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Abstract 
This quantitative study investigated how artificial intelligence (AI) capability and digital transformation (DT) 
maturity influenced organizational communication quality and decision-making efficiency, with 
communication quality tested as a mediator and DT maturity as a moderator. The literature review synthesized 
evidence from 68 prior quantitative papers to refine construct definitions, measurement logic, and empirical 
pathways. A cross-sectional survey was conducted with 412 respondents from AI-adopting organizations across 
multiple sectors. Descriptive results indicated moderate-to-high levels of AI capability (M = 3.71, SD = 0.64) 
and DT maturity (M = 3.62, SD = 0.61). Communication quality recorded the highest mean (M = 3.84, SD = 
0.59), followed by decision-making efficiency (M = 3.68, SD = 0.62), and distributional diagnostics supported 
parametric modeling. Measurement quality was strong (Cronbach’s α = .86–.93; CR = .88–.94; AVE = .60–
.70), and CFA fit was acceptable (CFI = .95, TLI = .94, RMSEA = .05, SRMR = .04). Correlations among 
principal constructs were positive and significant, with no multicollinearity risk (VIFs < 2.10). Structural 
modeling confirmed all hypothesized direct effects: AI capability positively predicted communication quality (β 
= .58, p < .001) and decision-making efficiency (β = .33, p < .001), and communication quality positively 
predicted decision-making efficiency (β = .49, p < .001). Mediation testing showed a significant indirect effect 
of AI capability on decision efficiency via communication quality (β_indirect = .28, p < .001), indicating partial 
mediation. Moderation analysis demonstrated that DT maturity strengthened the AI-to-decision efficiency 
relationship (β_interaction = .14, p = .001). Overall, the findings supported an integrated mediated–moderated 
model explaining how AI-driven digital transformation enhances communication and decision efficiency in 
organizational settings. 
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INTRODUCTION 
Artificial intelligence (AI) is broadly defined as the design and deployment of computational systems 
capable of executing tasks that typically require human intelligence, such as recognizing patterns, 
learning from experience, interpreting language, reasoning with incomplete information, and adapting 
actions to changing environments (Saurabh et al., 2022). In organizations, AI is most often embodied 
through machine learning algorithms that infer relationships from structured data, natural language 
processing tools that parse and generate human language, and decision-support engines that 
recommend actions based on probabilistic evaluation of alternatives. Digital transformation refers to 
an enterprise-wide process of restructuring strategies, processes, and cultural routines through digital 
technologies so that organizations can create value in more data-intensive, interconnected, and 
responsive ways (Taherizadeh & Beaudry, 2023).  
 

Figure 1: AI-Driven Digital Transformation Framework 

 
The idea of AI-driven digital transformation extends this definition by emphasizing AI not as an 
auxiliary tool but as a core logic embedded into transformation programs. In this framing, digital 
platforms do more than store and transmit information; they interpret signals, automate sensemaking, 
and route knowledge dynamically to relevant actors. Organizational communication is the continuous 
creation, exchange, and interpretation of meaning among individuals and groups who coordinate 
toward shared goals. It includes formal reporting, informal collaboration, platform-mediated 
interaction, and cross-boundary knowledge sharing. Decision-making efficiency is defined as the 
degree to which decisions are produced with speed, accuracy, coherence, and minimal resource waste, 
while remaining aligned with organizational priorities. Quantitative research on AI-driven digital 
transformation examines measurable relationships among AI capability, digital infrastructure use, 
communication quality, and decision outcomes. These relationships matter internationally because 
organizations increasingly operate in networks characterized by rapid information exchange, 
distributed teams, multilingual stakeholders, and high volatility in markets and public environments 
(Yablonsky, 2022). Communication delays or distortions can amplify operational risk, while inefficient 



