled smart sensors further support real-time monitoring, with 

machine learning algorithms processing large-scale datasets to detect anomalies in grid 

components (Fausing Olesen & Shaker, 2020). Comparative studies highlight that predictive 

frameworks in smart grids reduce downtime and improve fault recovery times compared to 

traditional inspection-based methods. The literature consistently emphasizes the importance of 

predictive maintenance in strengthening smart grid reliability, aligning advanced monitoring 

technologies with established reliability engineering practices (Ferrero Bermejo et al., 

2019).Comparative literature on predictive maintenance highlights important differences and 

similarities between conventional thermal power plants and renewable energy systems. In thermal 
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plants, predictive maintenance primarily addresses degradation in high-temperature, high-pressure 

environments affecting turbines, boilers, and generators. These systems typically operate under 

steady-state conditions, allowing for well-established condition monitoring techniques such as 

vibration, oil, and thermal analysis. By contrast, renewable energy systems such as wind and solar 

face highly variable operating conditions, including fluctuating wind speeds, ambient temperatures, 

and irradiance levels, requiring more adaptive predictive methods. In wind turbines, predictive 

monitoring of gearboxes and blades addresses mechanical stresses induced by intermittent wind 

patterns, while in solar systems, predictive maintenance often focuses on inverter reliability due to 

high failure rates. Comparative studies reveal that while both sectors benefit from AI-driven 

predictive methods, the choice of algorithms differs: Random Forest and gradient boosting are 

widely applied in wind and solar systems due to their adaptability, whereas thermal plants frequently 

rely on hybrid models combining traditional statistical analysis with AI. In both contexts, predictive 

frameworks enhance system reliability and reduce maintenance costs, though the data 

characteristics and operational risks vary significantly. Literature confirms that predictive 

maintenance has become an indispensable tool across both conventional and renewable sectors, 

supporting reliability-centered engineering in diverse energy applications. 
 

Figure 8:  Predictive Maintenance Framework for Energy 

 
 

Predictive Maintenance into Digital Twins and IoT Ecosystems 

The adoption of Internet of Things (IoT) sensors has significantly transformed predictive maintenance 

in petroleum and power systems, providing real-time data essential for reliability engineering 

frameworks. IoT devices capture critical operational parameters such as vibration, temperature, 

pressure, and acoustic emissions, enabling continuous monitoring of rotating machinery, turbines, 

compressors, and pipelines. In petroleum applications, IoT sensors have been widely deployed in 

drilling rigs and pipeline networks to detect anomalies that indicate equipment degradation or 

potential leaks. In power systems, sensors monitor transformers, generators, and circuit breakers, 

offering real-time visibility into equipment health and enabling early fault detection (Ahmad et al., 

2018). The combination of IoT and predictive maintenance has proven effective in environments 

where equipment is distributed over vast geographic regions, such as offshore oilfields or transmission 

networks. Studies demonstrate that IoT-enabled systems improve the accuracy of machine learning 

models like Random Forest by providing high-resolution datasets that capture subtle degradation 

trends. In addition, IoT devices support multisensory fusion, where vibration, oil, and thermal data are 

integrated for comprehensive condition monitoring.  

Digital twin technology, defined as a virtual representation of a physical system that continuously 

updates with real-time data, has become an integral platform for predictive maintenance in 
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industrial engineering. Digital twins simulate equipment behavior by integrating sensor data, system 

models, and machine learning algorithms, enabling engineers to analyze degradation patterns and 

optimize reliability strategies. Predictive maintenance forms a core function within digital twin 

frameworks, where health monitoring and fault prediction are performed virtually to inform 

maintenance scheduling. In petroleum systems, digital twins of drilling platforms and refineries 

incorporate predictive algorithms to detect anomalies in pumps, valves, and compressors, 

enhancing system reliability. In power systems, turbine and transformer digital twins employ Random 

Forest and neural networks to predict failures and optimize operating efficiency. Studies highlight 

that predictive maintenance embedded in digital twin frameworks provides actionable insights by 

simulating failure scenarios and quantifying remaining useful life (RUL) under varying operating 

conditions (Singh et al., 2021). Literature also emphasizes the integration of reliability-centered 

maintenance (RCM) with digital twins, where FMEA and fault tree models are incorporated into 

virtual simulations for enhanced risk analysis. Thus, predictive maintenance within digital twin 

ecosystems strengthens reliability frameworks by bridging physical operations and virtual simulation 

environments (Qi et al., 2021). 

The rise of big data analytics and cloud computing has further strengthened predictive maintenance 

by enabling scalable storage, processing, and integration of multisensory datasets from petroleum 

and power systems. Big data fusion techniques combine heterogeneous sensor inputs such as 

vibration, oil analysis, and thermography, improving diagnostic accuracy by capturing diverse failure 

modes (Jiang et al., 2021). Cloud-based platforms allow predictive models to process these large-

scale datasets in real time, supporting remote monitoring and decision-making across distributed 

infrastructures. In petroleum pipelines and refineries, cloud-based predictive analytics integrate IoT 

data streams with machine learning algorithms such as Random Forest and gradient boosting, 

enabling precise fault prediction in compressors and valves. In power systems, cloud-enabled 

predictive platforms have been employed to analyze transformer health and grid reliability, reducing 

downtime and enhancing availability (Mashaly, 2021). Studies emphasize the role of cloud 

architectures in facilitating collaborative predictive analytics, where operators, maintenance teams, 

and decision-makers access real-time reliability data from centralized dashboards. Big data 

frameworks also enable probabilistic models such as Bayesian updating and Markov chains to be 

combined with machine learning for more robust prognostics. Literature consistently identifies big 

data fusion and cloud integration as critical enablers of predictive reliability analytics in complex 

petroleum and power infrastructures (Fang et al., 2022). 

Synthesis of Challenges and Research Gaps 

Although predictive maintenance has been widely implemented in petroleum and power systems, 

several limitations persist in its practical application. One key challenge is the reliance on high-

quality, labeled datasets for model training, which are often unavailable in industrial contexts where 

failure events are rare and data collection inconsistent. In petroleum operations, harsh environments 

frequently cause sensor failures, missing data, and noisy measurements, which reduce the accuracy 

of predictive models (Qian et al., 2022). Power systems face similar challenges, where intermittent 

faults in transformers, turbines, and circuit breakers are difficult to capture with conventional 

condition monitoring methods. Existing predictive models also struggle with nonlinear degradation 

patterns and complex interdependencies among system components, often oversimplifying real-

world operational dynamics. Random Forest and ensemble methods improve robustness but still 

require extensive feature engineering and parameter tuning to achieve optimal performance.  

Furthermore, empirical studies reveal that many predictive frameworks remain highly domain-

specific and lack the flexibility to generalize across different petroleum and power assets (Madni et 

al., 2019). Case studies consistently highlight that although predictive maintenance reduces 

downtime, its integration is hindered by practical barriers such as data heterogeneity, limited 

interoperability with existing SCADA systems, and inadequate standardization of predictive 

workflows. These limitations demonstrate that while predictive maintenance frameworks are 

effective in controlled settings, challenges remain in achieving reliability and scalability under real-

world operational conditions (Botín-Sanabria et al., 2022). 

A recurring theme in predictive maintenance literature is the difficulty of scaling machine learning 

frameworks across different petroleum and power system environments. Scalability challenges arise 

because models trained on one dataset often fail to generalize to new assets or operating conditions 

due to variations in sensor configurations, operational loads, and environmental conditions (Al-Ali et 
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al., 2020). For example, transformer monitoring models developed for European grids have been 

shown to underperform when applied to Asian networks with different climatic and operational 

conditions. Interpretability is another gap, as many advanced models such as deep neural networks 

and gradient boosting provide high predictive accuracy but limited insight into causal mechanisms 

of equipment degradation. Engineers and decision-makers in petroleum and power sectors require 

transparent frameworks where critical variables such as vibration amplitude or oil temperature can 

be directly linked to failure outcomes (Zhu et al., 2019). Random Forest offers some interpretability 

through feature importance but remains limited in explaining complex interactions among features. 

Cross-domain applicability also poses a challenge, as models designed for turbines or compressors 

may not be directly transferable to pipelines or refineries without extensive retraining. Studies stress 

that predictive frameworks must be tailored to domain-specific contexts, yet this customization often 

increases cost and complexity, reducing their scalability. Collectively, these gaps underscore that 

predictive maintenance, while technologically advanced, often falls short of delivering universally 

scalable, interpretable, and cross-domain solutions (Ibrahim et al., 2020). 

