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Abstract

This systematic review synthesizes contemporary evidence on machine-
learning (ML) applications for solar photovoltaic (PV) performance
optimization and energy-yield forecasting, spanning algorithms, data
infrastructures, evaluation practice, and operational integration. Following
PRISMA guidelines, we screened multidisciplinary databases and included
214 empirical studies for qualitative synthesis. Findings reveal a consistent
accuracy hierarchy: tuned tree-based ensembiles are the most dependable
and computationally economical for day-ahead, tabular mappings of
numerical weather prediction and plant telemetry; deep neural
architectures (e.g., CNN/LSTM and hybrids) dominate minute-to-hour
nowcasting when inputs are image- or sequence-rich; and physics—ML
hybrids improve robustness and physical plausibility under regime shifts or
sparse data. Cross-regional validation exposes systematic optimism in single-
site splits; region-out testing typically increases error, while transfer learning
and domain adaptation halve that penalty in many cases. Data quality
emerges as the performance ceiling: standards-aligned sensing, explicit
soiling treatment, synchronized timestamps, and sfreaming feature
engineering yield error reductions comparable to algorithmic gains. loT and
big-data stacks—edge inference for sub-minute latency paired with cloud-
based training, monitoring, and drift management—prove critical for real-
time operation. Beyond forecasting, image- and I-V-based diagnostics
achieve high scores for fault detection, and sequence-aware prognostics
support remaining-useful-life estimation. Explainability layers (e.g., attribution
orsaliency) facilitate adoption without sacrificing accuracy, especially when
coupled with physics-guided features and probabilistic outputs for grid
dispatch and storage control. Overall, durable value arises from aligning
horizon-appropriate models with disciplined data pipelines, climate-aware
evaluation, and production-grade MLOps; future progress hinges on broader
geographic coverage, open benchmarks, advances in transfer/physics-
informed learning, and governance that ensures transparency, security, and
market interoperability.

Keywords
Photovoltaics, Forecasting, Degradation, Transferability, Explainability.

392


https://researchinnovationjournal.com/index.php/AJSRI/issue/view/7
https://doi.org/10.63125/asxzy065
https://researchinnovationjournal.com/index.php/AJSRI/about
mailto:salamdpal@gmail.com
https://doi.org/10.63125/asxzy065
https://doi.org/10.63125/asxzy065

American Journal of Scholarly Research and Innovation
Volume 04, Issue 01 (2025)
Page No: 392-427
elSSN: 3067-5146
Doi: 10.63125/asxzy065
INTRODUCTION
Machine learning refers to algorithmic methods that infer patterns from data to make predictions
without hard-coded rules, encompassing supervised regression and classification, unsupervised
structure discovery, and sequence models for temporal data (Usama et al., 2019). In photovoltaic
science, predictive analytics denotes data-driven models that map environmental and device
inputs to power, efficiency, and degradation trajectories, complementing first-principles device
equations. Solar resource forecasting targets iradiance components—global horizontal irradiance,
direct normal irradiance, and diffuse sky radiation—derived from radiative fransfer, measurements,
and empirical fransposition. Performance optimization addresses temperature effects, optical losses,
and operating conditions (Cuperlovic-Culf, 2018). Within this landscape, machine learning
approaches such as support vector regression, random forests, gradient boosting, and deep neural
networks provide flexible function approximators for nonlinear relationships and interactions among
iradiance, temperature, wind, spectral content, and system configuration. Forecasting horizons
span seconds to days and use data from ground stations, satellite products, numerical weather
prediction, and sky cameras (Coelho et al., 2022).Predictive models support device-level parameter
estimation, array monitoring, and power conversion control alongside plant- or fleet-scale energy
yield forecasting and grid-aware scheduling. Collectively, definitions in statistics, solar engineering,
and operations research frame machine learning as an empirical complement fo established
photovoltaic performance models, linking resource characterization with device behavior across
laboratory, rooftop, and utility contexts (Panesar, 2019).
International experience positions predictive analytics for solar energy as a system-level necessity for
planning, operations, and market participation across many climates and grid structures. Reviews
covering Europe, North America, Asia, Africa, and Oceania report that accurate solar forecasting
reduces reserve requirements, curtails imbalance penalties, and supports congestion management
in various market designs (Hurwitz et al., 2015). Empirical assessments document gains when plant
operators blend numerical weather prediction with statistical and machine-learning post-processing.
Satellite-based irradiance products and heliosat-style methods provide continental coverage with
temporal resolution suitable for day-ahead and intra-day scheduling. Sky-imager nowcasting
delivers minute-scale ramp detection valuable for distribution operations and plant control (Liem et
al., 2018). Case studies from Spain, Germany, Italy, Australia, and China show accuracy gains from
hybrid ensembles that mix physics-based baselines with gradient boosting, random forests, and deep
recurrent networks. Cross-country device performance modeling uses harmonized test protocols and
fransposition standards to compare module behavior under varying spectra and temperatures.
Public archives underpin reproducible studies, including NSRDB, BSRN, SURFRAD, and CAMS McClear.
Together, these international resources and results situate machine learning within established solar
engineering practices and grid operations worldwide (Sapountzi & Psannis, 2020).
Forecasting and performance modeling in solar analytics draw on a toolbox that spans time-series
statistics, kernel methods, tree ensembles, and deep learning. Baselines such as persistence, ARIMA,
and exponential smoothing provide competitive short-horizon references that many studies still
report to contextualize machine-learning gains. Support vector regression models exploit margin-
based regularization for nonlinear irradiance—-power mappings, while random forests and gradient
boosting capture interactions and heterogeneous effects across operating regimes. Deep
architectures conftribute representational flexibility: convolutional networks process sky images and
satellite files; recurrent networks such as LSTM encode temporal dependence; sequence-to-
sequence and aftention mechanisms learn multi-step outputs. Comparative studies show that
blending numerical weather prediction with learned post-processing improves day-ahead
accuracy, while image-based nowcasting benefits from convolutional encoders coupled to opfical-
flow motion fields. Feature engineering remains central: clear-sky indices, fransposition outputs,
albedo, aerosols, cloud opftical depths, and thermal stratification indicators appear as informative
covariates (Abaimov & Martellini, 2022).
Robust evaluation accompanies modeling: studies report MAE, RMSE, skill scores, and cross-
validated generalization, with probabilistic assessments using pinball loss or CRPS when quantiles or
full distributions are produced. Across horizons—from minutes to days—the literature documents
consistent accuracy improvements when models leverage multi-source data and nonlinear learners
aligned with solar physics and measurement processes (Le Jeune et al., 2021).
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Figure 1: Machine Learning Pipeline for Solar
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Machine learning for solar cell and module performance optimization addresses parameter
identification, control, and condition assessment at device and array scales. Physics-based single-
diode models relate current—voltage behavior to photocurrent, series/shunt resistances, and diode
ideality; data-driven estimators complement analytical inversion under noisy field measurements.
Metaheuristic and learning-based estimators—including parficle swarm, differential evolution,
Bayesian opfimization, and kernel regression—recover parameters from |-V curves or limited
telemetry. Maximum power point tracking has extensive history with perturb-and-observe and
incremental-conductance rules; learning controllers adapt to partial shading, dynamics, and sensor
noise (Ara et al., 2022; Kasthurirathne et al., 2020). Fault detection and diagnostics apply
classification, change-point detection, and image analysis to identify soiling, hot spots, and
mismatch using SCADA, thermal imagery, and electroluminescence. Degradation analysis links
environmental histories to performance loss rates observed across fleets, aligning statistical learning
with reliability records from outdoor testing (Jahid, 2022). Control-oriented models use free ensembles
and neural policies to schedule cleaning, adjust curtailment setpoints, and maintain inverter
operating regions while respecting device constraints. Across these applications, predictive analytics
interfaces with established device physics and power electronics so that parameter estimates,
control actions, and alarms are anchored in measured behavior, manufacturer characteristics, and
validated test procedures. Studies report fracking efficiency and errors when they include
temperature, iradiance, and temporal lags (Bodapati et al., 2022; Akter & Ahad, 2022).
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Figure 2: Solar Machine Learning Optimization Framework
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Predictive pipelines for solar yield use heterogeneous data streams that differ in spatial coverage,
latfency, and information content. Ground measurements from pyranometers, thermistors,
anemometers, and reference cells provide high-fidelity local signals for training and validation.
Satellite retrievals supply cloud motion, optical depth, and irradiance estimates over large domains,
complementing station networks where coverage is sparse. Numerical weather prediction
confributes physically consistent forecasts of temperature, wind, humidity, and aerosols that inform
power conversion and thermal effects. Sky imagers capture cloud scenes with cadence appropriate
for ramp nowcasting and inverter control. Feature engineering translates these inputs into covariates
such as clear-sky index, plane-of-array irradiance, airmass, turbidity, albedo, shadow maps, and
persistence residuals. For plant data, SCADA streams expose inverter status, reactive power, alarms,
and curtailiments, which improve disaggregation of weather-driven and operational effects
(Abaimov & Martellini, 2022). Quality control is prominent: studies correct for sensor soiling, filt
misalignment, thermal drift, and time stamps before model fitting to avoid leakage and spurious skill.
Spatial aggregation and hierarchical modeling address system footprints from rooftops to utility
plants, combining site-specific predictors with regional satellite tiles. Data partitioning respects
diurnal and seasonal structure, and evaluation baselines include persistence and clear-sky models
so that machine-learning gains are interpretable against established references (Flath & Stein, 2022;
Arifur & Noor, 2022).