American Journal of Scholarly Research and Innovation, September 2025, 536–577 
 

538 
 

decision cycles can erode competitiveness, service quality, and institutional legitimacy. AI-driven 
transformation models therefore function as structured explanations of how intelligent systems interact 
with human workflows and digital infrastructures to reshape communication accuracy, coordination 
latency, and decision performance. Such models are essential for quantitative inquiry because they 
specify constructs, expected causal pathways, and measurable indicators that can be tested across 
industries, regions, and organizational sizes (Brem et al., 2021). 
The global significance of AI-driven digital transformation arises from the scale and complexity of 
contemporary organizational ecosystems. Multinational firms coordinate supply chains that span 
continents; public institutions manage population-level services through digital portals; healthcare 
systems rely on coordinated diagnostic and administrative flows; universities and research bodies 
collaborate across borders; humanitarian organizations operate across jurisdictions under crisis 
conditions. In each setting, the capacity to communicate clearly across hierarchical and geographic 
boundaries and to convert information into timely decisions becomes a fundamental performance 
driver (Rajagopal et al., 2022). Digital transformation expands the reach and speed of communication 
via cloud platforms, enterprise resource systems, collaborative tools, and mobile infrastructures. AI 
deepens this transformation by enabling automated translation, semantic search, anomaly detection, 
predictive forecasting, and conversational interfaces that allow stakeholders to access or disseminate 
knowledge with less friction. AI-supported communication systems can filter noise, highlight urgent 
issues, and tailor messages to user roles, thereby increasing interpretive alignment. In decision 
environments, AI can compress cycles of data gathering, option evaluation, and risk estimation, 
generating recommendations that managers can validate. Efficiency gains become visible through 
measurable outcomes such as reduced reporting time, improved response rates, fewer coordination 
errors, shorter process lead times, and higher consistency across comparable decisions. The 
international context emphasizes additional pressures: cultural variation affects message 
interpretation, regulatory environments require auditable decisions, and remote or hybrid work 
reduces opportunities for informal clarification (Pappas et al., 2023). AI-driven digital transformation 
models provide a structured way to represent these realities by linking technological capability with 
organizational performance through communication and decision pathways. These models matter 
because they help organizations allocate investment across data systems, analytics, and human skill 
development while maintaining accountability. Quantitative approaches allow researchers to examine 
whether AI capability predicts communication clarity, whether platform integration mediates decision 
speed, and whether governance quality moderates these effects. International relevance also emerges 
from unequal digital maturity across economies (Frick et al., 2021). Some environments feature 
advanced data infrastructures and high AI readiness; others struggle with fragmented systems, low 
data quality, or limited analytical talent. AI-driven transformation models help compare such contexts 
by identifying essential components that enable measurable improvements, such as data governance, 
interoperability, and user trust. By focusing on quantifiable relationships, researchers can generate 
evidence that is portable across sectors and nations without relying on single-case narratives (Frick et 
al., 2021). 
AI capabilities alter organizational communication by reshaping how information is generated, routed, 
interpreted, and archived. Traditional communication systems depend on human attention to draft 
messages, interpret meaning, and coordinate follow-up actions. AI introduces computational 
mediation that can detect relevance, summarize content, suggest responses, and personalize 
communications based on context (Wamba-Taguimdje  et al., 2020). In internal environments, AI-
driven tools can analyze large message streams, identify repeated questions, and recommend 
standardized answers, reducing ambiguity. Semantic search and intelligent document retrieval allow 
employees to locate accurate information faster, which increases shared understanding and reduces 
redundant communication. Natural language processing enables automated summarization of 
meetings, extraction of action items, and classification of messages by priority. These functions can be 
operationalized through measurable indicators such as response timeliness, message clarity ratings, 
reduction in repeated queries, or increased retrieval success. AI also supports communication across 
functions by standardizing data definitions and ensuring that different departments interpret key 
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metrics consistently. For example, when AI harmonizes customer or operational datasets, cross-
functional reporting becomes more coherent because stakeholders work from a shared informational 
base. In distributed organizations, AI can translate messages, detect tone mismatches, and flag potential 
misunderstandings, enabling smoother collaboration across languages and cultural norms (Gölzer & 
Fritzsche, 2017). Communication quality in AI-driven transformation models is not merely about 
speed; it includes interpretive accuracy, alignment of meaning, and reduction of misinformation. When 
systems automatically validate inputs against data rules, they prevent incorrect or conflicting messages 
from circulating. AI-based recommendation systems can route updates to the most relevant recipients, 
limiting overload and increasing attention to critical information. These features also influence informal 
communication. Chatbots in enterprise platforms can provide instant support, enabling employees to 
clarify procedural issues without waiting for human intermediaries. The quantitative study of these 
effects typically treats AI capability as an independent construct measured through adoption intensity, 
functional breadth, or maturity of AI applications. Communication outcomes can be measured through 
survey scales of perceived clarity, network analysis of interaction patterns, or operational metrics such 
as reduced escalation frequency (Gobble, 2018). AI-driven digital transformation models hypothesize 
that AI capability improves communication by lowering friction in knowledge exchange, increasing 
accuracy, and enabling more synchronized coordination. A rigorous quantitative introduction 
therefore needs to frame communication improvements as measurable mediators linking AI capability 
to decision outcomes, setting up testable pathways rather than abstract claims (Huang et al., 2021). 
Decision-making efficiency improves when organizations can move from raw data to validated action 
with minimal delay, error, and resource expenditure. AI-driven digital transformation contributes to 
this efficiency through several mechanisms that are observable and measurable. First, predictive 
analytics transforms historical and real-time data into forecasts that narrow decision uncertainty 
(Böhmer & Schinnenburg, 2023). This reduces time spent on manual scenario building and allows 
decision makers to focus on evaluating the most plausible alternatives. Second, automated anomaly 
detection highlights deviations in operations, finance, compliance, or customer behavior, enabling 
earlier intervention. Third, optimization algorithms provide ranked solutions under constraints, 
supporting resource allocation that satisfies multiple objectives simultaneously. Fourth, AI can 
standardize routine decision rules, ensuring consistent handling of high-volume cases such as credit 
approvals, inventory replenishment, scheduling, or service triage. These mechanisms reduce human 
cognitive load and compress deliberation cycles. In transformation models, these efficiency gains are 
typically expressed through outcomes such as shorter decision lead time, improved decision accuracy, 
reduced variance across equivalent decisions, increased throughput, or stronger alignment between 
decisions and performance indicators (Baptista et al., 2020). AI does not replace managerial judgment 
in complex settings; instead, it expands the informational base and provides structured 
recommendations that managers can interpret. This is particularly relevant for decisions occurring 
under information overload, where human actors struggle to process all signals. AI filters and 
prioritizes information, decreasing the likelihood that critical cues are missed. Digital transformation 
provides the infrastructural condition for these mechanisms: integrated databases, real-time 
dashboards, workflow automation, and cloud-based collaboration allow AI outputs to flow directly 
into decision routines. Quantitative studies examine these relationships by measuring AI application 
maturity, data integration level, and decision efficiency metrics. In many models, communication 
quality serves as a precursor to decision efficiency because decisions depend on accurate, timely, and 