 
Figure 9: Predictive Maintenance Challenges and Opportunities 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Although Random Forest regression has demonstrated effectiveness in predictive maintenance, 

literature indicates a pressing need for sector-specific customization to optimize its performance in 

petroleum and power industries. Random Forest is valued for its resistance to overfitting and ability 

to handle heterogeneous data, but studies show that default parameterization often underperforms 

when applied to domain-specific datasets without tuning (Uhlemann et al., 2017). In petroleum 

drilling operations, Random Forest models require tailored feature selection to capture relevant 

parameters such as mud weight, pressure, and torque, which differ substantially from variables used 

in refinery pump monitoring. Similarly, in power systems, transformer fault diagnostics rely on dissolved 

gas analysis and partial discharge data, necessitating specific preprocessing techniques and 

customized model configurations. Case studies highlight that Random Forest must often be 

integrated with domain-specific condition monitoring techniques such as vibration analysis, oil 

analysis, or thermography to achieve reliable predictions. Empirical evaluations suggest that hybrid 

frameworks combining Random Forest with statistical reliability tools such as Weibull analysis and 

https://researchinnovationjournal.com/index.php
https://doi.org/10.63125/477x5t65


American Journal of Scholarly Research and Innovation 

Volume 04, Issue 01 (2025) 

Page No:  363-391 

eISSN: 3067-2163 

Doi: 10.63125/477x5t65 
 

379 

 

Markov chains provide more accurate failure prognostics in sector-specific contexts. Scholars also 

emphasize that petroleum and power industries have distinct operational environments—offshore 

drilling rigs versus interconnected power grids—requiring sectoral adaptation of Random Forest 

methodologies. Literature consistently points to the necessity of aligning Random Forest frameworks 

with domain-specific degradation mechanisms, operational variables, and maintenance standards 

to maximize predictive accuracy and reliability (Moeinedini et al., 2018). 

Literature highlights significant opportunities for cross-disciplinary integration between reliability 

engineering and artificial intelligence (AI), though such efforts remain underdeveloped in petroleum 

and power systems. Reliability engineering provides structured methods such as fault tree analysis 

(FTA), failure mode and effects analysis (FMEA), and reliability block diagrams (RBD), which offer well-

established frameworks for risk assessment but often lack the predictive precision of AI models. AI, 

particularly Random Forest and neural networks, excels at handling nonlinearities and high-

dimensional datasets but struggles with interpretability and integration into standardized reliability 

practices (Merkt, 2019). Studies argue that hybrid approaches bridging AI with classical reliability 

methods can leverage the strengths of both disciplines. For instance, combining Random Forest 

predictions with FMEA prioritization provides both statistical rigor and interpretability for maintenance 

planning . Similarly, integrating AI-driven fault detection into RBD or Markov chain models enhances 

the capacity to model time-dependent reliability (He et al., 2017). In petroleum applications, hybrid 

frameworks have been used to align SCADA data analytics with reliability metrics, improving drilling 

and pipeline reliability assessments. In power systems, AI-enhanced reliability assessments have 

supported transformer monitoring and smart grid stability by combining probabilistic reliability indices 

with machine learning predictions. Literature suggests that the convergence of reliability engineering 

and AI represents a rich domain for methodological innovation, where predictive precision and 

interpretability can be jointly achieved through cross-disciplinary integration (Wang et al., 2022). 

METHOD 

This study was designed and executed in accordance with the Preferred Reporting Items for 

Systematic Reviews and Meta-Analyses (PRISMA) guidelines, which provide a rigorous framework for 

conducting systematic reviews in a transparent and replicable manner. Following PRISMA ensured 

that the process of identification, screening, eligibility, and inclusion was methodologically sound 

and minimized the risk of bias. The review sought to capture the breadth of literature addressing 

predictive maintenance, Random Forest regression models, and reliability engineering applications, 

with a specific focus on petroleum and power systems. By adopting this structured approach, the 

study achieved consistency in study selection, data extraction, and synthesis. In the identification 

stage, comprehensive searches were conducted across multiple academic databases, including 

Scopus, Web of Science, IEEE Xplore, SpringerLink, and ScienceDirect. These databases were 

selected for their extensive coverage of engineering, computer science, and applied industrial 

research. A combination of keywords and Boolean operators was used to refine the search, with 

terms such as “predictive maintenance,” “Random Forest regression,” “reliability engineering,” 

“petroleum industry,” “power systems,” “machine learning,” and “digital twins.”  

To enhance precision, wildcard operators and controlled vocabulary terms such as IEEE subject 

headings and Web of Science categories were also employed. The search was limited to studies 

published between 2000 and 2024 to ensure relevance to modern predictive frameworks and 

technological advancements. This search process initially identified 1,372 records. The second stage, 

screening, involved removing duplicates and performing a preliminary review of titles and abstracts. 

Duplicate removal reduced the dataset to 1,085 studies. Titles and abstracts were then screened 

against inclusion and exclusion criteria. The inclusion criteria required studies to focus on predictive 

maintenance frameworks, reliability-centered maintenance, or applications of Random Forest 

regression and related machine learning methods in petroleum or power engineering contexts. 

Exclusion criteria involved articles not written in English, studies without empirical or computational 

data (e.g., conceptual essays), conference abstracts lacking full texts, and works outside the 

engineering domain. Following this process, 312 studies remained for detailed eligibility assessment. 

During the eligibility stage, the full texts of the remaining studies were retrieved and examined in 

detail. Each article was assessed for methodological rigor, clarity of reporting, and relevance to the 

research questions. Particular attention was given to whether the studies employed predictive 

maintenance strategies, incorporated Random Forest or ensemble learning models, or addressed 

petroleum and power system applications. Studies that failed to present sufficient methodological 
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detail or did not demonstrate empirical validation were excluded. As a result, 196 studies were 

removed at this stage, leaving 116 studies that satisfied all eligibility requirements. 

The final inclusion stage narrowed the selection further, as certain studies overlapped in scope or 

presented duplicated findings in multiple publications. After careful consideration, a total of 92 

studies were included in the systematic review. These studies represented a diverse range of 

methodologies, including statistical reliability models, AI-driven prognostics, hybrid approaches 

combining Random Forest with traditional reliability engineering, and domain-specific 

implementations across upstream, midstream, and downstream petroleum operations as well as 

thermal, renewable, and smart grid power systems. Data were systematically extracted from each 

included study, focusing on objectives, datasets, methodological approaches, predictive 

performance, and alignment with reliability engineering frameworks. By applying the PRISMA 

methodology, this study ensured that the review process was comprehensive, unbiased, and 

replicable. The systematic narrowing from 1,372 identified studies to 92 final inclusions reflects the 

careful balance between breadth and specificity required in systematic reviews. This process 

allowed for the synthesis of high-quality evidence on the application of Random Forest regression 

models in predictive maintenance, providing a robust foundation for analyzing reliability engineering 

in petroleum and power system contexts. 

 
Figure 10: Methodology of this study 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FINDINGS 

The systematic review revealed that a considerable body of research has focused on definitions, 

conceptual distinctions, and reliability metrics that serve as the foundation of predictive 

maintenance and reliability engineering. Out of the 92 reviewed studies, 18 addressed definitions 

and conceptual frameworks in detail, collectively accumulating more than 3,400 citations, which 
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underscores their influence on academic and industrial practices. These studies consistently 

distinguished between corrective maintenance, preventive maintenance, condition-based 

maintenance, and predictive maintenance, with predictive maintenance emerging as the most 

comprehensive and data-driven approach. Corrective maintenance was defined in the reviewed 

works as reactive intervention after system failure, while preventive maintenance was associated 

with time-based scheduling of repairs or replacements. Condition-based maintenance introduced 

monitoring of system variables to indicate equipment health, whereas predictive maintenance built 

upon this by employing analytical and statistical methods to forecast when failures were likely to 

occur. The review further identified 21 studies that emphasized reliability metrics such as mean time 

to failure (MTTF), mean time between failures (MTBF), and remaining useful life (RUL), which 

collectively accumulated around 2,900 citations. These metrics provided practical methods for 

quantifying system performance and planning interventions. RUL, in particular, was the most 

frequently highlighted measure because of its direct applicability to predictive maintenance 

contexts, especially in petroleum and power systems. Several studies emphasized that while MTTF 

and MTBF offered general reliability insights, RUL was more precise in guiding data-driven decision-

making by linking degradation patterns with operational forecasting. The combined weight of 

evidence from these highly cited articles shows that the conceptual foundations and metrics of 

reliability engineering remain essential pillars in predictive maintenance research. By establishing 

consistent definitions and widely adopted metrics, these studies provided the conceptual and 

methodological structure upon which advanced AI-driven frameworks, including Random Forest 

applications, could be built and evaluated effectively across different industrial domains. The 

findings highlighted that artificial intelligence and machine learning approaches, with Random 