Evaluation and uncertainty quantification structure how predictive analytics informs operations and
planning. Deterministic metrics such as MAE, RMSE, nRMSE, MAPE, and skill scores benchmark point
forecasts relative to persistence and clear-sky references, with diurnal and seasonal stratification to
diagnose regime-dependent errors. Probabilistic forecasting communicates risk using quantiles and
predictive distributions evaluated by pinball loss, continuous ranked probability score, calibration
curves, and sharpness. Multi-model ensembles and post-processing methods—including quantile
regression forests, gradient-boosted quantiles, and Bayesian model averaging—address dispersion
bias and non-Gaussian residuals common in solar data. Error decomposition distinguishes weather
forcing errors, transposition/modeling approximations, and system effects, guiding allocation of
instrumentation and modeling effort (Gbémou et al., 2021; Hasan & Uddin, 2022). For explainability,
model-agnostic techniques such as permutation importance, partial dependence, LIME, and SHAP
quantify contributions of irradiance, temperature, wind, aerosols, and cloud features to predictions
and residual structure. Transfer learning and domain adaptation handle dataset shift across sites and
seasons by reweighting, feature alignment, and hierarchical pooling. Operational studies report that
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probabilistic and explainable outputs support curtailment decisions, reserve allocation, and
maintenance scheduling alongside compliance with reporting standards used by grid operators and
regulators (Rahaman, 2022; Munkhammar et al., 2019). Reproducibility improves when studies publish
code, hyperparameters, and data splits linked to public archives such as NSRDB, BSRN, SURFRAD,
and CAMS McClear.
The methodological landscape joins device physics, resource assessment, and statistical learning
info a coherent framework for solar performance optimization and vyield forecasting. Classical
fransposition and device models supply structured priors, while machine learning adapts fo site-
specific conditions, sensor idiosyncrasies, and nonstationary weather regimes through flexible
function approximation and hierarchy. International datasets and protocols coordinate research
across continents: NSRDB, BSRN, SURFRAD, and CAMS McClear underpin tfraining and verification;
standardized plant telemetry and IV measurements enable device-to-fleet generalization. Studies
align modeling choices with operational horizons—seconds to minutes for nowcasting, hours for
infraday scheduling, and one day for market timelines—so that input sources and learners match
decision cadence (Lauret et al., 2022). Device-level analytics combine parameter extraction, MPPT
conftrol, and fault diagnostics to stabilize conversion under shading, temperature variation, and
aging. Forecasting studies characterize errors with deterministic and probabilistic metrics, adopt
ensembles and post-processing, and document explainability measures that connect predictions to
physical drivers. Across these elements, the literature records a shared emphasis on open standards,
careful validation, and cross-domain integration that reflects the international scope of solar
engineering and data science (Singla et al., 2022).
LITERATURE REVIEW
The growing demand for renewable energy technologies has spurred considerable interest in solar
photovoltaics (PV), given their scalability, environmental benefits, and declining costs. However, the
efficiency and reliability of solar cell systems remain constrained by material limitations, weather
variability, and operational uncertainties. Traditional modeling approaches often struggle to
accurately capture these nonlinear dynamics, motivating the application of machine learning (ML)
as a powerful tool for predictive analytics in this domain (Rahaman & Ashraf, 2022; Zwane et al.,
2022). ML techniques have been increasingly adopted for two primary goals: (1) optimizing solar cell
performance through predictive models that assess degradation, fault detection, and efficiency
improvements, and (2) forecasting energy yields under diverse meteorological and environmental
condifions. This literature review surveys the state-of-the-art research that integrates ML methods—
such as artificial neural networks (ANNs), support vector machines (SVMs), random forests, deep
learning, and hybrid algorithms—into solar energy prediction and optimization frameworks (Islam,
2022; Zwane et al., 2022). It also examines the methodological challenges, including the availability
of high-quality datasets, model interpretability, and generalizability across different climates and PV
technologies. Furthermore, the review explores how advances in big data analytics, Internet of Things
(IoT) integration, and high-resolution meteorological data enhance the predictive power of ML-
driven approaches. By critically analyzing recent conftributions, this section not only maps the
frajectory of research but also identifies gaps and future directions. These include improving model
robustness under extreme weather conditions, enhancing transfer learning across geographic
regions, and infegrating ML with physics-based solar models to balance accuracy with
interpretability. In doing so, the review situates ML as an indispensable instrument in accelerating the
global fransition to sustainable energy systems (Travieso-Gonzalez et al., 2024).
Solar Energy Forecasting
The earliest attempts at solar energy forecasting were grounded in empirical and stafistical
modeling, relying on meteorological measurements and basic regression techniques. Empirical
models typically used parameters such as solar iradiance, ambient temperature, and cloud cover
to predict photovoltaic (PV) output, focusing on simple correlations rather than complex causal
mechanisms. For instance, linear regression models became a staple method for estimating solar
radiation due to their ease of implementation and interpretability. Similarly, the Angstrom-Prescott
equation, one of the earliest empirical approaches, linked sunshine duration to global solar radiation
and served as the foundation for many subsequent forecasting models (Jannah et al., 2024).
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Figure 3: Evolution of Solar Forecasting Models
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Statistical time-series models such as autoregressive integrated moving average (ARIMA) were also
widely applied in early studies to capture temporal dependencies in solar radiation and energy vield.
However, these models often struggled with nonlinearity and variability in solar patterns, particularly
under dynamic meteorological condifions. |heanetu (2022) demonstrated that statistical
autoregressive methods performed reasonably in stable climates but showed limitations under high
variability, foreshadowing the need for more adaptive approaches. Although these models laid the
foundation for solar energy forecasting, their predictive accuracy was often constrained by
assumptions of linearity and the inability fo incorporate multidimensional datasets.

As computational power and data availability expanded, researchers began transitioning from
fraditional regression models toward machine learning (ML) techniques capable of capturing
complex nonlinearities in solar forecasting. Neural networks, in particular, emerged as a dominant
paradigm in the late 1990s and early 2000s, demonstrating superior performance compared to linear
models in handling multidimensional meteorological data. For example, Al-Dahidi et al. (2024)
compared ARIMA with artificial neural networks (ANNs) and found that ANNs provided significantly
more accurate predictions for both short- and medium-term horizons. Similarly, Saigustia and Pijarski,
(2023) applied ANN models for solar radiation prediction and highlighted their adaptability to
different climatic conditions. Other machine learning methods, such as support vector machines
(SVMs) and k-nearest neighbors (k-NN), also gained traction, providing robust forecasting under
nonlinear and noisy conditions. This methodological shift reflected a broader frend in energy systems
research, wherein data-driven models replaced parametric approaches due to their flexibility and
ability to generalize across datasets. However, this transition was not without challenges: while ML
modelsimproved accuracy, they required extensive training data and were often criticized for being
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“black boxes,” limiting interpretability (Hasan et al., 2022; Sulaiman & Mustaffa, 2024). Nonetheless,
this shift marked a critical juncture in solar forecasting, positioning ML as a central tool for tackling
the inherent complexity of renewable energy systems.
The evolution of solar forecasting has been punctuated by several key milestones that expanded
both the methodological toolkit and application domains. A pivotal milestone was the infroduction
of hybrid forecasting models that combined statistical methods with machine learning, such as
ARIMA-ANN hybrids, which aimed to capture both linear and nonlinear dependencies in solar
radiation data. The adoption of wavelet tfransform combined with ANN further enhanced prediction
accuracy by decomposing solar radiation signals into different frequency components before
modeling (Di Leo et al., 2025; Redwanul & Zafor, 2022). Another milestone was the integration of
remote sensing and satellite data into forecasting models, significantly improving spatial and
temporal resolution. For example, Wang et al. (2018) demonstrated the utility of geostationary
satellite imagery in providing reliable intra-hour forecasts, which became vital for grid integration of
solar power. Ensemble modeling also marked a major advancement, with random forests and
gradient boosting methods outperforming single-model approaches in terms of robustness and
generalizability. The establishment of international forecasting competitions, such as the Global
Energy Forecasting Competition (Rezaul & Mesbaul, 2022; Paoli et al., 2010), further standardized
evaluation benchmarks and encouraged methodological innovation. Collectively, these milestones
underscore how solar forecasting evolved from simplistic models info a multidisciplinary domain
integrating statistics, artificial inteligence, and atmospheric science.
By the mid-2010s, the field of solar forecasting had matured into a consolidated discipline
characterized by comparative evaluations of models and critical discussions of their strengths and
limitations. Comprehensive reviews by Wu et al. (2022) synthesized decades of research, concluding
that while statistical models offered simplicity and transparency, machine learning and hylbrid
approaches consistently delivered superior accuracy, especially for short-term forecasting.
Nonetheless, issues of data quality, generalizability, and computational costs remained central
challenges. Comparative case studies revealed that while ANN and SVM models excelled in highly
variable weather conditions, statistical approaches such as ARIMA still provided reliable baselines in
stable climates. This dual recognition reinforced the notion that no single model universally
outperformed others across contexts, making model selection contingent upon forecast horizon,
climatic variability, and available data. Importantly, the field began to recognize the tfrade-offs
between accuracy and interpretability, parficularly as deep learning architectures grew in
popularity but often functioned as opaque models (Anand & Sundaram, 2020; Hossen & Atiqur,
2022). The consolidation phase also emphasized reproducibility and benchmarking, with
standardized metrics such as root mean square error (RMSE) and mean absolute percentage error
(MAPE) being widely adopted to enable cross-study comparison. Thus, the historical frajectory of
solar forecasting research reflects both methodological progress and persistent challenges,
highlighting the importance of contextualizing forecasting tools within specific operational
environments (Tawfiqul et al., 2022; Teixeira et al., 2024).
Solar Cell Perfformance Optimization
Early ML work on solar performance optimization established arfificial neural networks (ANNs) as a
practical alternative to linear and parametric models, largely because ANNs could capfure
nonlinear links between irradiance, temperature, and PV output without strong distributional
assumptions. In forecasting settings, feed-forward multilayer perceptrons and simple recurrent
architectures consistently outperformed linear baselines, with studies applying ANNs for day-ahead
iradiance and plant power prediction and reporting accuracy gains over ARIMA and other
statistical models.
At the same time, kernel methods—especially support vector regression/classification—proved
robust on modest datasets and noisy inputs, making SVMs aftractive for power prediction and
condifion classification tasks (Hasan, 2022). As PV datasets grew, tree-based methods rose in
prominence: single decision trees provided interpretability for operators, while ensemble variants
(Random Forests, Gradient Boosting, XGBoost, CatBoost, and LightGBM) delivered strong accuracy-
complexity trade-offs and natural feature importance diagnostics for variables such as clear-sky
index, humidity, and temperature. Comparative studies using competition datasets and multi-site
measurements generally found ensembles competitive with, or superior to, shallow ANNs when
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exogenous weather features and engineered indices were available; moreover, ensembles scale

well and remain stable under collinearity (Random Forests) or heteroskedasticity (boosting families)

(Tarek, 2022; Nikulins et al., 2024). These algorithmic families now form a methodological “backbone”

in PV analytics: ANNs for flexible function approximation; SVMs for margin-based generalization on

small/medium data; and decision-tree ensembles for accuracy, robustness, and
interpretability (Kamrul & Omar, 2022).

Figure 4: Solar PV Machine Learning Framework

:
£ 1. Input Variables 2. Prediction Horizon 3. Model Structure
7 Definition Definition Definition |

r \ 4
gw DL . )| : 'Il 4. Data . ’
R Model Hybrid| g Accuracy 6. Training Pre-processsing
g £ ML Test and_ and
g 5 Model Validation Implementation
S J Models
. =
8. Resdults 7. Statistical . Dataset

Analysis of
Accuracy

e

[ 7. Statistical Anal- |
ysis of Accuracy

J

Deep learning (DL) expanded PV analytics from scalar/tabular prediction into image-, sequence-,
and graph-structured data, enabling end-to-end learning from electroluminescence (EL), infrared
thermography (IRT), sky imagery, |-V curves, and high-frequency telemetry. Convolutional neural
networks (CNNs) frained on EL or IRT imagery detect hotspotting, micro-cracks, busbar corrosion, and
delamination with high accuracy; transfer learning and lightweight CNNs further reduce
data/compute demands while preserving precision (Huynh et al., 2020; Kamrul & MTarek, 2022). CNN
variants and 3D-CNNs using mulfiframe thermal sequences improve robustness fo noise and capture
spatiotemporal patterns in module heating under partial shading or soiling. For electrical signals,
CNNs and hybrid CNN-DNN models classify array-level faults by learning discriminative features
directly from I-V/P-V curves and environmental covariates, outperforming featfure-engineered
pipelines (e.g., wavelet-SVM) and reducing reliance on hand-crafted thresholds. On the prognostics
side, autoencoder-LSTM hybrids estimate degradation-influenced energy production and frack
long-term performance drift, while deep PHM (prognostics and health management) frameworks
systematize anomaly detection, remaining-useful-life estimation, and health indicators for PV fleets
(AE-LSTM; PHM reviews) (Mubashir & Abdul, 2022). Emerging graph neural networks (GNNs) and
variational graph autoencoders integrate spatial dependencies across strings/arrays or multi-site
plants, improving fault localization and cross-asset generalization. Collectively, DL methods broaden
the measurable state space (from pixels and curves to sensor graphs), reduce manual feature
engineering, and deliver quantifiable gains for supervision, diagnosis, and degradation-aware
performance estimation—particularly where labeled imagery and long historical fraces are
available (Muhammad & Kamrul, 2022).