shared understanding of information. When AI enhances communication, it indirectly enhances 
decision-making efficiency by improving the quality of inputs entering decision cycles (Cantú-Ortiz et 
al., 2020). A quantitative introduction should therefore position decision efficiency as a dependent 
construct influenced by both direct AI mechanisms and indirect communication improvements. This 
framing supports hypotheses about mediation, moderation, and cross-level effects, allowing empirical 
testing of how AI-driven transformation reshapes decision performance across teams and 
organizational units. 
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Figure 2: AI-Driven Digital Transformation Efficiency Framework 

 
AI-driven digital transformation models generally specify interconnected components that can be 
operationalized for quantitative analysis (Ng et al., 2023). The first component is technological 
capability, which includes AI tools, computing infrastructure, data storage, and integration platforms. 
This capability is often measured through adoption breadth, system interoperability, automation 
depth, and analytical sophistication. The second component is data governance, referring to policies 
and controls over data quality, access, security, and lifecycle management. Governance matters because 
AI performance relies on reliable, consistent, and ethically managed datasets. The third component is 
process redesign, involving the reengineering of workflows so that AI outputs are embedded into 
routine operations rather than appended as optional reports. This includes automation of handoffs, 
alignment of decision checkpoints with AI analytics, and digitalization of communication channels. 
The fourth component is human capability, encompassing employee digital literacy, analytical skills, 
and willingness to collaborate with AI systems (Rowe, 2018). Human capability is measurable through 
training intensity, skill assessments, and perceived ease of use. The fifth component is leadership and 
strategic alignment, capturing how top management frames transformation goals, allocates resources, 
and sets accountability structures. Strategic alignment ensures that AI adoption targets communication 
and decision bottlenecks that matter for performance. The sixth component is organizational culture, 
which shapes trust in AI, openness to experimentation, and norms of knowledge sharing. Culture is 
often treated as a moderator affecting the strength of relationships between AI capability and outcomes. 
In communication-focused models, digital platforms act as the connective tissue linking these 
components: they allow AI to ingest data from processes, generate insights, and communicate them to 
humans at the right moment. Quantitative research benefits from such models because each component 
can be turned into measurable constructs, enabling path analysis or structural equation modeling 
(Martínez-Peláez et al., 2023). Researchers can examine which components most strongly predict 
communication quality, and whether communication quality explains improvements in decision 
efficiency. These models also allow multi-level analysis, where AI capability at the organizational level 
affects team communication networks, which then influence individual decision behavior. A detailed 
introduction must clarify these model components and their presumed relationships so that the 
subsequent empirical sections have a coherent theoretical basis grounded in observable variables 
(Malar et al., 2019). 
The objective of this quantitative study is to examine how artificial intelligence–driven digital 
transformation models influence organizational communication and decision-making efficiency in 
measurable and explainable ways. Specifically, the study seeks to identify the extent to which AI 
capability within an organization predicts improvements in communication quality, including clarity, 
timeliness, relevance, and shared understanding among employees and teams. At the same time, the 
study aims to determine whether AI capability is associated with higher decision-making efficiency, 
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operationalized through indicators such as reduced decision cycle time, improved consistency of 
choices, faster problem detection, and lower coordination errors during implementation. A central 
objective is to test an integrated pathway in which organizational communication quality functions as 
a mediating mechanism between AI-driven digital transformation and decision-making efficiency, 
meaning that AI-enabled transformation may improve decisions partly because it enhances how 
information is exchanged, interpreted, and aligned across the organization. In addition, the study 
intends to assess the role of digital transformation maturity as a conditioning factor that strengthens or 
weakens the effects of AI on communication and decisions, recognizing that AI tools operate differently 
in highly integrated digital environments compared with fragmented ones. Another objective is to 
compare these relationships across different organizational contexts—such as sector type, size, and 
structural complexity—by analyzing whether the magnitude of AI’s impact varies according to 
organizational characteristics. The study also aims to produce a validated measurement framework by 
translating the constructs of AI capability, digital transformation maturity, communication quality, and 
decision-making efficiency into observable survey and operational indicators suitable for statistical 
modeling. Through regression-based and structural modeling approaches, the research objective is to 
quantify both direct effects (AI capability → decision efficiency) and indirect effects (AI capability → 
communication quality → decision efficiency), establishing how much variance in organizational 
outcomes can be attributed to AI-driven transformation inputs. Ultimately, the study aims to provide 
statistically grounded evidence on whether and how AI-centered transformation models serve as 
effective organizational designs for improving the speed and quality of internal communication and 
managerial decision processes in data-intensive work environments. 
LITERATURE REVIEW 
This literature review synthesizes empirical and theoretical work on artificial intelligence–driven 
digital transformation and its measurable effects on organizational communication and decision-
making efficiency. The purpose of this section is to establish a rigorous scholarly foundation for the 
quantitative model by clarifying what is already known, how key constructs have been operationalized, 
and where empirical results converge or diverge. Because the present study tests relationships among 
AI capability, digital transformation maturity, organizational communication quality, and decision-
making efficiency, the literature review is organized to mirror these constructs and the causal pathways 
linking them (Alahi et al., 2023). The section therefore begins by examining quantitative conceptions of 
AI capability and digital transformation models, emphasizing how researchers measure adoption 
intensity, functional breadth, system interoperability, and data governance readiness. It then reviews 
evidence on AI-enabled organizational communication, focusing on measurable outcomes such as 
communication timeliness, clarity, collaboration density, and knowledge-sharing effectiveness. Next, 
the review covers AI-based decision-making efficiency, highlighting quantitative indicators including 
decision cycle time, predictive accuracy, consistency of decisions, and error reduction. A dedicated part 
integrates the two streams by discussing studies that treat communication as a mediator or enabling 
mechanism for decision performance. The review also considers contextual moderators frequently 
tested in prior research—such as leadership alignment, organizational culture, employee analytics 
capability, trust in AI, and sectoral regulation—because these variables often explain why AI-driven 
transformation yields stronger effects in some organizations than others (Alahi et al., 2023). 
Throughout, the review prioritizes statistically grounded findings (e.g., regression, structural equation 
modeling, multilevel modeling, and panel data studies) so that the conceptual model and hypotheses 
of the present paper are anchored in measurable patterns rather than descriptive claims. By structuring 
the literature in this way, the section prepares a logically consistent basis for hypothesis development 
and quantitative testing in the subsequent methodology and results chapters (Walia et al., 2023). 
Artificial intelligence Capability in Organizations 
Artificial intelligence capability in organizations is defined in quantitative research as a structured, 
measurable ability to acquire, deploy, integrate, and leverage AI technologies so that they contribute 
to organizational goals through reliable learning, prediction, and automation (Rodgers et al., 2023). This 
capability is not synonymous with owning AI software or running isolated pilots; rather, it reflects an 
organization-level condition produced by the joint presence of technical AI assets, high-quality data 
environments, and the routines that embed AI outputs into day-to-day work.  
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Figure 3: Defining and Measuring AI Capability 