Forest regression as a central technique, dominated the contemporary discourse on predictive 

maintenance.  
Figure 11: Studies and Citations Across Domains 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Out of the 92 studies included in the review, 26 specifically focused on Random Forest applications 

for reliability engineering, collectively receiving over 4,200 citations, which signals their importance 

within the research community. These studies demonstrated that Random Forest was particularly 

effective in handling high-dimensional datasets, reducing overfitting risks, and offering interpretability 

through feature importance ranking. Beyond Random Forest, the review identified 31 studies 

comparing machine learning algorithms in predictive maintenance tasks, which together 

accumulated more than 6,100 citations. The comparative studies consistently showed that neural 

https://researchinnovationjournal.com/index.php
https://doi.org/10.63125/477x5t65


American Journal of Scholarly Research and Innovation 

Volume 04, Issue 01 (2025) 

Page No:  363-391 

eISSN: 3067-2163 

Doi: 10.63125/477x5t65 
 

382 

 

networks achieved high predictive performance but were criticized for their lack of interpretability 

and tendency to overfit when data were limited. Support vector machines were widely applied in 

small-sample conditions and received positive evaluations, yet scalability issues and computational 

intensity limited their industrial use. Gradient boosting methods such as XGBoost and LightGBM often 

outperformed other models in predictive accuracy but required extensive parameter tuning and 

provided little transparency for decision-makers. Random Forest, by contrast, achieved a balance 

between accuracy, robustness, and interpretability, which made it the most widely recommended 

method across different predictive maintenance contexts. Furthermore, it was particularly valued in 

petroleum and power applications, where data heterogeneity and noisy sensor outputs were 

common. The number of citations attached to these studies reflects the centrality of Random Forest 

in predictive maintenance literature, as it provided a practical and adaptable solution for real-world 

reliability challenges. Collectively, the body of research reviewed demonstrates that although 

multiple AI and machine learning approaches have been applied, Random Forest regression holds 

the strongest position in the literature as a dependable, interpretable, and widely validated method 

for predictive maintenance in complex industrial settings. 

Applications of predictive maintenance in petroleum systems emerged as one of the most significant 

themes in the reviewed literature. Out of the 92 included studies, 24 directly addressed petroleum 

operations, spanning upstream, midstream, and downstream processes. These petroleum-focused 

studies collectively accumulated more than 5,600 citations, highlighting their considerable 

academic and industrial relevance. In upstream operations, which encompass drilling, well integrity, 

and reservoir management, 11 studies explored predictive maintenance frameworks, accounting 

for nearly 2,100 citations. These works demonstrated how predictive maintenance reduced drilling 

downtime, improved equipment reliability, and enhanced well safety through continuous monitoring 

and anomaly detection. In the midstream segment, 6 studies concentrated on pipelines, compressor 

stations, and transport safety, collectively receiving around 1,400 citations. These articles emphasized 

the importance of predictive maintenance in reducing environmental risks, preventing leaks, and 

improving operational efficiency in petroleum transport systems. Downstream applications were 

represented in 7 studies with more than 2,000 citations, where the emphasis was on refinery 

operations, pump and valve monitoring, and hazard prevention. These downstream-focused articles 

illustrated the role of predictive maintenance in ensuring throughput efficiency and reducing 

catastrophic incidents such as fires or explosions in refining environments. Together, the upstream 

and downstream segments accounted for the majority of citations, reflecting greater research and 

practical emphasis compared to the midstream. The reviewed petroleum-related studies 

demonstrated that predictive maintenance frameworks not only improved operational continuity 

but also played a critical role in addressing safety, environmental, and financial risks. The substantial 

number of citations associated with these studies indicates strong resonance across both academia 

and industry, reinforcing petroleum as one of the most critical sectors for predictive maintenance 

research and application. 

The review also confirmed that predictive maintenance is deeply embedded in power systems 

research, with 28 of the 92 studies focused on turbines, boilers, transformers, renewable energy, and 

smart grid applications. Collectively, these studies accumulated more than 7,300 citations, reflecting 

the high visibility of predictive maintenance research in energy engineering. Within thermal power 

plants, 9 studies addressed turbine blade reliability, boiler monitoring, and generator efficiency, 

accounting for around 1,900 citations. These studies demonstrated how predictive frameworks 

reduced forced outages and optimized plant efficiency by identifying early degradation in critical 

components. Transformer diagnostics represented another highly studied area, with 8 articles 

receiving more than 2,100 citations, highlighting the importance of predictive monitoring for 

insulation breakdown and fault detection. Renewable energy applications, including wind turbine 

gearbox and blade monitoring as well as solar inverter reliability, were addressed in 7 studies that 

collectively received 1,700 citations. These articles showed that predictive frameworks were essential 

for enhancing the reliability of renewable systems operating under variable environmental 

conditions. Predictive maintenance in smart grid networks was represented in 4 studies with 

approximately 1,600 citations, focusing on anomaly detection in transmission and distribution 

systems. Across all categories, Random Forest regression frequently appeared as a preferred method 

for fault detection and failure forecasting due to its adaptability to nonlinear and high-dimensional 

sensor data. The high number of citations attached to power system studies reflects their relevance 
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not only in academic research but also in industrial practice, as power reliability is essential for 

economic stability and societal functioning. These findings confirm that predictive maintenance in 

power systems is both mature and impactful, with wide adoption across conventional and 

renewable contexts. 

A final theme that emerged from the review was the integration of predictive maintenance with IoT, 

digital twin technologies, and cyber-physical system frameworks, as well as the identification of 

persistent research gaps. Out of the 92 reviewed studies, 20 focused on IoT-enabled predictive 

maintenance frameworks, together receiving more than 4,900 citations. These works demonstrated 

how real-time data streams from IoT sensors improved condition monitoring in geographically 

distributed petroleum and power infrastructures. Digital twin models were addressed in 8 studies, 

collectively attracting over 1,200 citations. These studies illustrated how virtual models, updated 

continuously with real-time operational data, supported predictive maintenance by simulating 

equipment behavior and failure scenarios. Big data fusion and cloud-based predictive platforms 

were covered in 7 studies with more than 1,400 citations, showing how large-scale sensor data 

integration enhanced fault detection and reliability forecasting. Importantly, 15 studies, representing 

nearly 2,500 citations, explicitly discussed research gaps such as limitations in scalability, challenges 

in interpretability of machine learning models, and cross-domain applicability issues. Several articles 

emphasized that while Random Forest provided a strong balance between accuracy and 

interpretability, sector-specific customization remained necessary to achieve optimal performance 

in petroleum and power contexts. Collectively, these findings highlighted that although IoT and 

digital twins were among the most frequently cited emerging themes, significant gaps persisted in 

making predictive maintenance frameworks universally scalable and interpretable. The synthesis of 

these studies shows that the intersection of predictive maintenance with digital transformation 

technologies is well established but continues to face challenges in implementation, which 

researchers have repeatedly identified as barriers to broader adoption across industrial sectors. 

DISCUSSION 

The review confirmed that predictive maintenance, as defined through the integration of condition 

monitoring and statistical modeling, continues to build on earlier frameworks that emphasized 

corrective and preventive strategies. Earlier foundational works distinguished predictive 

maintenance as a forward-looking approach capable of estimating equipment failure before 

breakdowns occurred. Our findings reinforce these definitions, as the reviewed studies highlighted 

predictive maintenance as the most comprehensive framework, contrasting it with time-based 

preventive maintenance and reactive corrective maintenance. The role of reliability metrics such as 

mean time to failure (MTTF), mean time between failures (MTBF), and remaining useful life (RUL) was 

also consistent with prior literature. Achouch et al. (2022) established MTTF and MTBF as standard 

measures in reliability engineering, while more recent works emphasized RUL for its operational 

relevance. Our synthesis demonstrated that the majority of reviewed studies increasingly favored RUL 

as the central metric for predictive maintenance, particularly in petroleum and power systems. This 

aligns with contemporary reviews identified RUL estimation as the core focus of predictive 

prognostics. By comparing findings with earlier studies, it is clear that while traditional reliability metrics 

remain important for historical benchmarking, RUL has become dominant because it provides 

actionable insights for condition-based interventions. The convergence of findings with past research 

shows continuity in the conceptual evolution of predictive maintenance while also emphasizing a 

shift toward metrics that directly influence decision-making in complex industrial contexts. 

The findings on artificial intelligence methods, and Random Forest regression in particular, reinforce 

earlier conclusions that ensemble learning provides an effective balance between predictive 

accuracy and interpretability. Quatrini et al. (2020) introduced Random Forest as an ensemble 

method designed to improve stability and reduce overfitting, principles that were validated across 

many of the reviewed studies. Earlier research comparing machine learning algorithms highlighted 

that neural networks achieved high predictive accuracy but suffered from limited interpretability, 

while support vector machines (SVMs) demonstrated robustness in small-sample conditions but 

struggled with scalability.  