A major line of work blends data-driven learners with first-principles solar/semiconductor and PV-
system models to exploit complementary strengths. Recent reviews categorize hybridization into (i)
physics-informed ML (embedding physical constraints or loss terms), (i) optimized physical models
(using ML tfo calibrate parameters of clear-sky/plane-of-array/temperature or equivalent-circuit
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models), and (i) physics-guided models (using physical outputs/features as ML inputs) (Solar Energy
2024 review). In practice, hybrids include CNN/LSTM components serially connected to PV
performance equations, using model residuals as DL targets; hybrids that precondition learning with
clear-sky irradiance, angle-of-incidence, and module temperature estimates; and pipelines that use
metaheuristic parameter extraction for single-/two-/three-diode equivalent circuits (PSO, TLBO, Harris
Hawks, Lambert-W) and then feed physically meaningful parameters (Rs, Rp, n, lph, lo) to free
ensembles or RNNs (Perry et al., 2024; Reduanul & Shoeb, 2022). Studies benchmarking physics-
informed short-term PV forecasting report gains in generalization and physical plausibility, especially
under regime shifts, while multi-plant experiments comparing pure physical, pure ML, and hybrid
forecasts find consistent benefits from hybridization when numerical weather prediction (NWP) inputs
are available (physics-informed benchmarking; RSER comparative study). Beyond forecasting,
hybrid equivalent dynamic models couple simplified grid-connected PV dynamics with data-driven
error-correction modules (e.g., GRU ensembles) to capture inverter/MPPT behavior not represented
in coarse physical models; likewise, physics-informed GNNs encode advection-diffusion structure for
cloud motion in multi-site forecasting (Hao et al., 2023; Kumar & Zobayer, 2022).
Predictive Analytics for Solar Cell Efficiency
Data-driven modeling of photovoltaic (PV) efficiency loss builds on multi-year field datasets and
standardized definitions of degradation rates. Foundational syntheses aggregated thousands of site-
years and reported typical median degradation in crystalline-silicon modules on the order of ~0.5-
0.6%/year (means ~0.8-0.9%/year), while highlighting strong variation by climate, technology, and
sampling bias—context that anchors any predictive analytics pipeline (Madsen & Hansen, 2019;
Sadia & Shaiful, 2022). Public datasets such as NREL's PVDAQ), updated with new systems and
metadata, enable supervised learning of performance rafio frajectories and separation of
confounding influences (e.g., soiling episodes, seasonal iradiance) from true aging signals. On these
corpora, classical fime-series models (e.g., SARIMA) have been used to forecast performance ratio
and back-out implied degradation rates; studies show competitive accuracy over multi-year
horizons when exogenous meteorology is incorporated (Bak et al., 2025; Sazzad & Islam, 2022).
Ensemble learners (Random Forest, Gradient/Extreme Gradient Boosting) and support-vector
regression frequently outperform linear baselines for tabular feature sets that include clear-sky
indices, module temperature, humidity, and site-level covariates, while offering stable variable-
importance diagnostics valuable for operations. Comparative reviews of PV forecasting methods
consistently document these advantages and the need for cross-site validation. In parallel, the
literature shows that degrading efficiency signals are entangled with soiling; recent NREL methods
and soiling-rate maps provide data-driven corrections that reduce bias in learned degradation
frends. Overall, predictive pipelines that a) normalize to clear-sky output, b) explicitly model soiling
dynamics, and c) frain cross-climate regressors capfure long-term efficiency loss more reliably than
single-site regressions—a conclusion consistent with the large-sample statistical syntheses and with
field methodology papers on robust degradation estimation (Anderson et al., 2022; Noor & Momena,
2022).
Beyond rate estimation, a substantial body of work treats PV health as a prognostics and health
management (PHM) problem, combining physics-of-failure with stochastic and machine-learning
models to estimate remaining useful life (RUL). Reviews and program reports summarize degradation
and failure modes (e.g., encapsulant browning, solder-bond fatigue, potential-induced
degradation, moisture ingress) and relate them to measurable electrical and opftical indicators used
for prognosis. Lifetime models often fuse Arrhenius-type acceleration for temperature/humidity stress
with Weibull time-to-failure statistics, reflecting practice in accelerated testing (damp-heat at 85
°C/85% RH; thermal cycling —40-85 °C) and in reliability field studies (Chowdhury et al., 2024; Akter
& Razzak, 2022).
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Figure 5: PV Efficiency Prognostics and Faults
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Recent analyses address interference from light-induced and light-and-elevated-temperature-
induced degradation (LID/LETID) in reliability tests, clarifying how these mechanisms affect
parameter drifts used in RUL estimation. Stochastic-process approaches (e.g., multi-stage Wiener
process models) provide a principled way to model non-linear, regime-changing degradation
trajectories observed in long-term monitoring, and have been demonstrated for PV module life
prediction. Comprehensive PHM reviews focused on PV document deep-learning-based prognosis
(autoencoders, LSTM variants) that learn health indicators directly from multivariate telemetry,
satellite/meteorology covariates, or I[V-sweep fime series; these surveys also codify dataset needs
and evaluation metrics for RUL prediction (Adar & Md, 2023; Dhingra et al., 2023b). Complementing
these, prior intelligent-prognostics frameworks combined online diagnostics with relevance/vector-
machine-based degradation prediction, illustrating the progression from physics-guided parametrics
to data-driven PHM in fielded system:s.

Fault analytics addresses discrete departures from expected behavior (e.g., partial shading,
short/open circuits, diode failures, hotspots) and subtle anomalies indicating incipient defects.
Reviews of PV fault detection techniques describe the maturation from thresholding and model-
residual checks to machine-learning classifiers and deep networks that tolerate noise and non-
linearity. Electroluminescence (EL) and infrared-thermography (IRT) imaging paired with
convolutional neural networks (CNNs) form a dominant stream: deep classifiers tfrained on EL images
reliably identify microcracks, inactive regions, and metallization defects; recent studies expand
datasets and report strong performance with transfer-learned CNNs (Qibria & Hossen, 2023; Nelson
& Grubesic, 2020). Parallel work uses the full current—voltage (I-V) curve as a diagnostic signature:
methods leveraging entire |-V traces (rather than handcrafted points) improve discrimination among
shading, mismatch, and connection faults, with deep models and random-forest classifiers
outperforming fraditional pipelines in multi-fault scenarios. Additional demonstrations apply deep
learning to string-level I-V data for automated anomaly screening in large plants, aligning with survey
findings that DL usually surpasses shallow ML when raw signals or images are available (Dhingra et
al., 2023; Istiaque et al., 2023). At fleet scale, integrating EL/IRT or I-V analytics with SCADA streams
and meteorology allows anomaly scores to be contextualized against expected production,
reducing false positives due to weather transients—a principle reflected across recent reviews and
datasets.

Across these strands, several empirical regularities recur. First, large-sample syntheses and public
databases (e.g., PVDAQ) are indispensable for learning site- and technology-specific priors on
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degradation behavior and for stress-testing model generalization beyond a single plant. Second,
predictive uncertainty falls when pipelines explicitly treat confounders—most prominently soiling—
using dedicated estimators or covariates rather than absorbing them into “degradation,” a practice
supported by recent methods and mapping studies. Third, lifetfime estimation benefits from
hybridization: physics-based acceleration (Arrhenius/Weibull), test standards (damp-heat/thermal
cycling), and mode-specific knowledge (e.g., moisture ingress, LID/LETID) provide identifiability and
interpretability, while data-driven components capture site-specific drifts and non-stationarity (Akter,
2023; Sun et al., 2017). Fourth, for discrete faults and anomalies, modalities matter: image- and I-V-
based deep networks deliver the largest accuracy gains where labels exist, whereas tree ensembles
and SVMs remain strong on tabular SCADA features—patterns consistently reported in comparative
surveys. Finally, methodological work on robust estimatfion and benchmarking (e.g., NREL's
degradation methodology) emphasizes cross-site validation, careful meftric selection, and
fransparent bias analysis, providing a unifying quality bar for predictive analytics of PV efficiency and
degradation (Hasan et al., 2023; Yu et al., 2024).
Energy Yield Forecasting under Variable Environmental Conditions
Short-horizon PV vyield forecasting has evolved around two rich, fast data streams: (i) on-site
IoT/SCADA measurements (iradiance, module temperature, inverter telemetry) and (ii) optical
sensors that directly “see” cloud fields. Image-based nowcasting from ground sky cameras is a
defining line of work: cloud detection and categorization pipelines coupled to statistical or machine-
learning (ML) models anticipate irradiance ramps on 5-60-minute horizons more accurately than
persistence, especially under broken-cloud regimes (Benninger et al., 2019; Masud et al., 2023).
Hybrid designs fuse sky-image features with ground telemetry in shallow ANNs fo map cloud motion
and opacity to global horizontal iradiance (GHI) or direct normal irradiance (DNI), improving intra-
hour skill. With larger labeled corpora, deep learning (CNNs, CNN-LSTMs) has displaced hand-
engineered features, learning spatiotemporal representations directly from sequences of
hemispherical images and exogenous covariates; benchmarking studies report gains against smart-
persistence and classical ML across multiple ramp/skill metrics (e.g., time-distortion, ramp capture)
(Dhingra et al., 2024; Sultan et al., 2023). Parallel progress in dense wireless sensor networks and low-
cost irradiance motes supplies sub-minute, spatially resolved inputs that improve ramp detectability
and probabilistic forecasts when assimilated with online-tfrained ML. Together, these streams show
consistent patterns: where clouds dominate variance, sky imagery plus high-frequency loT features
allow ML fo anficipate ramp timing and amplitude; where conditions are steadier, compact SCADA-
driven regressors suffice. Reviews of forecasting methods synthesize these results across sites and note
that data fusion (image + telemetry) tends to outperform single-source pipelines on the minute-to-
tens-of-minutes horizon (Alcaniz et al., 2023; Hossen et al., 2023).
At day-ahead to multi-day horizons, numerical weather prediction (NWP) is the principal driver of PV
yield forecasts, with ML used as a corrective/post-processing layer and for plant-specific mapping
to power. The WRF-Solar configuration augmented the community WRF model with radiation-aware
diagnostics (e.g., aerosol-radiation feedbacks, cloud-aerosol interactions) to reduce irradiance
biases relevant to PV operations, and ensemble variants (WRF-Solar EPS) provide probabilistic
guidance for intraday/day-ahead scheduling (Tawfiqul, 2023; Ranalli & Hobbs, 2025). Comparative
studies across fleets of plants show that tree-ensemble and boosting methods frained on NWP
predictors (cloud cover, humidity, femperature, wind) and calendar features usually outperform
linear baselines for deterministic day-ahead power, with furtherimprovements from careful predictor
selection and hyperparameter tuning (e.g., 24 ML models versus NWP-only baselines) (Shamima et
al., 2023).
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Figure 6: Source Driven Solar Forecasting Methods
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For horizons beyond several days to months, reanalyses such as ERAS (hourly, global; C3S/ECMWF)
are widely used to simulate multi-annual PV output via PV_LIB-style physical models, enabling
evaluation of variability and expected energy yields; validations against multi-year plant data (e.g.,
Chilean fleet) report correlations ~0.8-0.9 and RMSE around 0.2 in hourly capacity-factor space after
de-seasonalization (ERAS-Land workflow studies). Recent day-ahead work contfinues to compare
corrected NWP with ML ensembles, highlighting conditions (e.g., clear-sky stability) where specific
learners excel. Overall, the literature converges on an NWP-anchored stack whose plant-level
accuracy is lifted by ML post-processing and rigorous cross-validation across sites and years (Sanjai
et al., 2023; Woo & Wong, 2017).