Conceptually, AI capability is treated as a higher-order construct because it represents multiple 
interrelated dimensions that cannot be captured by a single indicator. Quantitative studies commonly 
emphasize three separable but connected layers. The first layer is AI tools, meaning the observable 
technological artifacts such as machine-learning models, language-processing systems, intelligent 
automation modules, and analytics platforms. These tools can be inventoried and categorized, and they 
represent the material base of AI adoption (Ouyang et al., 2023). The second layer is AI routines, which 
refer to repeatable organizational behaviors governing how AI is used, monitored, validated, and 
improved over time. Routines include practices such as checking model outputs, escalating exceptions, 
retraining algorithms, and standardizing AI-based reporting. The third layer is AI-enabled processes, 
defined as redesigned end-to-end workflows in which AI is structurally embedded into sensing, 
analyzing, communicating, and executing tasks. This process layer matters because AI becomes a true 
capability only when it changes how workflows, not merely how tasks are assisted. Another key 
concept in the literature is that AI capability functions as a socio-technical condition, meaning its 
effectiveness depends on alignment between technology and organizational context. For this reason, 
definitions of AI capability incorporate data readiness and governance readiness as essential 
conceptual components (Fan et al., 2021). Data readiness reflects the availability, integration, accuracy, 
and timeliness of datasets that allow algorithms to learn reliably. Governance readiness refers to 
policies and controls that ensure AI use is transparent, secure, ethical, and accountable. When these 
conceptual elements are combined, AI capability becomes a measurable organizational attribute that 
captures both the scale of intelligent technology use and the depth of its embedding into routines and 
processes. Such a definition provides the theoretical clarity required for statistical modeling because it 
specifies what should be measured, how dimensions relate, and why capability is distinct from simple 
digitalization or automation. 
Quantitative literature operationalizes AI capability through validated multi-item dimensions that 
allow researchers to compare organizations consistently. A primary dimension is AI adoption intensity, 
reflecting how widely and frequently AI tools are used across functions, teams, and decision areas. 
Adoption intensity is measured through indicators such as the proportion of departments using AI 
applications, the frequency of AI-supported tasks, and the degree to which managers rely on AI outputs 
in operational or strategic activities (Hernández-Orallo, 2017). A second dimension is functional 
breadth, which captures the diversity of AI functions integrated into organizational workflows. 
Breadth indicators measure whether AI is used for multiple purposes—such as prediction, 
classification, recommendation, anomaly detection, automation, and language-based assistance—
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rather than a single narrow task. Broader functional footprints are interpreted as evidence that AI is 
not peripheral but woven into organizational activity. A third dimension is AI integration maturity, 
describing how effectively AI systems interoperate with enterprise platforms such as ERP, BI 
dashboards, CRM systems, and collaboration suites (Gani et al., 2016). Integration maturity is measured 
through data-flow continuity, compatibility between AI models and operational systems, and the 
extent to which AI outputs appear in routine reporting and workflow triggers. A fourth dimension is 
AI data dependence and data readiness, which refers to the richness of the data environment required 
for AI learning. Quantitative studies use indicators related to data volume availability, update speed, 
variety of data sources, standardization of data definitions, and perceived data trustworthiness. Some 
measurement frameworks also include lifecycle management depth, which is operationalized through 
items about model monitoring frequency, retraining regularity, performance auditing, and the 
presence of specialized AI governance teams. Human and organizational readiness is frequently added 
as a complementary dimension, measured through employee AI literacy, training coverage, perceived 
usefulness of AI, and trust in AI recommendations (Wang et al., 2015). These dimensions collectively 
form composite indices or latent constructs in statistical models. The advantage of this 
multidimensional measurement approach is that it captures actual capability rather than symbolic 
adoption. An organization may show high adoption counts but low integration maturity, resulting in 
weak capability effects; conversely, moderate adoption paired with deep integration and governance 
can produce stronger outcomes. By specifying intensity, breadth, integration, data readiness, and 
human readiness, quantitative studies provide a robust basis for modeling AI capability as an 
explanatory variable linked to communication and decision outcomes. These dimensional structures 
anchor the current study’s construct design by clarifying which measurable facets should be included, 
how they are typically scaled, and how they jointly represent AI capability in organizations (Choung 
et al., 2023). 
In empirical quantitative research, AI capability is treated as a central independent variable block that 
explains variation in organizational outcomes without relying on purely technological proxies. 
Researchers typically design measurement models that combine adoption intensity, functional breadth, 
integration maturity, and data readiness into one coherent explanatory construct (Li & Huang, 2020). 
Adoption intensity represents the depth of AI use and indicates whether AI outputs are repeatedly 
invoked in routine work. Functional breadth reflects the scope of organizational reliance on AI across 
different task families and decision classes. Integration maturity indicates whether AI is embedded 
within digital platforms and connected to enterprise data architectures, enabling outputs to move 
smoothly from analytics to execution. Data readiness and dependence indicate whether the information 
foundation feeding AI is sufficiently rich, timely, standardized, and reliable. When these measures are 
arranged into a unified independent block, quantitative models can estimate not only whether AI 
capability predicts performance, but also which facets drive results most strongly (Schepman & 
Rodway, 2020). Studies frequently show that treating AI capability as a multidimensional independent 
variable increases explanatory power compared with using single indicators such as AI investment or 
number of tools deployed. This is because capability effects depend on configuration: high adoption 
intensity yields weak outcomes if data readiness is poor; high functional breadth yields inconsistent 
outcomes if systems are not integrated; strong integration yields limited outcomes if employees do not 
trust or understand AI. Quantitative models therefore interpret AI capability as a compositional 
condition that emerges from socio-technical alignment. In regression or structural models, this 
independent block enables researchers to test direct impacts on operational efficiency, communication 
performance, and decision speed, while also allowing mediation testing through constructs such as 
communication quality (Savoia & Sen, 2015). The literature also uses AI capability to explain cross-
organizational heterogeneity in digital transformation results. Organizations facing similar 
environmental pressures may display different performance outcomes because of differences in AI 
integration maturity, lifecycle management, or governance depth. By framing AI capability as a 
structured independent block, empirical studies move beyond generic claims of “AI adoption” and 
instead test precise relationships between measurable capability configurations and observable 
outcomes (Pinto-Coelho, 2023). This approach directly supports the current paper’s quantitative 
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design, which requires an independent variable with clear dimensionality, statistical validity, and 
theoretical coherence for testing effects on communication quality and decision-making efficiency. 
The quantitative evidence base consistently associates stronger AI capability with improved 
organizational performance signals that are observable through operational metrics and validated 
scales. One dominant pattern is a positive relationship between AI capability and operational efficiency 
(Olan et al., 2022). Organizations with high AI adoption intensity and integration maturity tend to 
reduce process cycle time, lower error rates, increase throughput, and automate repetitive tasks that 
previously required manual judgment. Efficiency gains are not treated as automatic outcomes of tool 
ownership; instead, evidence indicates that efficiency improves when AI is embedded into workflows 
and paired with governance routines that sustain model reliability. A second evidence stream links AI 
capability to enhanced knowledge-processing capacity. Quantitative studies report that AI-capable 
organizations generate insights faster, detect patterns earlier, and translate complex data into shared 
interpretations across units. These improvements appear in measures such as analytical quality, 
decision accuracy, and employees’ perceived ability to access relevant knowledge when needed 
(Mikalef et al., 2023). AI capability supports these gains by filtering noise, prioritizing signals, and 
enabling predictive analytics that compress the time between data availability and managerial 
understanding. A third performance signal involves coordination reliability. When AI capability is 
mature, organizations develop shared informational baselines because datasets are harmonized and 
algorithms apply consistent evaluation logic across functions. Coordination reliability is reflected in 
fewer cross-department information conflicts, reduced escalation frequency, improved alignment 
between planning and execution, and more consistent decisions across similar cases. Quantitative 
evidence also shows that these performance signals are interdependent (Wamba-Taguimdje, Fosso 
Wamba, et al., 2020). Enhanced knowledge processing supports faster and more coherent coordination; 
better coordination enables efficiency improvements to scale across organizational boundaries. The 
literature further demonstrates that AI capability effects vary with contextual conditions such as data 
governance quality, employee trust in AI, and digital transformation maturity. Strong governance and 
high trust typically strengthen the measurable impact of capability on efficiency and coordination, 
while weak governance dampens results even when adoption levels appear high. Collectively, the 
quantitative evidence supports AI capability as a statistically meaningful predictor of organizational 
performance and as a plausible driver of the communication and decision-making outcomes tested in 
AI-driven digital transformation models (Wamba-Taguimdje, Wamba, et al., 2020). This empirical base 
justifies focusing on AI capability as a foundational construct in the present study’s model and 
hypothesis development. 
Digital Transformation Maturity as a Measurable Organizational Condition 
Digital transformation maturity is framed in quantitative research as a measurable organizational 
condition that captures how deeply digital technologies are integrated into strategy, operations, and 
people systems. Maturity models reject the idea that transformation is a simple yes–no status; instead, 
they describe transformation as a spectrum of capability development that can be quantified and 
compared across organizations. In staged models, maturity is represented through progressive levels 
such as initiation, integration, optimization, and strategic renewal (Gupta et al., 2022). Each level 
reflects a distinctive combination of digital infrastructure, process redesign, governance, and workforce 
readiness, allowing researchers to assign organizations to maturity categories. Continuous models treat 
maturity as an index derived from additive scores across domains of digital capability, recognizing that 
different aspects of transformation evolve at different speeds. Both modeling approaches are grounded 
in socio-technical reasoning that maturity equals the alignment of technology with process and human 
adaptation rather than technology deployment alone. A widely used quantitative logic is the 
technology–process–people triad (Malik et al., 2021). The technology dimension measures the presence 
and sophistication of platforms, cloud systems, analytics tools, and data pipelines. The process 
dimension measures how far workflows have been digitized, standardized, and reengineered to exploit 
digital capabilities.  
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Figure 4: Digital Transformation Maturity Progression 