Gradient boosting methods, such as XGBoost, have been praised for accuracy but criticized for 

complexity. Our review corroborates these findings, as Random Forest consistently emerged as the 

most balanced model across petroleum and power applications. These results align with broader 

machine learning benchmarking studies which confirmed that Random Forest performs 
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competitively across diverse datasets. Importantly, the review highlighted that Random Forest also 

provides variable importance measures, enabling engineers to identify critical degradation 

variables, an aspect less developed in earlier neural network and gradient boosting literature. Thus, 

in comparison with earlier findings, this review reinforces the central role of Random Forest regression 

in predictive maintenance, not as a replacement for other algorithms but as the most practical 

balance of accuracy, robustness, and interpretability for reliability engineering contexts. 

 
Figure 12: Predictive Maintenance Framework and Applications 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The review identified petroleum as a critical domain for predictive maintenance, consistent with 

earlier research highlighting its operational and environmental risks. The catastrophic consequences 

of failures in offshore drilling and refinery systems, emphasizing the necessity of robust reliability 

frameworks. Our synthesis confirmed that predictive maintenance in petroleum operations spans 

upstream, midstream, and downstream processes, with the greatest emphasis on drilling reliability, 

well integrity, and refinery optimization. This distribution aligns with historical works  who highlighted 

the vulnerability of rotating equipment such as pumps and compressors who linked maintenance 

strategies to operational efficiency in petroleum industries. Unlike earlier studies that relied primarily 

on condition monitoring, the reviewed articles demonstrated that AI-driven models, especially 

Random Forest regression, significantly improved anomaly detection and failure forecasting in 

petroleum operations. Case-specific applications in drilling and refining confirm the extension of 

predictive maintenance from descriptive monitoring to data-driven prognostics. Comparisons with 

earlier reviews, such as Choubey et al. (2020) also highlight how predictive maintenance has moved 

beyond traditional reliability-centered maintenance frameworks to incorporate advanced statistical 

learning. The findings therefore suggest continuity with earlier observations on petroleum system 

vulnerabilities but also indicate a methodological shift toward AI-enhanced predictive maintenance 

that provides greater precision and operational relevance. 

Our findings confirm that predictive maintenance is deeply embedded in power systems research 

who established reliability assessment as a cornerstone of power engineering. Transformer monitoring 

and turbine reliability were consistently emphasized who focused on condition monitoring for power 

equipment. The review highlighted that 28 studies addressed turbines, transformers, renewable 

energy, and smart grids, with a combined citation impact of over 7,300, underscoring the sector’s 

central role in predictive maintenance research. Earlier studies relied heavily on probabilistic 

reliability models, whereas the reviewed literature demonstrated a methodological shift toward AI-
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driven predictive frameworks. Renewable energy applications, particularly in wind turbine 

gearboxes and solar inverters which emphasized the importance of AI in capturing variability under 

uncertain environmental conditions. Comparisons with previous findings suggest that predictive 

maintenance in power systems has evolved from traditional reliability models to data-driven AI 

approaches, with Random Forest consistently highlighted for its robustness. This reflects a maturation 

of the field, as predictive maintenance in power engineering now integrates both classical reliability 

principles and advanced machine learning approaches, a combination not fully realized in earlier 

decades (Izagirre et al., 2022). 

The integration of predictive maintenance with IoT and digital twins confirmed a trend first identified 

in early industrial informatics literature. IoT-enabled cyber-physical systems as foundational for smart 

manufacturing and predictive reliability. Our review reinforced this view, as 20 studies emphasized 

IoT-enabled predictive maintenance, with more than 4,900 citations, demonstrating widespread 

adoption. These findings recognized the value of multisensory condition monitoring, but they expand 

the discussion by demonstrating the scalability achieved through IoT ecosystems. Digital twins were 

another recurring theme, with studies showing how virtual representations of drilling rigs, refineries, 

and turbines can simulate degradation scenarios. This aligns with earlier conceptualizations framed 

digital twins as key enablers of predictive modeling. While earlier literature emphasized fault 

detection, the reviewed works demonstrate an evolution toward integrated reliability frameworks 

where predictive maintenance is embedded in real-time digital simulations. These findings confirm 

that IoT and digital twins have transformed predictive maintenance into an integral component of 

cyber-physical reliability engineering, an advancement beyond what earlier frameworks could 

achieve. 

The synthesis of challenges across the reviewed studies closely reflects concerns raised in earlier 

research on predictive maintenance scalability and interpretability. Traditional reliability models for 

their static assumptions, while the “black-box” limitations of deep learning in engineering contexts. 

Our findings supported these concerns, as 15 studies highlighted gaps in scalability, interpretability, 

and cross-domain applicability, collectively receiving more than 2,500 citations. Neural networks and 

gradient boosting models demonstrated strong predictive accuracy but offered limited 

transparency, consistent with earlier critiques of model interpretability  (Zou et al., 2020). Random 

Forest partially addressed this issue by providing feature importance measures, but reviewed studies 

emphasized that interpretability challenges persisted when models were applied in petroleum and 

power domains. The reviewed literature also underscored difficulties in cross-domain transferability 

who argued that maintenance frameworks often lacked generalizability. By comparing our findings 

with earlier critiques, it becomes evident that while AI methods have advanced predictive 

performance, the fundamental challenges of interpretability, scalability, and domain specificity 

continue to constrain predictive maintenance adoption. 

The final theme of the review highlighted opportunities for integrating reliability engineering and 

artificial intelligence, a convergence previously suggested but underdeveloped in earlier literature. 

Reliability engineering methods such as fault tree analysis (FTA), failure mode and effects analysis 

(FMEA), and reliability block diagrams (RBD) were recognized as essential tools for structured risk 

analysis. However, these models often lacked predictive precision. In contrast, AI methods such as 

Random Forest provide strong predictive capabilities but struggle with interpretability. The reviewed 

studies demonstrated that hybrid approaches integrating AI with classical reliability methods 

addressed this gap by combining statistical rigor with predictive accuracy. For example, combining 

Random Forest predictions with FMEA prioritization or RBD modeling allowed both prediction and 

structured analysis of failure modes. This synthesis aligns with earlier calls by  for integrative 

approaches in safety-critical industries. Comparisons with earlier literature confirm that while reliability 

engineering and AI were historically treated as distinct disciplines, the reviewed works represent a 

growing body of evidence supporting their integration. The results underscore that cross-disciplinary 

approaches are not only feasible but also essential for predictive maintenance in petroleum and 

power contexts, reflecting both continuity and advancement over earlier frameworks. 

CONCLUSION 

This systematic review examined the role of AI-driven predictive maintenance, with particular 

emphasis on Random Forest regression, in the reliability engineering frameworks of petroleum and 

power systems. Following the PRISMA guidelines, 92 studies were reviewed, providing a 

comprehensive view of conceptual foundations, methodological developments, and sector-
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specific applications. The findings consistently demonstrated that predictive maintenance, 

distinguished from corrective, preventive, and condition-based strategies, has become central to 

modern reliability engineering due to its capacity to combine real-time monitoring with data-driven 

forecasting. Reliability metrics such as mean time to failure (MTTF), mean time between failures 

(MTBF), and remaining useful life (RUL) were identified as critical tools, with RUL emerging as the most 

relevant measure in predictive contexts. Artificial intelligence, and Random Forest in particular, 

proved to be the dominant methodological approach, balancing predictive accuracy with 

interpretability and outperforming or complementing other machine learning models such as neural 

networks, support vector machines, and gradient boosting methods. In petroleum systems, 

predictive frameworks were shown to strengthen reliability across upstream, midstream, and 

downstream operations, while in power systems, predictive maintenance was deeply integrated into 

thermal plants, renewable energy infrastructures, and smart grids. The synthesis also highlighted the 

integration of IoT sensors, digital twins, and cloud-based analytics as transformative enablers of 

predictive reliability engineering, though challenges remain in scalability, interpretability, and cross-

domain applicability. Notably, the review underscored the importance of sector-specific 

customization of Random Forest frameworks, reflecting the unique operational demands of 

petroleum and power industries. Cross-disciplinary opportunities were also identified, where the 

strengths of classical reliability methods such as fault tree analysis and failure mode and effects 

analysis could be combined with AI-driven predictive models to achieve both statistical rigor and 

operational precision. Collectively, the review demonstrated that predictive maintenance is no 

longer a peripheral strategy but a core element of reliability engineering, with Random Forest 

regression providing one of the most effective pathways for enhancing the reliability, efficiency, and 

safety of critical energy infrastructures. 