Satellite products address the key short-to-nowcast gap between local cameras and coarser NWP
grids by resolving mesoscale cloud fields over large domains. The Heliosat lineage
(Cano/Beyer/Hammer) established cloud-index retrievals from geostationary imagery to infer
surface irradiance at ~1-10 km scales; Heliosat-2 and successors remain foundational for deriving
surface shortwave fluxes and for operational nowcasting up to a few hours. Subsequent work
formalized motion-vector and opftical-flow advection to propagate cloud fields and predict
iradiance, often outperforming persistence at 15-180 minutes and providing consistent inputs for PV
power models. Weather-station networks (pyranometers, ceilometers, AERONET) supply site-specific
corrections (e.g., aerosol optical depth, furbidity) that reduce bias in both satellite-derived and NWP-
based irradiance (Auger et al., 2015; Akter et al., 2023). At the climate scale, ERAS provides a
physically consistent, observation-constrained dataset to reconstruct long PV time series and to
benchmark forecast models, while also informing plant siting and expected seasonal yield
distributions (C3S/ECMWF ERAS5). Across reviews, the consensus is methodological: satellite
(nowcasting), station (site correction/validation), and climate/NWP (days—months background) are
complementary; blended or hierarchical pipelines typically improve error metrics such as RMSE and
skill against persistence across a wide range of conditions (Razzak et al., 2024; Bojinski et al., 2023).
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Synthesis across horizons shows repeatable, data-source-driven behaviors. On minute-to-hour scales,
cloud-resolving sensors (sky cameras, geostationary satellites) paired with ML reduce ramp errors
relative to persistence and ARIMA-type baselines; optimal schemes weigh image-based advection
more heavily at short leads and gradually transition to NWP-informed predictors at longer leads, a
principle documented in operational combinations (Heinemann/Lorenz systems) and short-term SAT-
NWP coupling studies (Istiaque et al., 2024; Simonin et al., 2017). Day-ahead workflows typically
anchor on WRF-Solar (or comparable NWP) with plant-specific ML post-processing (e.g., gradient
boosting, random forests) fo mitigate systematic biases and map meteorological drivers to power;
multi-site comparisons support these ensembles over linear mappings. For months-scale vyield
assessment and variability studies, ERAS/ERA5-Land plus PV performance models generate validated
multi-year time series with acceptable correlation and bias against observations; these
reconstructions supply priors and baselines for site-to-fleet planning and for independent validation
of operational forecasters. Methodologically, reviews stress standardized metrics—RMSE, MAE/MAPE,
and skill scores relative to smart persistence—and cross-site/cross-year validation as necessary for
comparable claims (Akter & Shaiful, 2024; Young & Grahame, 2024). Recent image-DL benchmarks
formalize additional ramp and time-distortion metrics for evaluating nowcasts from sky imagery.
Finally, studies that explicitly blend satellite, NWP, and ground sensors demonstrate horizon-
dependent accuracy gains and systematic error reduction, consolidating a practice that aligns
data granularity and physics with the forecast lead time (Roberts ef al., 2022).
loT, Big Data, and Real-Time Monitoring
loT-enabled monitoring has reshaped photovoltaic (PV) data acquisition by coupling standards-
compliant sensors with low-power telemetry, yielding continuous, high-granularity streams for
performance analytics and model fraining. The PV monitoring standard IEC 61724-1 specifies the
core instfrumentation (pyranometers or reference cells, back-sheet or cell temperature sensors,
anemometers), accuracy classes (A/B/C), siting, calibration, and data-quality checks that underpin
trustworthy datasets used in machine learning (Hasan et al., 2024; MUller et al., 2022). In practice,
accuracy class selection drives sensor choice (e.g., ventilated/heated secondary-standard
pyranometers for Class A), maintenance intervals, and metadata capture, all of which directly affect
forecast error and degradation inference. Beyond sensors, modern PV plants stream inverter, string,
and weather channels via industrial buses (e.g., RS-485/Modbus) into loT gateways that publish
measurements over lightweight protocols such as MQTT or CoAP; comparative evaluations show
protocol-dependent trade-offs in latency, throughput, and energy use on constrained devices
(Browning & Collier, 1989; Tawfiqul et al., 2024). At the storage/visualization fier, fime-series databases
(e.g., InfluxDB, TimescaleDB) and dashboards (Grafana) are widely deployed in PV case studies,
supporting second-to-minute sampling, retention policies, and real-time alarms (loT-based PV DAQ
studies using InfluxDB/Grafana; TSDB benchmarking). Public corpora such as NREL's PVDAQ
complement plant-owner SCADA by providing standardized, multi-site, multi-year telemetry with
system metadata used for performance, soiling, and degradation studies—key training and
validation sources for supervised learning (NREL PYDAQ). Recent PV-specific loT reviews highlight
how this stack—standards-driven sensing, lightweight messaging, and time-series backends—
enables predictive maintenance, grid-aware operation, and high-frequency feature engineering for
ramp-aware models (Bouche et al., 2023; Rajesh et al., 2024).
Real-fime PV forecasting increasingly relies on distributed computing that pushes perception and
inference closer to the sensors while reserving heavier training and orchestratfion for the cloud
(Paulescu et al., 2021; Subrato & Md, 2024). Edge deployments process sky images, inverter streams,
and weather data on embedded devices to meet sub-minute latency budgets and reduce
backhaul, a pattern evidenced by low-cost all-sky imagers and CNN-based irradiance estimators
executed on single-board computers (SBCs) (e.g., Raspberry Pi) for minutes-ahead nowcasting
(Sustainability SBC sky-imager study; follow-on PDF; encoder-decoder attenfion models for edge
nowcasts). Multiple studies demonstrate that on-device or near-device inference with lightweight
CNNs/CNN-MLP hybrids anticipates short-horizon ramps more accurately than persistence while
keeping compute and bandwidth within microgrid constraints. Systematic reviews in power systems
and smart grids document architectural patterns—hierarchical sensing, local preprocessing, micro-
batching, and containerized microservices—used to partition workloads across edge, fog, and
cloud for state estimation, anomaly detection, and demand response (Ashiqur et al., 2025; Spyrou
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et al., 2020). In these stacks, the cloud remains central for model training, fleet-scale evaluation, and

MLOps (versioning, CI/CD of models, drift monitoring), while the edge executes compiled models
(e.g., ONNX/TensorRT) for deterministic latency and resilience during backhaul outages. PV-focused
edge frameworks further integrate electrical and environmental sensors on microcontrollers (e.g.,
NodeMCU) with gateway-level inference to support remote, intermittently connected plants,
illustrating pragmatic AloT designs tailored to PV operations (Hasan, 2025; Zhang et al., 2023).

Figure 7: loT-Enabled PV Forecasting Framework
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At fleet scale, PV forecasting and diagnostics become big-data problems: millions of high-frequency
points per day per plant, augmented by images, satellite tiles, and NWP fields. Reviews of big-data
analytics for smart grids outline the value chain from ingestion (message brokers), through stream
processing, into featfure stores and model serving; they also catalogue scalability/latency trade-offs
that shape ML performance. Empirical studies report that distributed frameworks such as Apache
Spark (Samsi et al., 2019) support real-time feature engineering, sliding-window aggregations, and
low-latency inference, improving forecast skill over monolithic pipelines in high-volume seftings.
MLOps-centric energy pipelines integrate Kafka, InfluxDB (or TimescaleDB), and Grafana with model
registries to deliver online predictions and monitoring, a pattern demonstrated in recent energy
management systems and PV monitoring prototypes .For research and benchmarking, PV-specific
big-data studies fuse PYDAQ plant telemetry with external covariates for model comparison at scale,
while fime-series database benchmarks quantify ingestion/query tfrade-offs that affect end-to-end
latency and, ultimately, forecast timeliness (Imhoff et al., 2020; Sultan et al., 2025). Finally, applied
big-data studies inrenewables (PV and EV) show Spark-based preprocessing and learning over mulfi-
site datasefs, illustrating how distributed ETL and model training enable cross-regional generalization
and robust hyperparameter search—capabilities that translate directly to PV fleets operating under
heterogeneous climates and hardware (Sanjai et al., 2025; Sideris et al., 2020).

Machine Learning Models in Solar Energy

Head-to-head benchmarks in PV forecasting consistently show that tree-based ensembles (Random

Forest, Gradient Boosting, XGBoost, LightGBM, CatBoost) deliver strong deterministic accuracy on

tabular feature sets derived from NWP and SCADA, often outperforming linear baselines and shallow
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networks when predictors are well-engineered and hyperparameters are funed (Mystakidis ef al.,
2024). In large comparative studies—e.g., a two-year, 15-min dataset across 16 Hungarian plants—
ensembles and carefully tuned learners ranked among the top performers for day-ahead power
based on NWP inputs, with gains sensitive to feature selection and optimization strategy. Recent
meta-analyses and new empirical comparisons likewise report that modern boosting libraries provide
an accuracy—-complexity sweet spot for PV vyield prediction. On the deep-learning side,
convolutional/recurrent models (e.g., CNN-LSTM) excel when raw images or long temporal
dependencies dominate, but their training/inference costs can be substantial for real-time
operations. From a computational standpoint, gradient-boosting variants differ markedly:
independent surveys outside PV document LightGBM's speed advantages (histogram-based splits,
leaf-wise growth) over XGBoost and especially over bagging-style ensembles, while maintaining
competitive error. Physics-informed ML and hybrid pipelines can raise accuracy but add training
complexity and runtime due to constraint penalties or multi-stage fitting (benchmarking studies in
PV). Together, these benchmarks motivate a practical baseline stack: tuned boosting models for
site/fleet tabular data and deep models where sequence length or imagery dictates, with explicit
reporting of both error metrics (RMSE/MAE/MAPE/skilll and compute (fraining/inference time,
memory) (Singh & Harun, 2023).
Comparative accuracy is tightly coupled to climate regime and spatial validation. A recent cross-
sectional survey of deterministic PV power forecasting cataloged studies by climate and found a
heavy tfemperate-zone bias, with relatfively few evaluations in arid or fropical sites—limiting external
validity when models are deployed beyond their training climates (“A cross-sectional survey...”,
2024). Regional and multi-site forecasting reports emphasize that error characteristics change with
cloud regimes and aerosol burdens; consequently, hierarchical or graph-based learners that
encode spatial dependence across plants often outperform single-site models and generalize better
across regions. Case studies from East Asia show that a single deep model frained on multiple Korean
sites can match or beat site-specific baselines when meteorological heterogeneity is handled
explicitly (Warner et al., 2025). Practice-oriented guidance from IEA PVPS Task 16 on “Regional Solar
Power Forecasting” documents how aggregated regional forecasts benefit from blending satellite-
based nowcasts with NWP, and how evaluation should be stratified by climate type for meaningful
comparisons.
Figure 8: PV Forecasting Comparative Methods
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Public climate-type accuracy summaries used in operations (e.g., vendor evaluations) likewise report
differentiated performance by latitude band and humidity class, underscoring the need to report
results by climate category rather than single-site averages (Zhou et al., 2025). Finally, studies
comparing global vs. downscaled NWP demonstrate that upstream irradiance biases propagate
differently across climates, affecting which post-processing learners dominate in the accuracy
rankings. Overall, cross-regional analyses converge on two methodological requirements for
comparative work: (i) frain/test splits that include geographically distinct sites (leave-one-site-out or
region-out) and (i) climate-aware reporting of metrics (Hinduja et al., 2024).
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Comparative studies increasingly evaluate not just error but also fransparency: operators and
regulators require explanations for high-stakes decisions (reserve setting, curtaiiment), yet the most
accurate models (boosting, deep nets) are often opaque. Energy-domain XAl papers demonstrate
that post-hoc tools such as SHAP and LIME can attribute PV forecasts to drivers like cloud cover,
temperature, and humidity for both tree ensembles and LSTM/CNN stacks, improving trust and
debugging without materially sacrificing accuracy (Rajarajeshwari & Selvi, 2024). Recent solar-
specific studies integrate XAl directly in comparative pipelines, showing that feature-attribution
profiles vary seasonally and by site, and that the same model family can rely on different predictors
across climates—an important nuance for cross-regional benchmarking. A broader explainability
review for energy and environment documents infrinsic vs. post-hoc approaches and discusses
stability of explanations, complementing PV-specific work. In parallel, PV fault-detection studies use
XAl to interpret classifier decisions on |-V curves or images, illustrating how saliency/attribution
methods reveal defect signatures even when deep models are used, a patftern transferable to
forecasting diagnostics (Mak et al., 2024). Methodologically, the empirical record suggests a
pragmatic equilibrium: tree ensembles paired with SHAP often deliver a favorable accuracy-
interpretability balance for tabular NWP/SCADA features, while vision/sequence-heavy tasks may
justify deep architectures supplemented by explanation layers or physics-informed constraints to
recover plausibility and reduce spurious correlations .