 
 
The people dimension measures digital skill levels, collaborative norms, leadership engagement, and 
cultural openness to data-driven work. These dimensions are typically specified as observable 
indicators that load onto a latent maturity construct, enabling regression, path analysis, or structural 
equation modeling. The literature uses maturity because it helps explain why comparable digital 
spending yields different outcomes: higher maturity reflects not just investment, but routinized use, 
interoperability, and governance stability (Audretsch & Belitski, 2021). Thus, DT maturity is 
conceptually treated as an organizational environment that shapes how effectively digital tools—
including AI—can enhance communication, coordination, and decision performance. 
Quantitative studies operationalize DT maturity through consistent indicator sets that represent 
transformation depth in observable terms. The first indicator is the degree of process digitalization, 
measured by the proportion of core workflows executed via digital systems rather than manual 
procedures (Shamim et al., 2020). This includes automation of approvals, digitized reporting routes, 
digital customer or citizen interfaces, and standardized workflow engines. A second indicator is 
platform integration level, capturing how seamlessly enterprise systems interoperate through shared 
data standards and synchronized processes. High integration is measured through cross-department 
data flow continuity, real-time linkage between operational systems and analytics dashboards, and 
reduced reliance on manual handoffs. Real-time analytics availability is another major marker, assessed 
through the presence of live dashboards, streaming data architectures, predictive analytics usage, and 
the frequency with which managers consume real-time insights in routine cycles. Cloud collaboration 
penetration measures the breadth and intensity of cloud-based interaction, typically reflected in user 
coverage, the share of coordination conducted through cloud suites, and the extent of remote or cross-
location project work supported by digital platforms (Shamim et al., 2020). Cyber and data governance 
readiness rounds out the indicator set by measuring the existence and enforcement of policies for data 
stewardship, access control, privacy assurance, compliance alignment, and auditability. These 
indicators are frequently combined into composite scores or latent variables representing DT maturity, 
and they are used as moderator or conditioning blocks in quantitative models. The logic is that maturity 
is not a single feature but a configuration: process digitalization without integration yields fragmented 
performance, analytics without governance reduces trust, and cloud collaboration without skilled users 
limits adoption. By measuring these indicators together, researchers can compare maturity across 
industries and test its role in strengthening or weakening the impact of AI on organizational outcomes 
(Zamani et al., 2023). 
Empirical quantitative findings consistently show that DT maturity strengthens the measurable effects 
of AI capability on organizational performance, especially through interaction patterns observed in 
multivariate and structural models. Organizations with high DT maturity typically exhibit larger gains 
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from AI adoption in areas such as communication quality, coordination reliability, operational 
efficiency, and decision speed (Gope et al., 2018). Statistical results indicate that when platforms are 
integrated and processes digitized, AI outputs can flow directly into work routines, allowing predictive 
insights or automated classifications to be acted on quickly and consistently. In contrast, low-maturity 
environments often display dampened AI effects because data are fragmented, workflows are not 
digitally routinized, and AI recommendations remain peripheral to actual decision checkpoints. 
Interaction effects reported in prior studies show that AI adoption intensity predicts stronger 
performance improvements only when maturity indicators—such as real-time analytics presence or 
platform interoperability—are high. Similar patterns appear for AI functional breadth, where diverse 
AI applications create measurable benefit primarily in mature digital settings that can coordinate 
multiple tools through shared governance and infrastructure (Ramanathan et al., 2017). Governance 
readiness is especially prominent in quantitative evidence: organizations with strong cyber/data 
governance show higher trust in AI outputs and lower model drift, which amplifies performance 
effects. People readiness within DT maturity further conditions AI impacts through higher user 
acceptance, smoother human–AI collaboration, and reduced resistance to algorithmic decision support. 
The evidence therefore positions DT maturity as a contextual amplifier rather than an independent 
substitute for AI capability. Mature transformation environments do not automatically produce 
superior outcomes, but they provide the stable digital foundation that allows AI to reshape 
communication and decision routines at scale. These statistical regularities justify treating DT maturity 
as a conditioning construct in quantitative models that examine AI-driven transformation effects. 
AI-Enabled Organizational Communication: Quantitative Perspectives 
Organizational communication quality is treated in quantitative research as a measurable construct 
that captures how effectively information is created, transmitted, interpreted, and coordinated among 
organizational members (Faruk & Islam, 2023). Rather than framing communication as a purely 
symbolic or cultural phenomenon, empirical studies operationalize it through observable dimensions 
that can be modeled statistically (Abdulla & Ibne, 2021). The most common dimensions include clarity, 
timeliness, accuracy, relevance, and shared meaning. Clarity refers to the extent to which messages are 
easily understood and reduce ambiguity in tasks or expectations. Timeliness reflects whether 
information reaches actors at a moment that enables action, often linked to cycle time and 
responsiveness in coordination (Ara, 2021). Accuracy indicates the correctness and reliability of 
communicated content, including whether data-driven updates align with operational realities. 
Relevance captures the degree to which information is targeted to appropriate roles and minimizes 
noise, overload, or redundancy (Habibullah & Foysal, 2021). Shared meaning denotes interpretive 
alignment, meaning that recipients understand information in a way that matches sender intent and 
organizational objectives. These dimensions are typically measured through survey scales assessing 
employee perceptions of internal communication effectiveness, combined with behavioral metrics such 
as frequency of cross-unit interaction or the stability of coordination outcomes (Arora & Sharma, 2023;  
Sarwar, 2021). Communication quality is especially emphasized in digital and hybrid organizations 
because interaction increasingly occurs through platform-mediated channels rather than face-to-face 
exchanges (Musfiqur & Saba, 2021). Digitalization expands speed and reach but also introduces risks 
of overload, fragmented message trails, and interpretive drift, making measurable quality safeguards 
more important (Redwanul et al., 2021; Reza et al., 2021). Quantitative studies show that 
communication quality mediates many technology–performance relationships because even advanced 
analytics or automation cannot translate into decisions unless information is perceived as clear, 
credible, and actionable by human users (Hasija & Esper, 2022; Saikat, 2021; Shaikh & Aditya, 2021). In 
this view, communication quality becomes a bridge construct linking technological capability with 
organizational decision performance. The mediator framing is grounded in evidence that 
improvements in clarity and timeliness reduce coordination friction, while improvements in relevance 
and shared meaning reduce rework and escalation. Consequently, communication quality appears in 
structural models as a proximal organizational outcome influenced by digital and AI capabilities and 
as an antecedent to decision efficiency and operational performance (Cadden et al., 2022; Al Amin, 
2022; Ariful, 2022). 
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Figure 5: Organizational Communication Quality Model 

 
 
AI-enabled communication research focuses on how specific AI applications alter the internal dynamics 
of knowledge exchange and coordination in quantifiable ways (Ariful & Ara, 2022; Nahid, 2022). 
Natural language processing tools for summarization and content extraction are widely studied 
because they turn unstructured communication artifacts—emails, meeting transcripts, reports, and chat 
logs—into structured insights (Hossain & Milon, 2022; Mominul et al., 2022). These tools reduce the 
time employees spend scanning large message volumes while increasing the consistency of what is 
understood as key information. Semantic search and knowledge retrieval systems reshape 
communication by allowing employees to locate accurate documents, policies, or prior decisions with 
fewer intermediary queries, thereby shifting communication from repeated clarification to direct self-
service (Böhmer & Schinnenburg, 2023; Mortuza & Rauf, 2022; Rakibul & Samia, 2022). Intelligent 
routing and prioritization applications apply AI to classify messages by urgency or topic and route 
them toward the most relevant individuals or teams. This reduces latency in problem resolution and 
limits overload by filtering low-priority content from high-attention channels. AI chatbots for internal 
service and knowledge support function as always-available communicative agents that answer 
routine questions, guide employees through procedures, and escalate complex cases to human 
operators (Saikat, 2022; Kanti & Shaikat, 2022). Quantitative studies emphasize that these tools not only 
speed up communication but also standardize it, producing more predictable and auditable message 
flows (Arfan et al., 2023; Ara & Beatrice Onyinyechi, 2023; Zhou et al., 2023). The effect of such AI 
applications depends on embedding within digital collaboration platforms so that AI outputs appear 
naturally within daily work rather than as detached analytics reports. Research also notes that AI 
reshapes informal communication because employees increasingly consult AI systems before 
contacting colleagues, which changes the volume and structure of human-to-human messaging. In 
hybrid and distributed organizations, AI tools enable cross-location communication by summarizing 
discussions for absent members, translating content where needed, and maintaining shared 
repositories of decisions and rationales (Lee et al., 2020; Mushfequr & Ashraful, 2023; Shahrin & Samia, 
2023). The literature therefore treats AI applications as socio-technical interventions that reduce 
communication friction and increase interpretive alignment by combining automated language 
processing with redesigned information pathways (Hasan & Rakibul, 2024). 
Empirical studies measure AI-enhanced communication through a combination of perceptual and 
operational indicators that allow statistical modeling of outcomes. A common operational indicator is 
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reduced response time, measured as the average duration between question and answer within digital 
channels, service desks, or workflow platforms (Farhi et al., 2022; Habibullah, 2025; Hozyfa, 2025). AI-
based routing, chatbots, and summarization systems are linked to measurable drops in response time 
because they automate retrieval and triage tasks that otherwise require human availability. Lower 
repetition rates in queries represent another indicator, capturing how often employees ask the same 
procedural or informational questions multiple times across a period (Alam, 2025; Arman, 2025). When 
semantic search and internal AI assistants are effective, repetition frequency declines because users can 
retrieve validated information without repeated clarification (Asfaquar, 2025; Foysal, 2025). Higher 
perceived clarity scores are typically gathered through survey items assessing whether employees view 
internal communications as unambiguous, well-structured, and sufficiently detailed for action. These 
scores provide a perception-based complement to objective timing metrics. Denser cross-functional 
collaboration networks are measured through digital trace data or network analysis of platform 
interactions, including frequency of cross-unit messaging, reciprocity of communication ties, and 
diversity of communication partners (Malik et al., 2021; Mohaiminul, 2025; Mominul, 2025). AI tools 
that facilitate knowledge discovery and content summarization tend to increase cross-unit exchange 
because they lower the effort required to locate or interpret information from other departments. 
Improved alignment on key metrics is assessed through indicators showing whether different units 
report consistent interpretations of performance dashboards, operational targets, or decision criteria 
(Hasan, 2025; Milon, 2025). AI-enabled harmonization of data definitions and automated explanation 
features contributes to this alignment by reducing interpretive fragmentation. Quantitative literature 
highlights that these indicators often move together: faster response and lower repetition correspond 
to improved relevance and clarity, while denser collaboration patterns correspond to greater shared 
meaning. As a result, communication quality is frequently modeled as a latent construct reflected by 
these measurable indicators (Hunkenschroer & Luetge, 2022; Farabe, 2025; Rakibul, 2025). The 
emphasis on multi-indicator measurement strengthens construct validity and helps distinguish AI-
driven communication enhancement from superficial increases in message volume or platform activity. 
Decision-Making Efficiency Under AI-Driven Transformation 
Decision-making efficiency is treated in quantitative scholarship as a dependent organizational 
outcome that reflects how effectively institutions convert information into timely, accurate, and 
coherent actions while minimizing unnecessary resource consumption (Pelly et al., 2023). Rather than 
describing efficiency in purely managerial terms, empirical studies operationalize it through 
observable dimensions that can be statistically modeled across contexts. Speed refers to how quickly 
decisions are reached after relevant information becomes available, often interpreted as a reduction in 
decision latency within operational or strategic cycles (Saba, 2025; Alom et al., 2025). Accuracy captures 
the extent to which decisions correspond to objective benchmarks, performance targets, or correct 
classifications of situations, typically measured through prediction error rates or outcome deviations 
from planned goals. Consistency represents the stability of decision logic across similar cases or time 
periods, indicating whether equivalent inputs yield equivalent choices, which is crucial for fairness, 
quality control, and reliability (Donadello & Dragoni, 2022; Praveen, 2025; Shaikat, 2025). Resource 
economy refers to the efficiency with which organizations use time, labor, and cognitive effort in 
decision routines, meaning fewer iterative loops, reduced escalations, and lower rework costs. 
Quantitative literature also distinguishes between structured and unstructured decision environments. 
Structured decisions involve repetitive tasks governed by standard rules—such as inventory 
replenishment, credit approval, or maintenance scheduling—where efficiency is measurable through 
throughput, accuracy rates, and cycle times. Unstructured decisions involve ambiguous, novel, or high-
stakes contexts—such as strategic investment, crisis response, or policy redesign—where efficiency is 
measured through the speed and coherence of deliberation, the quality of scenario evaluation, and the 
alignment between decisions and dynamic environmental signals. This distinction matters because AI-
driven transformation affects these decision types differently, and quantitative models often test 
separate pathways or effect magnitudes for structured versus unstructured domains (Donadello & 
Dragoni, 2022; Kanti, 2025). Across studies, decision-making efficiency is positioned as an outcome 
shaped by informational quality, analytical capability, and workflow integration, allowing it to serve 
as a focal dependent construct in models assessing the organizational impact of AI-driven digital 
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transformation. 
 