RECOMMENDATIONS 

Based on the synthesis of 92 systematically reviewed studies, several recommendations can be 

advanced to strengthen the application of AI-driven predictive maintenance in petroleum and 

power system contexts. First, industry stakeholders should prioritize the adoption of reliability metrics 

such as remaining useful life (RUL) alongside mean time between failures (MTBF) and mean time to 

failure (MTTF), as RUL provides the most actionable insights for predictive interventions. Second, the 

consistent superiority of Random Forest regression in balancing accuracy, robustness, and 

interpretability suggests that it should be adopted as a benchmark algorithm in predictive 

maintenance frameworks, while hybrid integration with other models, such as gradient boosting or 

neural networks, may be pursued for specialized tasks requiring enhanced precision. Third, petroleum 

and power organizations are advised to strengthen their IoT-enabled sensor infrastructure to 

generate high-quality, real-time data streams, which are essential for improving the predictive power 

of Random Forest and other machine learning approaches. Fourth, the deployment of digital twin 

technologies should be expanded, as they allow for virtual testing of predictive maintenance models 

under varying operational conditions, providing engineers with practical decision-support systems. 

Fifth, policymakers and regulatory bodies should establish industrial standards that promote 

interoperability across predictive maintenance platforms, ensuring that predictive models are 

scalable across different operational settings while maintaining compliance with safety-critical 

requirements. Sixth, given the persistent challenges in model interpretability and sector-specific 

customization, it is recommended that organizations invest in cross-disciplinary collaborations, 

bringing together reliability engineers, data scientists, and domain specialists to ensure that AI 

applications remain both technically rigorous and operationally relevant. Finally, the academic 

community should pursue longitudinal, cross-sectoral studies that not only validate Random Forest 

frameworks but also explore their integration with traditional reliability methods such as fault tree 

analysis (FTA) and failure mode and effects analysis (FMEA). By implementing these 

recommendations, petroleum and power industries can move toward more resilient, efficient, and 

safe infrastructures, ensuring predictive maintenance strategies contribute directly to operational 

stability and long-term sustainability. 

REFERENCES 

[1]. Abdur Razzak, C., Golam Qibria, L., & Md Arifur, R. (2024). Predictive Analytics For Apparel Supply 

Chains: A Review Of MIS-Enabled Demand Forecasting And Supplier Risk Management. American 

Journal of Interdisciplinary Studies, 5(04), 01–23. https://doi.org/10.63125/80dwy222  

https://researchinnovationjournal.com/index.php
https://doi.org/10.63125/477x5t65
https://doi.org/10.63125/80dwy222


American Journal of Scholarly Research and Innovation 

Volume 04, Issue 01 (2025) 

Page No:  363-391 

eISSN: 3067-2163 

Doi: 10.63125/477x5t65 
 

387 

 

[2]. Achouch, M., Dimitrova, M., Ziane, K., Sattarpanah Karganroudi, S., Dhouib, R., Ibrahim, H., & Adda, M. 

(2022). On predictive maintenance in industry 4.0: Overview, models, and challenges. Applied 

Sciences, 12(16), 8081.  

[3]. Adar, C., & Md, N. (2023). Design, Testing, And Troubleshooting of Industrial Equipment: A Systematic 

Review Of Integration Techniques For U.S. Manufacturing Plants. Review of Applied Science and 

Technology, 2(01), 53-84. https://doi.org/10.63125/893et038  

[4]. Ahmad, M. W., Reynolds, J., & Rezgui, Y. (2018). Predictive modelling for solar thermal energy systems: 

A comparison of support vector regression, random forest, extra trees and regression trees. Journal of 

cleaner production, 203, 810-821.  

[5]. Al-Ali, A.-R., Gupta, R., Zaman Batool, T., Landolsi, T., Aloul, F., & Al Nabulsi, A. (2020). Digital twin 

conceptual model within the context of internet of things. Future Internet, 12(10), 163.  

[6]. Al-Douri, A., Halim, S. Z., Quddus, N., Kazantzi, V., & El-Halwagi, M. M. (2022). A stochastic approach to 

evaluating the economic impact of disruptions in feedstock pipelines on downstream production. 

Process Safety and Environmental Protection, 162, 187-199.  

[7]. Al-Douri, A., Kazantzi, V., Eljack, F. T., Mannan, M. S., & El-Halwagi, M. M. (2020). Mitigation of operational 

failures via an economic framework of reliability, availability, and maintainability (RAM) during 

conceptual design. Journal of loss prevention in the process industries, 67, 104261.  

[8]. Alsina, E. F., Chica, M., Trawiński, K., & Regattieri, A. (2018). On the use of machine learning methods to 

predict component reliability from data-driven industrial case studies. The International Journal of 

Advanced Manufacturing Technology, 94(5), 2419-2433.  

[9]. Badihi, H., Zhang, Y., Jiang, B., Pillay, P., & Rakheja, S. (2022). A comprehensive review on signal-based 

and model-based condition monitoring of wind turbines: Fault diagnosis and lifetime prognosis. 

Proceedings of the IEEE, 110(6), 754-806.  

[10]. Baklouti, A., Nguyen, N., Mhenni, F., Choley, J.-Y., & Mlika, A. (2019). Dynamic fault tree generation for 

safety-critical systems within a systems engineering approach. IEEE systems journal, 14(1), 1512-1522.  

[11]. Baptista, M., Sankararaman, S., de Medeiros, I. P., Nascimento Jr, C., Prendinger, H., & Henriques, E. M. 

(2018). Forecasting fault events for predictive maintenance using data-driven techniques and ARMA 

modeling. Computers & Industrial Engineering, 115, 41-53.  

[12]. Botín-Sanabria, D. M., Mihaita, A.-S., Peimbert-García, R. E., Ramírez-Moreno, M. A., Ramírez-Mendoza, 

R. A., & Lozoya-Santos, J. d. J. (2022). Digital twin technology challenges and applications: A 

comprehensive review. Remote Sensing, 14(6), 1335.  

[13]. Bousdekis, A., Lepenioti, K., Apostolou, D., & Mentzas, G. (2021). A review of data-driven decision-

making methods for industry 4.0 maintenance applications. Electronics, 10(7), 828.  

[14]. Chaari, M., Ecker, W., Kruse, T., Novello, C., & Tabacaru, B.-A. (2016). Transformation of failure 

propagation models into fault trees for safety evaluation purposes. 2016 46th Annual IEEE/IFIP 

International Conference on Dependable Systems and Networks Workshop (DSN-W),  

[15]. Choubey, S., Benton, R. G., & Johnsten, T. (2020). A holistic end-to-end prescriptive maintenance 

framework. Data-Enabled Discovery and Applications, 4(1), 11.  

[16]. Cioffi, R., Travaglioni, M., Piscitelli, G., Petrillo, A., & De Felice, F. (2020). Artificial intelligence and machine 

learning applications in smart production: Progress, trends, and directions. Sustainability, 12(2), 492.  

[17]. Davari, N., Veloso, B., Costa, G. d. A., Pereira, P. M., Ribeiro, R. P., & Gama, J. (2021). A survey on data-

driven predictive maintenance for the railway industry. Sensors, 21(17), 5739.  

[18]. Dimiduk, D. M., Holm, E. A., & Niezgoda, S. R. (2018). Perspectives on the impact of machine learning, 

deep learning, and artificial intelligence on materials, processes, and structures engineering. 

Integrating Materials and Manufacturing Innovation, 7(3), 157-172.  

[19]. Fabiano, B., Pettinato, M., Currò, F., & Reverberi, A. P. (2022). A field study on human factor and safety 

performances in a downstream oil industry. Safety science, 153, 105795.  

[20]. Fang, X., Wang, H., Liu, G., Tian, X., Ding, G., & Zhang, H. (2022). Industry application of digital twin: from 

concept to implementation. The International Journal of Advanced Manufacturing Technology, 121(7), 

4289-4312.  

[21]. Fausing Olesen, J., & Shaker, H. R. (2020). Predictive maintenance for pump systems and thermal power 

plants: State-of-the-art review, trends and challenges. Sensors, 20(8), 2425.  

[22]. Ferrero Bermejo, J., Gómez Fernández, J. F., Pino, R., Crespo Márquez, A., & Guillén López, A. J. (2019). 

Review and comparison of intelligent optimization modelling techniques for energy forecasting and 

condition-based maintenance in PV plants. Energies, 12(21), 4163.  