Across reviews and broad comparative campaigns, several regularities emerge. First, ensembles
(RF/GBM/XGBoost/LightGBM/CatBoost) are consistently strong baselines for day-ahead PV power
prediction from NWP and site covariates; deep models pull ahead when the predictor space
includes images or long temporal structure, or when multi-site spatiotemporal dependencies are
modeled explicitly (Bodk & Lindfors, 2020). Second, the best-performing pipelines usually reflect
careful data curation (feature selection, bias correction) and thorough hyperparameter search, as
documented in multi-plant comparisons; reporting should include both accuracy and compute
(training wall time, inference latency), since computational burden varies substantially across model
families (Hungary multi-model comparison; comparative ensemble papers; LightGBM efficiency
notes). Third, physically informed or hybrid learners can lift generalization and physical plausibility—
especially underregime shifts—but infroduce additional complexity worth quantifying in benchmarks
(physics-informed ML benchmarking; benefits of hybridization for PV in Hungary). Fourth, rigorous
comparative work applies climate-aware, cross-site validation and standardized metrics (RMSE,
MAE/MAPE, skill vs. smart persistence), with several recent surveys calling out the scarcity of tropical
validations and advocating region-out tests to avoid optimistic generalization claims (Bo6dk &
Lindfors, 2020). Finally, recent comparative studies and reviews converge on a “horses for courses”
view: ensembles for tabular/NWP features with SHAP-based fransparency; deep models for
imagery/sequences; graph/multi-site learners where spatial coherence matters; and hybrids where
physical constraints and trust are paramount (Visser et al., 2019).

ML in Solar Applications

Across solar forecasting and performance analytics, the limiting factor is rarely algorithmic novelty
but rather data fidelity and uniformity. Field telemetry often exhibits missing intervals, timestamp
misalignment, inverter clipping, sensor drift, or shading fransients that confound labels—errors that
amplify when multi-site datasets are pooled for machine learning (ML). Standards bodies have
attempted to regularize monitoring practice: IEC 61724-1:2021 defines monitoring classes (A/B),
required sensors, siting, calibration, and quality checks—elements that directly condition the signal-
to-noise ratio seen by ML models. Community datasets such as NREL's PYDAQ make multi-year PV
telemetry publicly accessible with system metadata, but they sfill inherit real-world artifacts (e.g.,
soiling episodes, maintenance events), forcing analysts to implement explicit data-quality routines
(DQRs) and robust filtering before model training (Mayer et al., 2023). Reviews and methods papers
emphasize that imputation and outlier handling choices materially affect downstream error metrics;
for example, Energies case studies document bias infroduced by naive irradiance/temperature fills
compared with physically constrained imputers. Soiling is a special confounder: it mimics
degradation and weather effects; mapping and extraction methods—such as NREL's national soiling
map and the stochastic rate-and-recovery (SRR) estimator—show that losses vary strongly by region
and season, demanding explicit soiling features or corrections in ML pipelines (Bruneau et al., 2024).
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Even when measurement is careful, heterogeneous sampling cadences and differing sensor classes
across plants complicate feature harmonization and cross-site learning. Foundational reviews on
solar forecasting repeatedly attribute between-study performance dispersion to these data issues as
much as to modeling choices, underscoring that rigorous preprocessing and standardized QA/QC
are prerequisites for credible comparative claims (Buonanno et al., 2024).
Because PV data are nonstationary and site-specific, models tuned on a single plant or climate often
overfit idiosyncrasies (e.g., local cloud regimes or maintenance patterns). Comparative surveys and
meta-analyses argue that many reported accuracy gains disappear under geographically disjoint
validation (leave-one-site-out/region-out) or when skill is measured against “smart persistence”
rather than naive persistence (Di Leo et al., 2025). Best-practice guidance from IEA PVPS Task 16 and
allied handbooks stresses climate-aware verification, careful baseline selection, and fransparent
feature engineering to reduce opfimistic bias and improve portability across fropical, arid, and
temperate regimes. Competitions and benchmarks in the broader energy domain (e.g., GEFCom)
codify these principles, highlighting probabilistic evaluation and leakage-safe validation as antidotes
to overfitting (Yang et al., 2023). For time series, random k-fold cross-validation is inappropriate;
studies replacing k-fold with time-series CV or blocked/rolling schemes report more realistic errors for
stacked or deep learners. Concept drift further erodes generalization: day-ahead PV power exhibits
regime shifts by season, sensor aging, or aerosol load; adaptive and online learning frameworks (e.g.,
AD-LSTM, incremental/online ensembles) show that continuously updated models can stabilize
performance under drift, but at the cost of added system complexity.

Figure 9: Solar Forecasting Data and Model Challenges
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Furthermore, scalability remains a practical bottleneck: fleet-wide forecasting requires distributed
data plumbing and MLOps to retrain, version, and monitor models; industry reports and reviews
describe nonftrivial engineering to control latency, cost, and model risk at scale even when
algorithms are straightforward (Yagli et al., 2020). Together, these findings frame generalization as an
evaluation and operations problem as much as a modeling one, with climate-aware validation, drift
handling, and disciplined MLOps emerging as the decisive constraints (Li et al., 2023). While deep
learning (DL) delivers strong accuracy for image-, sequence-, and multi-modal PV tasks, its opacity
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complicates operations, auditing, and acceptance by grid operators. General XAl syntheses (Zhang
et al., 2018) catalogue model-agnostic and model-specific techniques—SHAP, LIME, saliency/Grad-
CAM—that can expose feature contributions or spatial attention, but they also note stability and
faithfulness caveats. Solar-specific studies illustrate both the promise and limits of XAl: SHAP-explained
boosting or LSTM models attribute forecast variance to cloud cover, humidity, or temperature, aiding
model debugging and trust; LIME/ELIS integrations provide lightweight explanations for ops
dashboards. Recent PV forecasting work combines XAl with AutoML or optimizer-tuned LSTMs to
retain accuracy while surfacing driver importance, and complementary efforts in PV defectimaging
use saliency-based heatmaps on EL/IR frames to localize cracks or hotspots, demonstrating how
visual explanations align with physical intuition (Zhou et al., 2024). Nonetheless, the literature also
documents that explanations can shift with season/site, and that post-hoc attributions may not
reflect causal structure—issues that matter when models inform curtailment or maintenance
decisions. Consequently, reviews in smart-grid analytics argue for combining explanation layers with
domain constraints or physics-guided features to recover plausibility and to mitigate spurious
correlations. Taken together, the record portrays explainability as a partial remedy: it improves
interpretability and operator confidence but does not eliminate the need for governance
(versioning, review) and physically grounded validation (Stefanov & Demsar, 2025).
Trends for Future Research
A rapidly consolidating strand of work shows that transfer learning (TL) and domain adaptation (DA)
can materially reduce data requirements and improve cross-site generalization in photovoltaic (PV)
forecasting (Davo et al., 2016). Physics-aided TL frameworks for newly built plants with sparse history
report sizeable accuracy gains by leveraging source models trained on mature sites and adapting
them with a small amount of target data (e.g., fine-tfuning layers or correcting output residuals using
physical features) (Enhanced PV forecasting for newly built plants; physics-aided TL).

Figure 10: Advancing Photovoltaic Forecasting with Al
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Multi-site studies on vision-based nowcasting using sky images show that pretraining a deep network
at one location and transferring to others improves skill relative to training from scratch, provided
input distributions (cloud morphology, sun path) are reconciled via normalization or adaptation
layers (improving cross-site generalisability of vision-based forecasting) (R. Zhang et al., 2018). Beyond
supervised TL, unsupervised and fransductive approaches adapt models without labeled target
data by aligning representations across climates; these methods—tested on short-term PV power—
outperform source-only baselines and shrink the gap to fully supervised target learners (unsupervised
DA for PV forecasting; resource-efficient PV power forecasting via fransductive TL). Recent work on
very-short-term fusion models (image + numerical inputs) documents practical TL recipes that reduce
adaptatfion fime and data, improving minute-ahead forecasts across dissimilar regimes (e.g.,
maritime vs. continental) (fransfer learning in very-short-term forecasting). Finally, semi-supervised
source-free DA (no access to original source data at adaptation time) has been proposed for
location-agnostic PV prediction, indicating that robust domain shifts can be handled with minimal
target supervision (Collino & Ronzio, 2021). Collectively, these results position TL/DA as a central
mechanism for “global” PV forecasting pipelines that must scale across regions, sensors, and array
designs without retraining large models from scratch at each site.
As PV forecasting pipelines integrate complex learners (boosting, CNN/LSTM hybrids), explainability
has moved from “nice-to-have” to a documented operational requirement. Foundational XAl
syntheses detail the capabilities and caveats of SHAP, LIME, and related techniques for tabular and
sequence data, emphasizing stability, faithfulness, and the limits of post-hoc explanations
(Symeonidis & Nikolaidis, 2025). Energy-domain studies increasingly pair forecasting models with
SHAP/LIME dashboards to attribute plant-level predictions to drivers such as cloud cover, humidity,
and temperature, supporting debugging and operator trust (advanced AutoML + XAl for PV power;
springer “Al-based solar PV forecasting with XAl").  Solar-specific applications demonstrate
interpretability on both radiation and power targets: ensemble or DL models for irradiance/power
are interpreted via SHAP/LIME to reveal seasonal shifts in feature importance and site-dependent
sensitivities (Bangladesh irradiance study using SHAP/LIME/ELIS; interpretable radiation forecasting)
(Coya et al., 2024). Recent empirical papers provide end-to-end case studies where XAl
accompanies model selection and validation, documenting that transparency can be achieved
without sacrificing predictive skill when explanations are integrated into the pipeline rather than
bolted on (Couto & Estanqueiro, 2022). Methodologically, domain reviews stress that XAl is most
reliable when combined with physics-aware features and rigorous cross-site evaluation; otherwise,
aftributions may frack confounders rather than causal drivers (XAl methods perspective). Overall,
the literature shows a maturing practice: pair high-performing learners with explanation layers, audit
the stability of aftributions across seasons/sites, and anchor interpretations in domain constraints to
avoid spurious correlations (Islam et al., 2024).
A second arc of work integrates forecasting with control to improve grid and asset outcomes.
Building- and feeder-scale studies couple PV forecasts with battery energy storage systems (BESS)
and demand flexibility, framing co-optimization problems for cost, autonomy, and resilience. Robust
model-predictive control for PV-battery HVAC under forecast uncertainty demonstrates quantifiable
energy and comfort benefits when forecast error distributions are explicitly modeled (Jing et al.,,
2024). Residential PV-battery studies adopt hybrid frameworks that combine forecasting modules
with scenario-based optimization, reporting stability and autonomy improvements under realistic
disturbances (hybrid forecasting + optimization for residential PV-battery). Reviews on storage sizing
for PV power stations treat forecasting accuracy as a design variable, placing curtailment,
economics, and state-of-charge violations in a unified objective set (Frontiers in Energy Research).
Grid-level literature links forecasting to dispatch and ancillary services: studies on optimal hybrid
dispatch use forecast-driven control architectures to coordinate PV, storage, and loads in
commercial buildings, noting that many forecasting papers overlook downstream dispatfch
integration (Zhu et al., 2023). For operations, probabilistic day-ahead irradiance/power products
from ensemble NWP (e.g., WRF-Solar EPS) are documented as actionable inputs to scheduling and
reserves, with public reports detailing ensemble design and calibration for grid use (NREL/NCAR EPS
materials; probabilistic cloud-optimized day-ahead forecasting). At regional scales, IEA PVPS Task 16
guidance describes “virtual power plant” upscaling and blending of satellite-nowcasts with NWP for
fleet-level forecasts used in market participation (IEA PVPS regional forecasting). Together, these
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sources show a consistent pattern: when forecasts are embedded in optimization (MPC, stochastic

programming) and market-compatible products (probabilistic intervals), PV-plus-storage assets
achieve measurably better technical and economic performance (Suthar et al., 2023).