Figure 6: AI-Driven Decision-Making Efficiency Model 

 
The quantitative literature identifies several AI mechanisms that explain why AI-driven transformation 
is associated with more efficient decision routines. Predictive analytics is one foundational mechanism, 
enabling organizations to infer likely future states from historical and real-time data, thereby 
narrowing uncertainty and accelerating option evaluation (Sheth et al., 2022). By producing 
probabilistic forecasts and risk estimates, predictive models reduce the time required for manual 
scenario building and help decision makers focus on the most plausible alternatives. Automated 
anomaly detection is another mechanism that improves decision efficiency by continuously monitoring 
data streams for deviations, outliers, or early warning signals. This shifts decision processes from 
reactive to earlier intervention cycles, which empirical research links to shorter resolution times and 
fewer escalated incidents. Optimization and recommendation systems provide structured decision 
support by ranking alternatives under constraints, such as cost, capacity, service level, or regulatory 
compliance. Quantitative studies show that such systems compress deliberation cycles by presenting 
prioritized solutions that humans can validate rather than constructing options from scratch. Routine 
decision rule automation represents a fourth mechanism, particularly effective in high-volume 
structured environments (Schmitt, 2023). Here AI applies consistent decision logic to repetitive cases, 
reducing processing time and variation while freeing human attention for more complex tasks. In socio-
technical models, these mechanisms are not treated as isolated “tool effects”; they operate most strongly 
when integrated into digital workflows that connect sensing, analysis, communication, and execution. 
Empirical work also emphasizes that AI enhances decisions by filtering noise, prioritizing relevant 
cues, and providing transparent rationales or confidence levels, which reduces ambiguity and 
coordination friction during decision implementation. Together, these mechanisms offer a coherent 
explanation of how AI reshapes decision routines into faster, more accurate, and more consistent 
processes that can be measured quantitatively across organizational settings (Rajagopal et al., 2022). 
Quantitative research translates decision-making efficiency into observable indicators that allow 
comparison across time, units, and industries. Decision cycle time is widely used as a primary metric, 
measured as the elapsed time between recognizing a decision need and executing a validated choice. 
Studies track cycle time in settings such as supply chain planning, service recovery, compliance 
response, and strategic review processes (Wamba-Taguimdje, Fosso Wamba, et al., 2020). Forecast 
accuracy improvement is another core indicator, typically captured through reductions in prediction 
error, higher classification precision, or closer alignment between projected and realized outcomes after 
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AI adoption. Error and exception reduction measures efficiency by observing declines in incorrect 
approvals, defective outputs, compliance breaches, or misallocated resources, which signal that 
decisions are both faster and better grounded. Consistency across similar cases is measured through 
variance reduction in decision outcomes when input conditions are equivalent, revealing whether AI-
supported routines stabilize organizational logic over time. Escalation frequency decrease is a further 
indicator that captures how often decisions are pushed upward for clarification or override; lower 
escalation rates reflect clearer inputs, more reliable recommendations, and smoother implementation. 
Some studies combine these measures into latent efficiency constructs, while others test them 
separately to identify which dimensions AI affects most strongly (Charles et al., 2022). Quantitative 
literature also uses proxy indicators such as reduced meeting time per decision, fewer iterative 
approvals, increased throughput of decisions per period, and improved service-level adherence 
following decision execution. Importantly, the measurement approach recognizes that speed without 
accuracy is not efficiency; therefore, multi-indicator designs are used to show whether faster decisions 
are accompanied by equal or improved quality. These established measures provide a robust 
dependent-variable toolkit for evaluating how AI-driven transformation reshapes decision outcomes 
in both structured and unstructured environments (Gudigantala et al., 2023). 
Empirical quantitative evidence generally supports a positive association between AI capability and 
decision-making efficiency, with results demonstrated through regression, structural equation 
modeling, multilevel analysis, and panel-based designs (Elgendy et al., 2022). Studies focusing on 
process-level outcomes often report stronger and more immediate efficiency gains, especially where AI 
is embedded into high-frequency routines such as demand forecasting, fraud detection, triage 
operations, or automated approvals. In these contexts, AI adoption intensity and integration maturity 
are statistically linked to shorter decision cycle times, higher prediction accuracy, and lower exception 
rates. Firm-level studies also show significant effects, though these are often mediated by intermediate 
capabilities such as analytics culture, data governance, or communication quality, and may display 
smaller effect sizes because outcomes aggregate across diverse decision domains. Boundary conditions 
are repeatedly highlighted in the literature (Lysaght et al., 2019). Decision efficiency gains are larger in 
environments where tasks are data-rich, moderately stable, and governed by clear performance criteria, 
because AI models can learn reliably and recommendations fit existing workflows. Gains are weaker 
where decision environments are highly complex, ambiguous, or regulated without sufficient digital 
integration, because AI recommendations may be harder to validate or to embed in formal decision 
checkpoints. Uncertainty also moderates outcomes: AI tends to improve efficiency most when 
uncertainty is reducible through data-driven inference, while purely novel or politically contested 
decisions rely more heavily on human judgment. Regulation introduces another conditioning factor; in 
regulated sectors, measurable gains depend on auditability, explainability, and governance readiness 
that sustain trust in AI-supported decisions (Bertl et al., 2023). Across this evidence base, AI-driven 
transformation emerges as a statistically meaningful predictor of decision efficiency, with 
configurational dependence on digital maturity, governance quality, and task structure. These findings 
justify the modeling of decision-making efficiency as a core dependent construct in AI-driven digital 
transformation research and provide empirical grounding for testing both direct and mediated 
pathways. 
Integrated Empirical Pathways: Communication as a Mediator 
Quantitative literature treats mediation as a structured way to explain how and why an independent 
construct produces an outcome through an intervening mechanism. In studies of AI-driven digital 
transformation, mediation logic is used because AI capability is rarely assumed to influence decision 
outcomes in a single step; rather, it changes the informational and coordination environment that 
decision makers operate within (Lal et al., 2023). The conceptual justification for mediation rests on 
socio-technical theory and information-processing views of organizations, which argue that 
technologies reshape performance by altering how information is generated, shared, interpreted, and 
acted on. Communication quality therefore becomes a plausible mediator because decisions depend on 
reliable knowledge exchange, aligned interpretations, and coordinated action across roles and units. 
Quantitative scholars formalize this reasoning by specifying AI capability as a distal driver that 
improves communication clarity, timeliness, relevance, and shared meaning, which then reduces 
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decision latency and inconsistency (Rasoolimanesh et al., 2021).  
 