[23]. Golam Qibria, L., & Takbir Hossen, S. (2023). Lean Manufacturing And ERP Integration: A Systematic 

Review Of Process Efficiency Tools In The Apparel Sector. American Journal of Scholarly Research and 

Innovation, 2(01), 104-129. https://doi.org/10.63125/mx7j4p06  

[24]. Goldenberg, S. L., Nir, G., & Salcudean, S. E. (2019). A new era: artificial intelligence and machine 

learning in prostate cancer. Nature Reviews Urology, 16(7), 391-403.  

https://researchinnovationjournal.com/index.php
https://doi.org/10.63125/477x5t65
https://doi.org/10.63125/893et038
https://doi.org/10.63125/mx7j4p06


American Journal of Scholarly Research and Innovation 

Volume 04, Issue 01 (2025) 

Page No:  363-391 

eISSN: 3067-2163 

Doi: 10.63125/477x5t65 
 

388 

 

[25]. Gonzalez-Jimenez, D., Del-Olmo, J., Poza, J., Garramiola, F., & Madina, P. (2021). Data-driven fault 

diagnosis for electric drives: A review. Sensors, 21(12), 4024.  

[26]. Gupta, R., Srivastava, D., Sahu, M., Tiwari, S., Ambasta, R. K., & Kumar, P. (2021). Artificial intelligence to 

deep learning: machine intelligence approach for drug discovery. Molecular diversity, 25(3), 1315-1360.  

[27]. He, Y., Gu, C., Chen, Z., & Han, X. (2017). Integrated predictive maintenance strategy for manufacturing 

systems by combining quality control and mission reliability analysis. International Journal of Production 

Research, 55(19), 5841-5862.  

[28]. Helm, J. M., Swiergosz, A. M., Haeberle, H. S., Karnuta, J. M., Schaffer, J. L., Krebs, V. E., Spitzer, A. I., & 

Ramkumar, P. N. (2020). Machine learning and artificial intelligence: definitions, applications, and future 

directions. Current reviews in musculoskeletal medicine, 13(1), 69-76.  

[29]. Hosne Ara, M., Tonmoy, B., Mohammad, M., & Md Mostafizur, R. (2022). AI-ready data engineering 

pipelines: a review of medallion architecture and cloud-based integration models. American Journal 

of Scholarly Research and Innovation, 1(01), 319-350. https://doi.org/10.63125/51kxtf08  

[30]. Ibrahim, M. S., Fan, J., Yung, W. K., Prisacaru, A., van Driel, W., Fan, X., & Zhang, G. (2020). Machine 

learning and digital twin driven diagnostics and prognostics of light‐emitting diodes. Laser & Photonics 

Reviews, 14(12), 2000254.  

[31]. Istiaque, M., Dipon Das, R., Hasan, A., Samia, A., & Sayer Bin, S. (2023). A Cross-Sector Quantitative Study 

on The Applications Of Social Media Analytics In Enhancing Organizational Performance. American 

Journal of Scholarly Research and Innovation, 2(02), 274-302. https://doi.org/10.63125/d8ree044  

[32]. Istiaque, M., Dipon Das, R., Hasan, A., Samia, A., & Sayer Bin, S. (2024). Quantifying The Impact Of 

Network Science And Social Network Analysis In Business Contexts: A Meta-Analysis Of Applications In 

Consumer Behavior, Connectivity. International Journal of Scientific Interdisciplinary Research, 5(2), 58-

89. https://doi.org/10.63125/vgkwe938  

[33]. Izagirre, U., Andonegui, I., Landa-Torres, I., & Zurutuza, U. (2022). A practical and synchronized data 

acquisition network architecture for industrial robot predictive maintenance in manufacturing assembly 

lines. Robotics and computer-integrated manufacturing, 74, 102287.  

[34]. Jahid, M. K. A. S. R. (2022). Empirical Analysis of The Economic Impact Of Private Economic Zones On 

Regional GDP Growth: A Data-Driven Case Study Of Sirajganj Economic Zone. American Journal of 

Scholarly Research and Innovation, 1(02), 01-29. https://doi.org/10.63125/je9w1c40  

[35]. Janiesch, C., Zschech, P., & Heinrich, K. (2021). Machine learning and deep learning. Electronic Markets, 

31(3), 685-695.  

[36]. Ji, C., & Sun, W. (2022). A review on data-driven process monitoring methods: Characterization and 

mining of industrial data. Processes, 10(2), 335.  

[37]. Jiang, H., Qin, S., Fu, J., Zhang, J., & Ding, G. (2021). How to model and implement connections between 

physical and virtual models for digital twin application. Journal of manufacturing systems, 58, 36-51.  

[38]. Jiang, Y., Yin, S., & Kaynak, O. (2018). Data-driven monitoring and safety control of industrial cyber-

physical systems: Basics and beyond. IEEE access, 6, 47374-47384.  

[39]. Jing, Y., Bian, Y., Hu, Z., Wang, L., & Xie, X.-Q. S. (2018). Deep learning for drug design: an artificial 

intelligence paradigm for drug discovery in the big data era. The AAPS journal, 20(3), 58.  

[40]. Joshi, A. V. (2020). Machine learning and artificial intelligence.  

[41]. Katopodis, T., & Sfetsos, A. (2019). A review of climate change impacts to oil sector critical services and 

suggested recommendations for industry uptake. Infrastructures, 4(4), 74.  

[42]. Kühl, N., Schemmer, M., Goutier, M., & Satzger, G. (2022). Artificial intelligence and machine learning. 

Electronic Markets, 32(4), 2235-2244.  

[43]. Kumar, A., Shankar, R., & Thakur, L. S. (2018). A big data driven sustainable manufacturing framework 

for condition-based maintenance prediction. Journal of computational science, 27, 428-439.  

[44]. Kutub Uddin, A., Md Mostafizur, R., Afrin Binta, H., & Maniruzzaman, B. (2022). Forecasting Future 

Investment Value with Machine Learning, Neural Networks, And Ensemble Learning: A Meta-Analytic 

Study. Review of Applied Science and Technology, 1(02), 01-25. https://doi.org/10.63125/edxgjg56  

[45]. Lakemond, N., & Holmberg, G. (2022). The quest for combined generativity and criticality in digital-

physical complex systems. Journal of Engineering and Technology Management, 65, 101701.  

[46]. Liao, L., & Köttig, F. (2016). A hybrid framework combining data-driven and model-based methods for 

system remaining useful life prediction. Applied Soft Computing, 44, 191-199.  

[47]. Lima, C., Relvas, S., & Barbosa-Póvoa, A. P. F. (2016). Downstream oil supply chain management: A 

critical review and future directions. Computers & Chemical Engineering, 92, 78-92.  

[48]. Madni, A. M., Madni, C. C., & Lucero, S. D. (2019). Leveraging digital twin technology in model-based 

systems engineering. Systems, 7(1), 7.  

https://researchinnovationjournal.com/index.php
https://doi.org/10.63125/477x5t65
https://doi.org/10.63125/51kxtf08
https://doi.org/10.63125/d8ree044
https://doi.org/10.63125/vgkwe938
https://doi.org/10.63125/je9w1c40
https://doi.org/10.63125/edxgjg56


American Journal of Scholarly Research and Innovation 

Volume 04, Issue 01 (2025) 

Page No:  363-391 

eISSN: 3067-2163 

Doi: 10.63125/477x5t65 
 

389 

 

[49]. Mansura Akter, E. (2023). Applications Of Allele-Specific PCR In Early Detection of Hereditary Disorders: 

A Systematic Review Of Techniques And Outcomes. Review of Applied Science and Technology, 2(03), 

1-26. https://doi.org/10.63125/n4h7t156  

[50]. Mansura Akter, E., & Md Abdul Ahad, M. (2022). In Silico drug repurposing for inflammatory diseases: a 

systematic review of molecular docking and virtual screening studies. American Journal of Advanced 

Technology and Engineering Solutions, 2(04), 35-64. https://doi.org/10.63125/j1hbts51  

[51]. Mansura Akter, E., & Shaiful, M. (2024). A systematic review of SNP polymorphism studies in South Asian 

populations: implications for diabetes and autoimmune disorders. American Journal of Scholarly 

Research and Innovation, 3(01), 20-51. https://doi.org/10.63125/8nvxcb96  

[52]. Mao, S., Wang, B., Tang, Y., & Qian, F. (2019). Opportunities and challenges of artificial intelligence for 

green manufacturing in the process industry. Engineering, 5(6), 995-1002.  

[53]. Mashaly, M. (2021). Connecting the twins: A review on digital twin technology & its networking 

requirements. Procedia Computer Science, 184, 299-305.  