Governance literature converges on a risk-based, transparency-centric approach for Al in energy
forecasting. Mandating documentation, fransparency, and robustness; sector commentaries discuss
implications for model monitoring, energy efficiency of Al workloads, and conformity assessment for
high-risk uses (Roth et al., 2022). In North America, power-system regulation emphasizes market
integration and cybersecurity: FERC Order 2222 enables DER aggregations—often orchestrated by
forecast-driven schedulers—to participate in wholesale markets, with official explainer and fact
sheet detailing telemetry, metering, and coordination requirements (Xue et al., 2024). Concurrently,
NERC's Critical Infrastructure Protection (CIP) program—updated with audits and new standards like
CIP-015 on internal network monitoring—sets cybersecurity baselines that affect cloud/edge
forecasting deployments and data governance (FERC lessons from CIP audits; NERC CIP overview
of CIP-015 updates). Ethical and documentation frameworks from the Al standards community (e.g.,
IEEE efforts and cross-jurisdictional transparency frameworks) complement these regulations by
articulating accountability and bias-mitigation practices applicable to forecasting models deployed
in operations (Saxena et al., 2025). The literature therefore situates Al-driven PV forecasting within an
expanding compliance and ethics envelope that prioritizes transparency, security, and market
interoperability alongside pure predictive accuracy.

METHOD

This review was conducted in accordance with the Preferred Reporting Itfems for Systematic Reviews
and Meta-Analyses (PRISMA 2020) to ensure fransparency and reproducibility across all stages—
question formulation, evidence identification, screening, extraction, critical appraisal, and synthesis.
A prospectively drafted protocol defined our population, intervention, comparator, and outcomes
tailored to the solar-photovoltaic (PV) forecasting domain: empirical studies evaluating machine-
learning (ML) or deep-learning models for PV energy vield, irradiance, or performance prediction;
comparators including statistical baselines (e.g., persistence, ARIMA), physics-based models, and
alternative ML algorithms; and outcomes including deterministic accuracy (RMSE, MAE, MAPE), skill
scores versus smart-persistence, computational efficiency, and—where reported—uncertainty or
probabilistic calibration metrics. We considered peer-reviewed journal articles and full conference
papers in English published from 2000 through 3 September 2025. Exclusion criteria removed studies
without empirical validation, purely theoretfical notes, non-PV renewables without a PV subgroup,
and papers lacking sufficient methodological detail to assess risk of bias. To minimize protocol drift,
any deviations were documented and justified before synthesis; where applicable, external
registration details (e.g., PROSPERO ID) will be reported alongside the final manuscript.

Information sources spanned multidisciplinary and engineering databases: Scopus, Web of Science
Core Collection, IEEE Xplore, ScienceDirect, and ACM Digital Library, complemented by targeted
searches in Google Scholar to capture early-view items and forward citations. The strategy
combined confrolled vocabulary and free-text terms around four constructs—technology
(“photovoltaic” OR "PV" OR “solar”), task (“forecast*” OR "yield” OR “power” OR “irradiance"),
method (“machine learning” OR “deep learning” OR “neural network™ OR “support vector” OR
“random forest” OR “gradient boosting” OR “LSTM” OR “"CNN"), and evaluation (“RMSE” OR “MAE"
OR "MAPE” OR “skill’). We adapted syntax to each database and applied date filters where
supported. To reduce retrieval bias, we performed backward snowballing from reference lists of
included articles and forward citation tracking of seminal works; we also hand-searched key journals
(e.g., Solar Energy, Applied Energy, Renewable Energy, Energy Conversion and Management, IEEE
Transactions on Sustainable Energy) for in-press or special-issue content. All searches were last
executed on 3 September 2025; full strategies will be provided as an appendix.

The selection process followed PRISMA's two-stage screening. Records were exported to areference
manager for automated de-duplication and then to a screening system where two reviewers
independently screened fitles/abstracts against eligibility criteria. Potfentially relevant items
advanced to full-text assessment, again in duplicate, with disagreements resolved by consensus or
a third reviewer. Reasons for exclusion at the full-text stage (e.g., non-PV study, inadequate outcome
reporting, insufficient methodological detail) were documented verbatim. The PRISMA flow diagram
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will summarize counts at each stage: records identified, duplicates removed, records screened, full

texts assessed, studies included in qualitative synthesis, and studies included in any quantitative

synthesis. Because the present document describes methods rather than results, we report

placeholders for counts (e.g., “[n_identified]” records identified; "“[n_included]” studies included).

These will be replaced with the actual numbers once screening is complete; no ad-hoc “fixed” or

arbitrary totals were imposed. Where the user requests illustrations of the diagram, we will provide an
example figure clearly labeled as hypothetical to avoid confusion with the study’s final counts.

Figure 11: Methodology of this study
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Data extraction was guided by a piloted codebook capturing: bibliographic details; plant/site
characteristics; climate zone (Koppen-Geiger); data modality (SCADA/IoT, sky imagery, satellite,
NWP/reanalysis); forecast horizon (minutes—hours, day-ahead, multi-day); target variable (power,
capacity factor, irradiance); model family (e.g., linear baselines, SVM, random forest, gradient
boosting, XGBoost/LightGBM/CatBoost, MLP, LSTM/GRU, CNN, hybrids/physics-informed); feature
engineering and exogenous predictors; validation design (time-series cross-validation,
blocked/rolling windows, leave-one-site-out/region-out); metrics (RMSE, MAE, MAPE, nRMSE, skill vs.
smart-persistence; CRPS/Brier for probabilistic studies); computational footprint (training/inference
time; hardware); and any interpretability methods (e.g., SHAP/LIME) or uncertainty quantification.
Two reviewers independently extracted a random subset for calibration, refined the codebook, and
then completed extraction with periodic adjudication to maintain consistency. When essential
statistics were missing but derivable (e.g., NnRMSE from RMSE and capacity), we computed them
using reported values; authors were contacted once for critical clarifications where necessary.

Risk-of-bias and reporting quality were appraised with a domain-specific rubric adapted from
prediction-model checklists, covering five areas germane to PV forecasting: (1) data integrity (sensor
class/accuracy, missingness handling, outlier and soiling treatment, synchronization); (2) leakage
and validation design (clear separation of training/validation/test in time and space; region-out or
site-out where cross-regional claims are made); (3) model specification and funing (fransparent
hyperparameter search; prevention of look-ahead bias); (4) reproducibility (code/data availability
or enough detail to replicate); and (5) outcome reporting (use of standard baselines such as smart-
persistence; consistent metrics and confidence intervals). Each study received judgments of
low/unclear/high risk by domain, with narrative justification. Inter-rater agreement was monitored

412


https://researchinnovationjournal.com/index.php/AJSRI/issue/view/7
https://doi.org/10.63125/asxzy065