Figure 7: Mediation in AI-Driven DT 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Mediation testing in this stream commonly relies on regression-based indirect effect estimation, path 
modeling, and structural equation approaches that allow latent measurement of communication 
quality and decision efficiency while accounting for measurement error. Process-level studies often use 
time-stamped operational data to estimate whether communication improvements statistically explain 
reductions in decision cycle time. Firm-level studies more often use surveys combined with 
performance indicators to estimate mediated pathways. Across these approaches, mediation logic 
enables researchers to move beyond “AI improves performance” by identifying measurable channels 
through which improvements occur. The literature also emphasizes that mediation is appropriate when 
the mediator is theoretically proximal to the outcome and empirically sensitive to the independent 
variable (Lewis et al., 2020). Communication fits these criteria because AI tools directly affect message 
routing, knowledge retrieval, summarization, and prioritization, which are upstream inputs to decision 
routines. Thus, mediation testing appears as a dominant quantitative strategy for unpacking the 
internal mechanics of AI-driven transformation effects. 
Empirical evidence supporting AI-to-communication-to-decision chains is substantial in quantitative 
research, particularly in settings where communication is heavily digital and decisions are time-
sensitive (Namazi & Namazi, 2016). Multiple studies show that AI capability predicts higher 
communication quality, and that communication quality, in turn, predicts decision-making efficiency, 
producing statistically significant indirect effects. These findings appear across domains such as service 
operations, supply chain coordination, knowledge work, and compliance management. Indirect effects 
are often interpreted through mechanisms that connect AI outputs to better informational inputs for 
decision makers. AI-enabled summarization and semantic retrieval reduce ambiguity by ensuring that 
employees access consistent and validated knowledge at the moment of need. Intelligent routing and 
prioritization reduce coordination delays by directing urgent items to the correct actors without 
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repeated forwarding or clarification loops. When these communication gains are present, decision 
cycles shorten because teams spend less time reconciling conflicting information or waiting for 
responses. Quantitative studies also document improvements in decision accuracy and consistency as 
communication becomes more aligned and less noisy (Tang, 2021). Partial mediation patterns are 
common: AI capability improves decision efficiency directly through predictive analytics and 
automation, while also improving it indirectly through communication quality. Full mediation patterns 
occur more often in communication-intensive contexts where the primary bottleneck is interpretive 
alignment rather than analytical computation. For example, in distributed project teams, AI tools that 
improve message clarity and shared meaning may explain most of the variation in decision speed 
because the limiting factor is coordination rather than modeling sophistication. These mediated chains 
are also supported by evidence showing that communication quality explains additional variance in 
decision outcomes even when direct AI effects are strong (Jamal et al., 2015). Collectively, this stream 
validates communication as a measurable pathway that connects AI-driven transformation to decision 
efficiency through reduced ambiguity, faster information circulation, and more synchronized 
coordination. 
Moderators Frequently Tested in Prior Quantitative Research 
Quantitative research consistently treats leadership alignment as a key moderator that shapes whether 
AI-driven digital transformation improves organizational communication and decision-making 
efficiency (Hayes, 2015). Leadership alignment refers to the degree to which top and middle 
management actively support AI adoption, coordinate digital priorities across units, and legitimize 
data-driven work as a strategic norm. Empirical studies operationalize this construct through digital 
leadership intensity measures, which capture visible managerial sponsorship, clarity of AI-related 
vision, resource commitment, and the presence of governance structures that keep AI initiatives 
connected to business objectives. In statistical models, leadership alignment moderates AI effects 
because leaders influence how quickly AI tools diffuse beyond pilot teams, how strongly employees 
rely on AI outputs, and how far processes are redesigned to integrate algorithmic recommendations. 
Quantitative findings show that AI capability has stronger associations with communication clarity 
and faster decision cycles when leadership intensity is high, largely because leaders reduce 
coordination ambiguity by setting consistent digital rules and incentives (Hayes, 2015). In contrast, 
weak leadership alignment leaves AI tools underutilized, fragmented, or treated as optional add-ons, 
which reduces measurable impact. Leadership also moderates by shaping feedback loops: aligned 
leaders demand performance evidence from AI systems, encourage model recalibration, and 
institutionalize learning routines, which stabilizes effects over time. Survey-based studies further show 
that leadership endorsement raises employee trust and perceived usefulness, strengthening the 
statistical pathway between AI capability and communication quality. Multilevel studies add nuance 
by observing that alignment at senior levels affects enterprise integration, while alignment at line-
management levels affects daily usage patterns and local decision reliance (Bley et al., 2022). Overall, 
the literature positions leadership alignment not as a background variable but as a measurable 
amplifier of AI outcomes, explaining substantial cross-organizational variance even among firms with 
comparable AI tools or budgets. 
Organizational culture and trust in AI appear in quantitative scholarship as deeply influential 
moderators that determine whether AI capability translates into tangible communication and decision 
benefits. Culture is typically measured through indices of openness to innovation, evidence-based 
norms, collaboration expectations, and psychological safety for experimentation (Behl et al., 2022). 
Trust in AI is operationalized through validated scales assessing perceived reliability, transparency, 
fairness, and controllability of AI recommendations. Statistical results show that AI capability exhibits 
stronger effects on communication quality and decision efficiency in cultures that value data-driven 
dialogue and cross-functional sharing (Bedué & Fritzsche, 2022). In such cultures, employees treat AI 
outputs as legitimate inputs to meaning-making, which improves clarity, reduces rumor-driven 
ambiguity, and aligns interpretations across teams. Trust strengthens these effects by encouraging 
users to integrate AI insights into their communication rather than ignoring or second-guessing them. 
Quantitative models also show that low-trust contexts weaken AI performance pathways because 
employees either resist algorithmic suggestions or rely on informal channels to validate decisions, 
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increasing latency and lowering consistency. Culture moderates trust as well: collaborative and 
learning-oriented cultures generate higher trust in algorithmic systems through shared exposure and 
collective troubleshooting, while hierarchical or risk-averse cultures often exhibit skepticism that 
reduces usage depth. Empirical studies show that trustworthy AI design—clear rationale displays, 
confidence indicators, and auditable records—interacts with cultural openness to produce measurable 
outcomes such as faster coordination and fewer escalations (Rajagopal et al., 2022). Culture and trust 
therefore function together as socio-behavioral conditions that explain why similar AI deployments 
yield different results. This stream of evidence supports treating culture and trust as statistically 
testable moderators that shape the strength of AI-to-communication and AI-to-decision relationships 
(Yang & Wibowo, 2022). 
 