[54]. Md Arifur, R., & Sheratun Noor, J. (2022). A Systematic Literature Review of User-Centric Design In Digital 

Business Systems: Enhancing Accessibility, Adoption, And Organizational Impact. Review of Applied 

Science and Technology, 1(04), 01-25. https://doi.org/10.63125/ndjkpm77  

[55]. Md Ashiqur, R., Md Hasan, Z., & Afrin Binta, H. (2025). A meta-analysis of ERP and CRM integration tools 

in business process optimization. ASRC Procedia: Global Perspectives in Science and Scholarship, 1(01), 

278-312. https://doi.org/10.63125/yah70173  

[56]. Md Hasan, Z. (2025). AI-Driven business analytics for financial forecasting: a systematic review of 

decision support models in SMES. Review of Applied Science and Technology, 4(02), 86-117. 

https://doi.org/10.63125/gjrpv442  

[57]. Md Hasan, Z., Mohammad, M., & Md Nur Hasan, M. (2024). Business Intelligence Systems In Finance And 

Accounting: A Review Of Real-Time Dashboarding Using Power BI & Tableau. American Journal of 

Scholarly Research and Innovation, 3(02), 52-79. https://doi.org/10.63125/fy4w7w04  

[58]. Md Hasan, Z., Sheratun Noor, J., & Md. Zafor, I. (2023). Strategic role of business analysts in digital 

transformation tools, roles, and enterprise outcomes. American Journal of Scholarly Research and 

Innovation, 2(02), 246-273. https://doi.org/10.63125/rc45z918  

[59]. Md Mahamudur Rahaman, S. (2022). Electrical And Mechanical Troubleshooting in Medical And 

Diagnostic Device Manufacturing: A Systematic Review Of Industry Safety And Performance Protocols. 

American Journal of Scholarly Research and Innovation, 1(01), 295-318. 

https://doi.org/10.63125/d68y3590  

[60]. Md Masud, K., Mohammad, M., & Sazzad, I. (2023). Mathematics For Finance: A Review of Quantitative 

Methods In Loan Portfolio Optimization. International Journal of Scientific Interdisciplinary Research, 4(3), 

01-29. https://doi.org/10.63125/j43ayz68  

[61]. Md Nur Hasan, M., Md Musfiqur, R., & Debashish, G. (2022). Strategic Decision-Making in Digital Retail 

Supply Chains: Harnessing AI-Driven Business Intelligence From Customer Data. Review of Applied 

Science and Technology, 1(03), 01-31. https://doi.org/10.63125/6a7rpy62  

[62]. Md Sultan, M., Proches Nolasco, M., & Md. Torikul, I. (2023). Multi-Material Additive Manufacturing For 

Integrated Electromechanical Systems. American Journal of Interdisciplinary Studies, 4(04), 52-79. 

https://doi.org/10.63125/y2ybrx17  

[63]. Md Sultan, M., Proches Nolasco, M., & Vicent Opiyo, N. (2025). A Comprehensive Analysis Of Non-Planar 

Toolpath Optimization In Multi-Axis 3D Printing: Evaluating The Efficiency Of Curved Layer Slicing 

Strategies. Review of Applied Science and Technology, 4(02), 274-308. 

https://doi.org/10.63125/5fdxa722  

[64]. Md Takbir Hossen, S., Ishtiaque, A., & Md Atiqur, R. (2023). AI-Based Smart Textile Wearables For Remote 

Health Surveillance And Critical Emergency Alerts: A Systematic Literature Review. American Journal of 

Scholarly Research and Innovation, 2(02), 1-29. https://doi.org/10.63125/ceqapd08  

[65]. Md Takbir Hossen, S., & Md Atiqur, R. (2022). Advancements In 3d Printing Techniques For Polymer Fiber-

Reinforced Textile Composites: A Systematic Literature Review. American Journal of Interdisciplinary 

Studies, 3(04), 32-60. https://doi.org/10.63125/s4r5m391  

[66]. Md Tawfiqul, I. (2023). A Quantitative Assessment Of Secure Neural Network Architectures For Fault 

Detection In Industrial Control Systems. Review of Applied Science and Technology, 2(04), 01-24. 

https://doi.org/10.63125/3m7gbs97  

[67]. Md Tawfiqul, I., Meherun, N., Mahin, K., & Mahmudur Rahman, M. (2022). Systematic Review of 

Cybersecurity Threats In IOT Devices Focusing On Risk Vectors Vulnerabilities And Mitigation Strategies. 

American Journal of Scholarly Research and Innovation, 1(01), 108-136. 

https://doi.org/10.63125/wh17mf19  

[68]. Md Tawfiqul, I., Sabbir, A., Md Anikur, R., & Md Arifur, R. (2024). Neural Network–Based Risk Prediction 

And Simulation Framework For Medical IOT Cybersecurity: An Engineering Management Model For 

https://researchinnovationjournal.com/index.php
https://doi.org/10.63125/477x5t65
https://doi.org/10.63125/n4h7t156
https://doi.org/10.63125/j1hbts51
https://doi.org/10.63125/8nvxcb96
https://doi.org/10.63125/ndjkpm77
https://doi.org/10.63125/yah70173
https://doi.org/10.63125/gjrpv442
https://doi.org/10.63125/fy4w7w04
https://doi.org/10.63125/rc45z918
https://doi.org/10.63125/d68y3590
https://doi.org/10.63125/j43ayz68
https://doi.org/10.63125/6a7rpy62
https://doi.org/10.63125/y2ybrx17
https://doi.org/10.63125/5fdxa722
https://doi.org/10.63125/ceqapd08
https://doi.org/10.63125/s4r5m391
https://doi.org/10.63125/3m7gbs97
https://doi.org/10.63125/wh17mf19


American Journal of Scholarly Research and Innovation 

Volume 04, Issue 01 (2025) 

Page No:  363-391 

eISSN: 3067-2163 

Doi: 10.63125/477x5t65 
 

390 

 

Smart Hospitals. International Journal of Scientific Interdisciplinary Research, 5(2), 30-57. 

https://doi.org/10.63125/g0mvct35  

[69]. Md.Kamrul, K., & Md Omar, F. (2022). Machine Learning-Enhanced Statistical Inference For Cyberattack 

Detection On Network Systems. American Journal of Advanced Technology and Engineering Solutions, 

2(04), 65-90. https://doi.org/10.63125/sw7jzx60  

[70]. Merkt, O. (2019). On the use of predictive models for improving the quality of industrial maintenance: 

An analytical literature review of maintenance strategies. 2019 Federated Conference on Computer 

Science and Information Systems (FedCSIS),  

[71]. Moeinedini, M., Raissi, S., & Khalili-Damghani, K. (2018). A fuzzy fault tree analysis based risk assessment 

approach for enterprise resource planning projects: A case study in an Iranian foodservice distributor. 

International Journal of Quality & Reliability Management, 35(5), 1115-1141.  

[72]. Mst Shamima, A., Niger, S., Md Atiqur Rahman, K., & Mohammad, M. (2023). Business Intelligence-Driven 

Healthcare: Integrating Big Data And Machine Learning For Strategic Cost Reduction And Quality Care 

Delivery. American Journal of Interdisciplinary Studies, 4(02), 01-28. https://doi.org/10.63125/crv1xp27  

[73]. Mubashir, I., & Abdul, R. (2022). Cost-Benefit Analysis in Pre-Construction Planning: The Assessment Of 

Economic Impact In Government Infrastructure Projects. American Journal of Advanced Technology 

and Engineering Solutions, 2(04), 91-122. https://doi.org/10.63125/kjwd5e33  

[74]. Murphy, J. F. (2017). Safety considerations in the chemical process industries. In Handbook of industrial 

chemistry and biotechnology (pp. 1805-1887). Springer.  

[75]. Mzougui, I., & Elfelsoufi, Z. (2019). Improvement of failure mode, effects, and criticality analysis by using 

fault tree analysis and analytical hierarchy process. Journal of Failure Analysis and Prevention, 19(4), 

942-949.  

[76]. Nichols, J. A., Herbert Chan, H. W., & Baker, M. A. (2019). Machine learning: applications of artificial 

intelligence to imaging and diagnosis. Biophysical reviews, 11(1), 111-118.  

[77]. Niu, G. (2017). Data-driven technology for engineering systems health management. Springer 

Singapore, 10, 978-981.  

[78]. Olaizola, I. G., Quartulli, M., Unzueta, E., Goicolea, J. I., & Flórez, J. (2022). Refinery 4.0, a review of the 

main challenges of the Industry 4.0 paradigm in oil & gas downstream. Sensors, 22(23), 9164.  

[79]. Pan, K., Liu, H., Gou, X., Huang, R., Ye, D., Wang, H., Glowacz, A., & Kong, J. (2022). Towards a systematic 

description of fault tree analysis studies using informetric mapping. Sustainability, 14(18), 11430.  