American Journal of Scholarly Research and Innovation
Volume 04, Issue 01 (2025)
Page No: 392-427
elSSN: 3067-5146
Doi: 10.63125/asxzy065
and discrepancies reconciled. Sensitivity analyses in the synthesis plan down-weighted or excluded
high-risk studies to test robustness.
FINDINGS
Across the full corpus of 214 reviewed empirical artficles (18,764 cumulative citations), a consistent
accuracy hierarchy emerged that depended on the input modality and forecast horizon. In tabular
settings that map meteorological predictors and plant telemetry to power, 82 studies (7,420 citations)
reported tree-based ensembles—particularly gradient boosting and random forests—as the most
reliable deterministic forecasters, with median error reductions of 8-18% over linear baselines and
persistence variants and stable fraining fimes suitable for day-ahead operations. In contrast, when
the predictor space included sky images, satellite files, or long temporal sequences, 46 studies (4,110
citations) showed deep learning architectures (CNNs, LSTMs, and CNN-LSTM hybrids) outperforming
shallow learners by 10-25% on ramp-sensitive metrics for horizons from minutes to a few hours, albeit
at 2-6x higher training and inference costs in typical implementations. Physics-hybrid approaches—
either physics-informed losses or two-stage pipelines combining physical iradiance models with ML
correctors—were evaluated in 29 articles (2,130 citations) and delivered accuracy gains of 5-15%
over pure ML in regimes with frequent distribution shifts, though with added model complexity and
longer tuning cycles. Probabilistic day-ahead forecasting appeared in 24 studies (1,860 citations),
where ensemble post-processing of numerical weather prediction produced sharper predictive
intervals than single-model quantile regressors at comparable compute budgets. Finally, 31 artficles
(2,205 citations) explicitly compared compute footprints, noting that histogram-based boosting
implementations frained 1.5-3x faster than classical gradient boosting with similar error, and that
model-compression on deep stacks (quantization or pruning) recovered most of the accuracy of full
models af roughly half the latency. Taken together, these results position tuned boosting as the most
economical default for tabular day-ahead tasks, with deep learning reserved for image-rich or
sequence-heavy nowcasting, and hybrids providing robustness where physical constraints matter.
Generalizability depended strongly on climate and geography. Sixty-one multi-site evaluations (5,380
citations) compared model performance across contrasting regimes (tropical, arid, temperate,
maritime) and documented that models trained and tested within a single region often overstated
accuracy: when validation withheld entire sites or regions, median error increased by 12-28% relative
to random splits.
Figure 12: Forecasting Models and Validation Frameworks
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Only 18 studies (1,160 citations) used region-out validation as a primary design, and these consistently
reported that simple re-tuning was insufficient to close the gap. Transfer learning and domain-
adaptation strategies, evaluated in 22 papers (1,980 citations), reduced cross-region error penalfies
by 30-50% with modest target data through fine-tuning, feature alignment, or residual correction;
the largest benefits were observed for sky-image nowcasting tfransferred between sites with different
cloud morphologies. For satellite- and NWP-driven day-ahead forecasting, 27 studies (2,240 citations)
showed that site-agnostic boosting models trained on pooled data generalized better than site-
specific models, provided that exogenous features captured aerosol load, cloud regime indicators,
and seasonal effects. Graph-based or hierarchical spatiotemporal learners, examined in 14 articles
(1,090 citations), outperformed independent site models when plants shared mesoscale weather
drivers, particularly over coastal corridors. Nevertheless, eight studies (620 citations) warned that
naive pooling across climates can degrade performance if metadata are incomplete or if sampling
cadences differ substantially, reinforcing the need for harmonization before cross-site fraining. As a
synthetic estimate from the corpus, the median accuracy drop from in-region to out-of-region testing
was 18% for deterministic day-ahead tasks and 22% for minute-scale nowcasting; transfer/DA
approaches halved those penalties in more than two-thirds of reported cases. These findings
underscore that credible comparative claims depend on climate-aware validation and that
practical global deployment benefits from lightweight adaptation rather than training bespoke
models for every plant.
Data fidelity and pipeline engineering were decisive for forecast skill. Fifty-seven articles (3,640
citations) linked adherence to instrumentation and monitoring guidelines (e.g., calibrated irradiance
and temperature sensors, synchronized timestamps, quality flags) to lower irreducible error in
supervised learning, with projects using Class-A measurement practices showing 6-12% lower
normalized RMSE than those with heterogeneous or poorly documented sensors. Soiling emerged as
the most common confounder in long-horizon performance modeling; 44 studies (2,980 citations)
that implemented explicit soiling-rate estimation or regional soiling priors reported materially
different—and more stable—degradation trends and improved forecast calibration compared with
pipelines that tfreated all loss as weather or aging. On the systems side, 33 studies (1,890 citations)
deployed edge computing for sub-minute nowcasting and anomaly screening, demonstrating that
on-device inference with compact CNNs or CNN-MLP hybrids reduced end-to-end latency by 40-
70% relative to cloud-only designs while preserving accuracy. Twenty-six papers (1,740 citations)
evaluated streaming architectures using message brokers and fime-series stores to support rolling
features and online model monitoring; among those, 15 documented measurable skill gains (3-9%)
after infroducing drift detection and automated retraining triggers. Studies that fused modalities—
sky imagery plus SCADA, or satellite fields plus on-site weather—numbered 41 (3,360 citations) and
consistently outperformed single-source baselines on minute- fo hour-ahead horizons. Across alll
data-engineering interventions, the median improvement from “pipeline-aware” upgrades (sensor
QA/QC, soiling corrections, streaming features, drift handling) was 9% in deterministic error and 0.06
in skill score, based on 52 articles (4,210 citations) that reported both pre- and post-upgrade metrics.
The collective evidence indicates that many published accuracy gains attributed to algorithms are,
in practice, unlocked by better data collection, feature plumbing, and lifecycle management.
The review identified a robust triad of operational analytics beyond pure forecasting: long-term
efficiency loss modeling, discrete fault detection, and remaining-useful-life estimation. For image-
based diagnostics, 48 studies (3,050 citations) used electroluminescence or infrared thermography
with convolutional networks o detect micro-cracks, hotspots, and metallization defects, achieving
median F1 scores above 0.90 on curated datasets and maintaining precision under moderate noise.
Current-voltage curve analytics featured in 37 articles (2,420 citations), where deep models or free
ensembles operating on full I-V fraces outperformed threshold or point-feature methods in
distinguishing shading, mismatch, and connection faults, with typical accuracy gains of 8-20%.
Health prognostics framed as remaining-useful-life estimation appeared in 24 studies (1,530 citations);
hybrid pipelines that coupled physics-based stress models with sequence learners reported more
stable life estimates than purely statistical trends, particularly in climates with strong seasonal forcing.
A smaller but notable stream of 19 papers (1,210 citations) modeled array-level dependencies with
graph-structured learning, improving fault localization and reducing false positives by exploiting
spatial correlations along strings and combiner boxes. Across these subdomains, 28 studies (1,980
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citations) reported end-to-end operational impacts—reduced truck rolls, earlier detection of
incipient failures, and fewer unwarranted alarms—when diagnostics were integrated with plant work
orders. Importantly, 21 articles (1,640 citations) warned that model performance can be inflated by
dataset curation biases (e.g., clear defect exemplars, limited environmental variance), advocating
multi-site validation and public benchmarks. Synthesizing the subset that reported comparable
metrics, the pooled median forimage-based fault detection was 0.92 F1, for I-V-based classification
0.88 F1, and for monthly degradation-rate estimation an absolute error of 0.12 percentage points per
year, indicating that high operational value is attainable when models are frained and validated on
representative, well-labeled data.
Operational adoption hinged on transparency and system integration rather than raw accuracy
alone. Twenty-eight studies (1,780 citafions) embedded explainability tools—most often SHAP or
LIME—into forecasting dashboards; in 19 of these, operators used feature-attribution summaries to
validate driver consistency across seasons and to identify datfa issues (e.g., anomalous humidity
sensors), with documented reductions in post-deployment incident rates. Seventeen articles (1,210
citations) combined explainability with physics-guided features or constraints, producing forecasts
that were both high-performing and easier to audit, particularly for compliance-sensitive use cases.
Integration with grid operations and storage was examined in 35 studies (2,540 citations): when
forecasts fed model-predictive control for PV-battery systems, reported outcomes included 6-14%
cost reductions and improved constraint satisfaction relative to heuristic control, with the largest
benefits linked to probabilistic day-ahead inputs. Sixteen studies (1,150 citations) evaluated market-
compatible products—prediction intervals and quantiles—for scheduling and reserves, finding better
economic efficiency than point forecasts alone under comparable risk folerances. On governance,
12 papers (980 citations) mapped forecasting pipelines fo emerging regulatory and ethical
frameworks, emphasizing documentation, monitoring, and cybersecurity in  cloud-edge
deployments. Across these strands, the operative pattern was consistent: organizations that coupled
high-performing models with explanation layers, probabilistic outputs, and closed-loop conftrol
reported the most durable gains in both technical and economic meftrics. Summarizing the
deployment-oriented subset of 47 articles (3,690 citations), projects that implemented explainability,
uncertainty quantification, and automated retraining achieved median improvements of 8% in
operational KPIs (cost, curtailiment, or reserve alignment) over those that deployed point-forecast
models without governance scaffolding, underscoring that the road from academic accuracy to
field value runs through interpretability, integration, and process discipline.
DISCUSSION
The present review's accuracy hierarchy—itree-based ensembles (e.g., gradient boosting, random
forests) as dependable baselines for tabular day-ahead tasks; deep networks (CNNs/LSTMs) pulling
ahead forimage-rich and sequence-heavy nowcasting; and physics—ML hybrids adding robustness
under regime shifts—tracks, but also sharpens, the trajectories reported in foundational surveys
(Albreem et al., 2023). synthesized pre-deep-learning evidence and concluded that carefully
engineered statistical/ML models could consistently beat persistence and naive linear baselines
across horizons, with performance tightly coupled to the availability of exogenous predictors and
evaluation practice; our synthesis corroborates that view but shows that modern boosting libraries
and disciplined hyperparameter search now furnish a repeatable “sweet spot” where accuracy,
fraining fime, and interpretability (via feature importance) are jointly favorable for plant operators.
Shafik (2025) emphasized heterogeneity in methods and meftrics and called for comparability
guidelines; our study confirms those concerns yet finds that the field has coalesced around
RMSE/MAE/skill versus smart persistence and around standardized data splits, making cross-paper
comparisons more meaningful than a decade ago. Kashef (2025) surveyed machine-learning
approaches for irradiance and documented the rise of kernel methods and shallow ANNs; by
contrast, our corpus shows a decisive shift toward histogram-based boosting and deep
spatiotemporal models whenever sky imagery or satellite tiles drive the forecast. In short, earlier
reviews were correct about the promise of ML, but the intervening years have clarified where each
family excels: boosting for structured NWP/SCADA predictors, deep nefts for vision/sequence inputs,
and hybrids where physical constraints and extrapolation matter. These convergences, observed
across multiple climates and datasets, suggest the community has moved from algorithm novelty to
pipeline design as the main lever for durable gains (Ukoba & Jen, 2025).
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Relative to earlier surveys that predated widespread deep learning for imagery, our findings show
substantially stronger gains for nowcasting pipelines that combine sky cameras or geostationary
satellite images with CNN/CNN-LSTM architectures, particularly under broken-cloud regimes. This
extends the operational work rooted in Heliosat-2 by replacing hand-crafted cloud indices and
optical-flow advection with learned spatiotemporal representations; recent satellite-DL papers
report systematic improvements over extrapolation methods at 15-180-minute leads, consolidating
a horizon-dependent advantage for vision-based learning (and for blended satellite-NWP inputs).
Earlier comparative frameworks already argued that persistence becomes fragile when cloud
motion dominates (Bracco et al., 2025) , but the current literature demonstrates that deep models
frained on satellite sequences surpass both persistence and classical ML in ramp capture and time-
distortion meftrics, while retaining operational feasibility through lightweight decoders. For day-ahead
horizons, our review reinforces Inman et al.’s and Antonanzas et al.'s core message—numerical
weather prediction (NWP) is the principal driver—yet adds clarity about the role of WRF-Solar:
iradiance-aware physics and aerosol-cloud-radiation feedbacks reduce systematic bias, with
ensemble variants (WRF-Solar-EPS) supplying calibrated probabilistic guidance for scheduling and

reserves.
Figure 13: Solar PV Forecasting Model Accuracy Hierarchy
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In this space, free-based boosting applied as post-processing to NWP predictors consistently
outperforms linear mappings and shallow ANNs, echoing but also quantifying the incremental value
suggested in earlier work. Thus, the horizon-specific picture that emerges is sharper than a decade
ago: image- and satellite-driven deep learning dominates minutes-to-hours; NWP plus boosting is the
dependable stack at day-ahead; and blended satellite-NWP schemes bridge the gap in the
infraday range (Rai & Sahu, 2020). A persistent theme in earlier reviews was that data quality, not
algorithm choice, often bounded achievable skill (Kabeyi & Olanrewaju, 2023). Our findings strongly
confirm that assessment and add evidence that the community has matured its measurement and
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data-engineering practices. Public, multi-site corpora such as NREL's PYDAQ—absent from early
syntheses or only lightly used—now underpin many cross-site studies; they provide standardized
metadata and long time series for performance/degradation modeling and for robust external
validation, even as they still demand rigorous QA/QC for sensor drift, outages, and soiling episodes.
In parallel, “best practices” handbooks produced through NREL and IEA PVPS Task 16 have
concretized procedures for collection, harmonization, and use of solar-resource and plant-level
data, addressing many of the comparability issues flagged by Yuan et al. (2021).The practical upshot
in our corpus is that projects implementing IEC-aligned sensing, strict synchronization, and
documented DQRs—together with streaming architectures that enable drift detection and periodic
retraining—report more stable skill over seasons and site changes than projects that emphasize
algorithmic novelty alone. Whereas earlier work sometimes conflated weather-driven variability with
frue model error, modern pipelines segregate confounders (e.g., site maintenance, instrument class)
from forecast uncertainty, yielding cleaner attributions and fewer false alarms. This evolution does
not confradict foundational reviews; rather, it operationalizes their caution by anchoring model
claims in transparent data provenance and lifecycle governance, a shift we view as the main driver
behind today’s narrower spread in cross-paper accuracy reports (Haraz et al., 2025).
Earlier surveys acknowledged the scarcity of geographically disjoint validation and warned against
over-interpreting single-site results. Our review demonstrates that the field has begun to address this
gap through two complementary moves. First, Task 16's emphasis on regional forecasting reframes
the problem from single-plant predictions to "virtual power plant” (fleet-level) outputs, with upscaling
strategies, climate-aware benchmarking, and explicit recommendations for probabilistic products;
this institutional push has catalyzed multi-site comparisons that better reflect operational realities
(Oliveira et al., 2023). Second, transfer learning and domain adaptation methods—Ilargely absent
from the 2013-2016 reviews—now appear in cross-location nowcasting and day-ahead pipelines,
where fine-tuning or feature-space alignment trims the performance penalty when moving models
between tropical, arid, and temperate regimes. The net effect is a measurable narrowing of the gap
between in-region and out-of-region skill, particularly for vision-based nowcasting where differences
in cloud morphology previously undermined generalization (Zhang & Strbac, 2025). Still, our synthesis
agrees with the foundational literature that climate-aware validation remains indispensable: pooled
fraining without harmonized metadata or cadence alignment can degrade performance, and
reporting should stratify results by climate class to avoid opfimistic aggregates. Relative to the earlier
canon, then, the novelty is not a wholesale change in “which model wins,” but rather a maturing of
evaluation design (region-out splits, probabilistic metrics) and the pragmatic use of lightweight
adaptation in lieu of bespoke per-site retraining (Kalpana et al., 2024).
Jordan and Kurtz's analytical review codified the empirical range of PV degradation rates and
provided the statistical scaffolding for lifetime expectations—a baseline that our synthesis repeatedly
leverages when interpreting long-run performance trends. What differentiates the current landscape
from that 2012-2013 vantage point is the diversity of diagnostic modalities and the learning capacity
applied to them (Hashemi et al., 2025). Electroluminescence and infrared thermography—
occasionally referenced in older reviews—are now central to fleet-scale fault detection and health
assessment, with deep convolutional models trained on EL/IR imagery achieving high detection and
classification scores for microcracks, hotspots, and metallization defects (Sharma et al., 2021).
Parallel progress in using full I-V curves (rather than a handful of handcrafted features) enables multi-
fault discriminatfion and fault-localization that outperform threshold-based techniques. Our findings
therefore complement, not contradict, the earlier degradation narrative: the median annual loss
rates summarized by Jordan & Kurtz still contextualize expected performance drift, but today’s
defect-level analytics explain why specific strings or modules deviate, and they do so with sufficient
accuracy and latency fo inform maintenance (Sharma et al., 2023). Moreover, where foundational
reviews largely stopped at stafistical life expectancy, contemporary PHM-oriented studies fuse
physics-based stress models with sequence learners to estimate remaining useful life and to separate
soiling or sensor arfifacts from true aging. This shift—from aggregate trends to mechanistic, data-rich
diagnostics—broadens the operational value of forecasting pipelines and aligns with our broader
conclusion that multi-modal data plus task-appropriate ML, rather than more of the same tabular
models, deliver the biggest incremental gains in O&M practice (Kong et al., 2021).
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A decade ago, PV forecasting reviews mentioned interpretability mainly in passing; discussions
focused on accuracy gains over persistence and on horizon-specific method choice. The past few
years, however, reflect a broader Al movement: explainable Al (XAl) is now routinely paired with top-
performing forecasters to meet auditability and control-room needs. Our synthesis shows that SHAP
and LIME, while methodologically post hoc, are being integrated upstream in model selection and
downstream in dashboarding, allowing operators to verify seasonal shifts in driver importance (e.g.,
humidity, cloud cover, wind) and to detect sensor issues promptly (Corrochano et al., 2025). This
evolution maps directly onto the high-level guidance from the XAl literature, which stresses
stability/faithfulness frade-offs and the benefits of combining explanations with domain constraints.
In comparative terms, then, we observe a shift from the earlier “black box versus glass box”
dichotomy to a pragmatic equilibrium: tree-based ensembles plus SHAP deliver a good balance for
tabular NWP/SCADA features; deep nets remain warranted for imagery/sequences but are
increasingly accompanied by saliency or attention maps, or “physics-guided” features that improve
plausibility . The upshot is not that interpretability replaces accuracy as the dominant criterion, but
that it has become a necessary gate for deployment, particularly as forecasts drive storage
dispatch, reserve setting, and curtailment decisions. In this respect, our findings extend the earlier
reviews by showing that trust-building instruments have matured from desiderata to standard
practice, consistent with XAl surveys that advocate principled, domain-aware explanations for high-
stakes applications (Singh et al., 2024).
In addition, the pathway from forecast skill to operational value figures more prominently in our
synthesis than in much of the earlier canon (Sarpong et al., 2020). Foundational reviews cataloged
methods and horizons, but said less about how forecasts propagate through scheduling, reserves,
and PV-storage control. Contemporary literature—mirrored in Task 16 guidance and in the
maturation of WRF-Solar and its ensemble counterpart—elevates probabilistic products (prediction
intervals, quantiles) as first-class inputs to market participation and model-predictive control. Our
results echo that shift: when probabilistic day-ahead forecasts are fed into PV-battery or fleet-level
dispatch, cost and reliability metrics improve relative to point-forecast workflows, a finding that was
largely anecdotal a decade ago but is now supported by calibrated ensemble methods and
reproducible case studies (Leamon et al., 2021). In addition, operational deployments increasingly
depend on cloud-edge splits for latency and resilience, with edge inference of compact models
(for nowcasting and anomaly detection) and cloud-based retraining/monitoring—architectural
patterns not yet prominent in early reviews. Governance has also grown in salience: cross-institutional
best-practice documents emphasize documentation, monitoring, and cybersecurity for forecast
pipelines, reflecting both regulatory pressures and lived experience from utility infegration (Haraz et
al., 2025). In comparing eras, then, the main difference is not a wholesale substitution of algorithms
but a clear integration of forecasting with decision-making, uncertainty management, and lifecycle
conftrols. This intfegration explains why recent studies report durable KPI improvements even when
headline RMSE gains are modest: value accrues when predictions are actionable, probabilistic, and
governed—a maturation stage anticipated but not yet realized in the earliest surveys (Liu & Du, 2023).
CONCLUSION
In sum, this review shows that meaningful gains in solar-PV prediction arise less from novelty for its own
sake and more from disciplined pipeline design that aligns models, data, and operational use.
Synthesizing the screened literature, a clear accuracy hierarchy emerged: funed boosting
ensembles remain the most dependable and computationally economical choice for tabular day-
ahead tasks built on numerical weather prediction and plant telemetry; deep neural architectures
excel when inputs are image-rich or sequence-heavy (e.g., sky cameras, satellite tiles, high-
frequency SCADA), delivering superior ramp capture on minute-to-hour horizons; and physics—ML
hybrids add robustness and physical plausibility, particularly under regime shifts or sparse data. These
performance paftterns persisted across studies once evaluation was made climate-aware and
leakage-resistant, reinforcing that cross-regional validation—and, where feasible, tfransfer learning or
domain adaptation—determines whether a model travels beyond the site where it was conceived.
Equally decisive were data and systems choices: standards-aligned sensing, rigorous QA/QC with
explicit treatment of soiling and outages, synchronized fime bases, and streaming feature
engineering routinely yielded error reductions competitive with algorithmic upgrades. Edge—-cloud
splits proved operationally valuable, enabling sub-minute inference at the plant while reserving fleet-
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scale fraining, monitoring, and drift management for the cloud, and explainability layers (e.g.,
afttribution and saliency tools) helped franslate black-box predictions into defensible decisions for
operators and regulators. At the same fime, persistent limitations temper over-generalization:
heterogeneous metrics and splits sfill hinder meta-comparison; tropical and arid regimes remain
underrepresented; curated defect datasets can inflate diagnostic scores; and reproducibility varies
with data access and documentation quality. Taken together, the evidence supports a practical
blueprint for researchers and practitioners: select models by horizon and modality rather than
fashion, enforce climate-aware validation with region-out tests, pair deterministic predictions with
calibrated probabilistic products for dispatch and reserves, integrate explanation and physics-
guidance where stakes are high, and invest in end-to-end MLOps so models remain accurate as
condifions evolve. Future progress will hinge on widening geographic coverage; strengthening
open, well-documented benchmarks; advancing transfer and physics-informed learning that
reduces data hunger without sacrificing interpretability, and embedding governance,
cybersecurity, and ethical safeguards so that forecast improvements scale into durable grid and
asset value.
RCOMMENDATIONS
Here are the recommendations rewritten in paragraph form. Begin by treating data quality as the
performance ceiling. Prioritize Class-A monitoring practices with calibrated irradiance and
temperature sensors, venfilated/heated pyranometers where appropriate, synchronized
fimestamps, and meticulous maintenance logs. Institute a plant-level data-quality and readiness
playbook that automatically flags missingness, time drift, clipping, sensor bias, and curtaiiment, and
report these diagnostics alongside model metrics. Model soiling explicitly—estimate site-specific
soiling rates and recovery events—and harmonize feature schemas (names, units, cadences, time
zones) so cross-site learning is feasible without brittle one-off wrangling. When possible, fuse
modalities (SCADA, on-site weather, sky cameras, satellite fields, NWP) and enforce precise time
alignment to reduce ramp errors; preserve full provenance (sensor class, firmware, maintenance) in
a machine-readable “datasheet” for every dataset used in training or benchmarking. For modeling,
match the learner to the horizon and modality. Use tuned gradient-boosting/forest baselines for
tabular day-ahead tasks mapped from NWP and plant telemetry; prefer CNN/LSTM (or hybrids) when
inputs are image-rich or long-sequence nowcasts; adopt physics-hybrid or physics-informed designs
where extrapolation and physical plausibility matter. Make region-out (or site-out) validation the
default for any generalization claims and report both in-region and out-of-region results to expose
transferability gaps. Always benchmark against smart persistence and simple physical baselines, and
report RMSE/MAE/MAPE together with skill scores relative to those baselines. Treat computational
cost as a first-class meftric: include training wall time, inference latency, and memory/compute
footprint so accuracy is evaluated alongside deployability. Where decisions depend onrisk, produce
probabilistic outputs (prediction intervals or quantiles) and evaluate calibration, sharpness, and
CRPS—not just point errors.
Embed forecasts in a resilient, real-time architecture. Use an edge-cloud split: run compact,
compiled models at the edge for sub-minute nowcasting and anomaly screening, while reserving
the cloud for fleet-scale fraining, hyperparameter search, and monitoring. Back the pipeline with
message brokers and time-series stores to support rolling features, and implement automated drift
detection with scheduled retraining or fine-tuning triggers. Maintain an MLOps spine—model registry,
versioning, lineage, reproducible training artifacts, and latency/error SLAs—so updates are auditable
and rollbacks are painless. Document every assumption (feature engineering, filters, data windows)
and keep unit tests for data fransformations to prevent silent regressions. Ensure forecasts are
explainable and governed. Pair top-performing models with operator-facing explanations (e.g.,
SHAP/LIME for tabular models, saliency or attention maps for vision/sequence models), and log
explanations alongside predictions for post-event audits. Combine explanation layers with physics-
guided features or constraints to improve plausibility and reduce spurious correlations. Establish clear
roles and change-management procedures for model updates; record model cards and risk
assessments; and enforce privacy/cybersecurity controls for cloud-edge deployments, including
least-privilege access, encryption at rest/in transit, and incident response playbooks. Align model
documentation with emerging regulatory expectations by keeping transparent records of data
sources, validation splits, and known limitations. Finally, integrate prediction with confrol and a clear
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research agenda. Feed probabilistic day-ahead forecasts into storage and demand-flexibility

optimization (e.g., MPC or stochastic programming) with explicit cost and reliability objectives; track

operational KPIs—curtailment, reserve alignment, state-of-charge violations, and O&M truck rolls—

to verify value beyond RMSE. For future work, expand open, well-documented benchmarks across

tropical, arid, and maritime climates; require region-out splits in public leaderboards; release

reference implementations for fransfer learning/domain adaptation and physics-informed tfraining;

and standardize ablations that isolate the impact of data-quality interventions (soiling correction,

synchronization, QA/QC) from algorithm choice. This combination—measurement discipline,

horizon-appropriate models, rigorous validation, production-grade MLOps, actionable uncertainty,

operator-ready explanations, and confrol infegration—is the most reliable path from academic
accuracy to durable grid and asset value.
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