[80]. Qi, Q., Tao, F., Hu, T., Anwer, N., Liu, A., Wei, Y., Wang, L., & Nee, A. Y. (2021). Enabling technologies and 

tools for digital twin. Journal of manufacturing systems, 58, 3-21.  

[81]. Qi, R., Zhang, J., & Spencer, K. (2022). A review on data-driven condition monitoring of industrial 

equipment. Algorithms, 16(1), 9.  

[82]. Qian, C., Liu, X., Ripley, C., Qian, M., Liang, F., & Yu, W. (2022). Digital twin—Cyber replica of physical 

things: Architecture, applications and future research directions. Future Internet, 14(2), 64.  

[83]. Quatrini, E., Costantino, F., Di Gravio, G., & Patriarca, R. (2020). Condition-based maintenance—an 

extensive literature review. Machines, 8(2), 31.  

[84]. Reduanul, H., & Mohammad Shoeb, A. (2022). Advancing AI in Marketing Through Cross Border 

Integration Ethical Considerations And Policy Implications. American Journal of Scholarly Research and 

Innovation, 1(01), 351-379. https://doi.org/10.63125/d1xg3784  

[85]. Rezwanul Ashraf, R., & Hosne Ara, M. (2023). Visual communication in industrial safety systems: a review 

of UI/UX design for risk alerts and warnings. American Journal of Scholarly Research and Innovation, 

2(02), 217-245. https://doi.org/10.63125/wbv4z521  

[86]. Riedl, M. O. (2019). Human‐centered artificial intelligence and machine learning. Human behavior and 

emerging technologies, 1(1), 33-36.  

[87]. Rogith, D., Iyengar, M. S., & Singh, H. (2017). Using fault trees to advance understanding of diagnostic 

errors. The Joint Commission Journal on Quality and Patient Safety, 43(11), 598-605.  

[88]. Sakib, N., & Wuest, T. (2018). Challenges and opportunities of condition-based predictive maintenance: 

a review. Procedia cirp, 78, 267-272.  

[89]. Sanjai, V., Sanath Kumar, C., Maniruzzaman, B., & Farhana Zaman, R. (2023). Integrating Artificial 

Intelligence in Strategic Business Decision-Making: A Systematic Review Of Predictive Models. 

International Journal of Scientific Interdisciplinary Research, 4(1), 01-26. 

https://doi.org/10.63125/s5skge53  

[90]. Sanjai, V., Sanath Kumar, C., Sadia, Z., & Rony, S. (2025). AI And Quantum Computing For Carbon-

Neutral Supply Chains: A Systematic Review Of Innovations. American Journal of Interdisciplinary 

Studies, 6(1), 40-75. https://doi.org/10.63125/nrdx7d32  

[91]. Sayyad, S., Kumar, S., Bongale, A., Kamat, P., Patil, S., & Kotecha, K. (2021). Data-driven remaining useful 

life estimation for milling process: sensors, algorithms, datasets, and future directions. IEEE access, 9, 

110255-110286.  

https://researchinnovationjournal.com/index.php
https://doi.org/10.63125/477x5t65
https://doi.org/10.63125/g0mvct35
https://doi.org/10.63125/sw7jzx60
https://doi.org/10.63125/crv1xp27
https://doi.org/10.63125/kjwd5e33
https://doi.org/10.63125/d1xg3784
https://doi.org/10.63125/wbv4z521
https://doi.org/10.63125/s5skge53
https://doi.org/10.63125/nrdx7d32


American Journal of Scholarly Research and Innovation 

Volume 04, Issue 01 (2025) 

Page No:  363-391 

eISSN: 3067-2163 

Doi: 10.63125/477x5t65 
 

391 

 

[92]. Sazzad, I., & Md Nazrul Islam, K. (2022). Project impact assessment frameworks in nonprofit development: 

a review of case studies from south asia. American Journal of Scholarly Research and Innovation, 1(01), 

270-294. https://doi.org/10.63125/eeja0t77  

[93]. Sheratun Noor, J., & Momena, A. (2022). Assessment Of Data-Driven Vendor Performance Evaluation in 

Retail Supply Chains: Analyzing Metrics, Scorecards, And Contract Management Tools. American 

Journal of Interdisciplinary Studies, 3(02), 36-61. https://doi.org/10.63125/0s7t1y90  

[94]. Signoret, J.-P., & Leroy, A. (2021). Fault tree analysis (FTA). In Reliability Assessment of Safety and 

Production Systems: Analysis, Modelling, Calculations and Case Studies (pp. 209-225). Springer.  

[95]. Singh, M., Fuenmayor, E., Hinchy, E. P., Qiao, Y., Murray, N., & Devine, D. (2021). Digital twin: Origin to 

future. Applied System Innovation, 4(2), 36.  

[96]. Sircar, A., Yadav, K., Rayavarapu, K., Bist, N., & Oza, H. (2021). Application of machine learning and 

artificial intelligence in oil and gas industry. Petroleum Research, 6(4), 379-391.  

[97]. Subrato, S., & Md, N. (2024). The role of perceived environmental responsibility in artificial intelligence-

enabled risk management and sustainable decision-making. American Journal of Advanced 

Technology and Engineering Solutions, 4(04), 33-56. https://doi.org/10.63125/7tjw3767  

[98]. Tahmina Akter, R., Debashish, G., Md Soyeb, R., & Abdullah Al, M. (2023). A Systematic Review of AI-

Enhanced Decision Support Tools in Information Systems: Strategic Applications In Service-Oriented 

Enterprises And Enterprise Planning. Review of Applied Science and Technology, 2(01), 26-52. 

https://doi.org/10.63125/73djw422  

[99]. Tao, F., Qi, Q., Liu, A., & Kusiak, A. (2018). Data-driven smart manufacturing. Journal of manufacturing 

systems, 48, 157-169.  

[100]. Uhlemann, T. H.-J., Schock, C., Lehmann, C., Freiberger, S., & Steinhilper, R. (2017). The digital twin: 

demonstrating the potential of real time data acquisition in production systems. Procedia 

Manufacturing, 9, 113-120.  

[101]. Ullah, Z., Al-Turjman, F., Mostarda, L., & Gagliardi, R. (2020). Applications of artificial intelligence and 

machine learning in smart cities. Computer communications, 154, 313-323.  

[102]. Wang, B., Zhang, H., Yuan, M., Guo, Z., & Liang, Y. (2020). Sustainable refined products supply chain: A 

reliability assessment for demand‐side management in primary distribution processes. Energy Science 

& Engineering, 8(4), 1029-1049.  

[103]. Wang, Q., Li, F., Tang, Y., & Xu, Y. (2019). Integrating model-driven and data-driven methods for power 

system frequency stability assessment and control. IEEE Transactions on Power Systems, 34(6), 4557-4568.  

[104]. Wang, R., Xu, J., Zhang, W., Gao, J., Li, Y., & Chen, F. (2022). Reliability analysis of complex 

electromechanical systems: State of the art, challenges, and prospects. Quality and Reliability 

Engineering International, 38(7), 3935-3969.  

[105]. Wong, S. Y., Chuah, J. H., & Yap, H. J. (2020). Technical data-driven tool condition monitoring challenges 

for CNC milling: a review. The International Journal of Advanced Manufacturing Technology, 107(11), 

4837-4857.  

[106]. Wu, J., Wu, C., Cao, S., Or, S. W., Deng, C., & Shao, X. (2018). Degradation data-driven time-to-failure 

prognostics approach for rolling element bearings in electrical machines. IEEE Transactions on Industrial 

Electronics, 66(1), 529-539.  

[107]. Yang, C., Liu, J., Zeng, Y., & Xie, G. (2019). Real-time condition monitoring and fault detection of 

components based on machine-learning reconstruction model. Renewable Energy, 133, 433-441.  

[108]. Zhang, W., Yang, D., & Wang, H. (2019). Data-driven methods for predictive maintenance of industrial 

equipment: A survey. IEEE systems journal, 13(3), 2213-2227.  

[109]. Zhu, Z., Liu, C., & Xu, X. (2019). Visualisation of the digital twin data in manufacturing by using augmented 

reality. Procedia cirp, 81, 898-903.  

[110]. Zou, Y., Yang, X., Yu, Z., Kumar, B. V., & Kautz, J. (2020). Joint disentangling and adaptation for cross-

domain person re-identification. European Conference on Computer Vision,  
 

https://researchinnovationjournal.com/index.php
https://doi.org/10.63125/477x5t65
https://doi.org/10.63125/eeja0t77
https://doi.org/10.63125/0s7t1y90
https://doi.org/10.63125/7tjw3767
https://doi.org/10.63125/73djw422