Figure 8: Moderators of AI- Driven Transformation 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Employee analytics capability is widely tested in quantitative research as a moderator because AI-
driven transformation depends on human ability to interpret outputs, communicate insights, and make 
disciplined choices from algorithmic support. This construct is operationalized through training 
intensity indicators, digital literacy scales, and measures of analytical self-efficacy (Yang & Wibowo, 
2022). Training intensity captures the proportion of employees receiving AI or analytics instruction, 
frequency of upskilling programs, and exposure to hands-on use cases. Digital literacy indicators assess 
employees’ comfort with digital platforms, ability to navigate dashboards, and familiarity with data 
quality concepts. Statistical findings show that AI capability predicts higher communication clarity and 
decision consistency more strongly when analytics capability is high. The mechanism is 
straightforward in empirical terms: analytically capable employees can translate AI results into shared 
language, identify boundary conditions, and avoid miscommunication caused by overreliance or 
misunderstanding of model outputs (Lukyanenko et al., 2022). In low-capability settings, employees 
often treat AI as a black box, which leads to cautious usage, extra clarification cycles, or inconsistent 
interpretation across units. Quantitative studies also show that analytics capability moderates decision 
speed by reducing time spent validating outputs or requesting technical mediation from specialists. 
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Teams with higher capability integrate AI recommendations directly into routine decisions, which 
lowers cycle time and exception rates. Additionally, analytics capability interacts with trust: employees 
who understand AI models typically display higher calibrated trust, resulting in statistically stronger 
indirect effects through communication quality (Zel & Kongar, 2020). This body of research positions 
employee analytics capability as a measurable human capital condition that explains variation in AI 
transformation outcomes, especially in knowledge-intensive and cross-functional decision 
environments. 
Quantitative studies routinely include sectoral and structural variables as contextual controls because 
AI-driven communication and decision outcomes differ across regulatory environments, 
organizational scale, and structural design. Industry regulation level is a common control, measured 
through sector classifications or compliance intensity indices (Birkstedt et al., 2023). Empirical findings 
show that regulation affects AI impact by shaping the need for explainability, audit trails, and data 
governance, which in turn influences communication transparency and decision reliability. 
Organizational size and complexity are also frequently controlled because large, multi-unit 
organizations face higher coordination costs and more fragmented data landscapes; AI effects on 
communication density and decision speed often scale differently in such contexts than in smaller 
firms. Structural design controls include centralization versus decentralization, measured through 
decision-rights concentration, hierarchical layers, or autonomy indices. Quantitative evidence suggests 
that centralized structures can produce strong AI effects on consistency because standardized decision 
rules spread quickly, whereas decentralized structures can show stronger AI effects on local speed and 
adaptability if data access and platform integration are sufficient (Gorondutse & Hilman, 2019). Many 
studies also control for task complexity and environmental uncertainty, since highly complex settings 
can dilute direct AI effects and increase reliance on communication-mediated pathways. Sectoral 
comparisons further show that service and knowledge sectors often exhibit larger measurable gains in 
clarity and responsiveness due to high volumes of unstructured messaging, while manufacturing and 
logistics sectors show gains more through standardized reporting and automated coordination signals. 
By including these controls, quantitative models avoid attributing contextual variance to AI capability 
alone and produce more precise estimates of moderated pathways (Bhardwaj & Kalia, 2021). This 
evidence base supports the practice of modeling AI-driven transformation within a layered context, 
where regulation, scale, and structure condition both communication quality and decision-making 
efficiency outcomes. 
Identified Quantitative Gaps Leading to Current Study 
Quantitative literature on AI-driven digital transformation demonstrates strong growth, yet it remains 
fragmented in how core constructs are defined and measured. A recurring gap is the lack of unified 
scales across studies, which limits comparability and cumulative knowledge building. Researchers 
often operationalize “AI capability” or “AI adoption” using different indicator sets, mixing objective 
measures such as investment levels or number of AI tools with subjective assessments of perceived 
usefulness or readiness, sometimes within the same model (Lingmont & Alexiou, 2020). This variation 
produces measurement non-equivalence across samples and sectors, making it difficult to interpret 
whether differences in findings reflect real organizational phenomena or inconsistent construct design. 
Another measurement limitation is the overreliance on single-dimension AI measures. Many studies 
still treat AI as one proxy variable—such as AI spending, presence of a chatbot, or count of deployed 
models—without capturing the multidimensional reality of capability that includes integration 
maturity, data readiness, governance arrangements, and human–AI routines. Because AI-driven 
transformation is socio-technical, single proxies tend to underrepresent how AI becomes embedded in 
communication and decision systems (Enholm et al., 2022). 
The literature also reveals inconsistency in measuring communication quality and decision-making 
efficiency. Some studies rely on short perceptual scales, while others use narrow operational metrics, 
leading to partial representations of complex constructs. Communication quality is sometimes reduced 
to message frequency or platform usage, which does not necessarily reflect clarity or shared meaning. 
Decision efficiency is sometimes captured purely as speed, which ignores accuracy, consistency, and 
escalation burden. These measurement gaps motivate more rigorous construct consolidation, including 
multidimensional, validated scales that better align with theory and enable stronger statistical 
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inference. Without scale convergence and dimensional completeness, the field risks producing isolated 
results that do not cohere into a stable evidence base (Enholm et al., 2022). The present study is therefore 
positioned within a literature that recognizes measurement innovation as a prerequisite for reliable 
quantitative synthesis of AI-driven transformation outcomes. 
 

Figure 9: AI-Driven DT: Research Framework 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Beyond measurement issues, quantitative studies show notable modeling gaps that constrain 
explanatory depth. One prominent gap is the limited mediation testing that combines communication 
and decision outcomes within a single integrated framework. Many studies examine AI’s impact on 
decision performance directly, while others assess AI’s impact on communication quality, but fewer 
test whether communication statistically transmits AI effects into decision efficiency (Adeinat & 
Abdulfatah, 2019). This separation restricts understanding of organizational mechanisms, especially in 
environments where decision bottlenecks arise from coordination friction rather than analytical 
deficiency. When mediation is tested, it is often partial or simplified: models sometimes use one 
communication indicator as a mediator or treat communication merely as a control variable rather than 
a core explanatory pathway. Another modeling gap is the scarcity of integrated AI–DT maturity 
interaction models. Even though literature repeatedly argues that AI impact depends on digital 
transformation maturity, few quantitative designs include maturity as a formal conditioning construct 
that interacts with AI capability while also influencing communication mediation strength (Saha & 
Kumar, 2018). As a result, the field has an incomplete statistical map of how AI, platform integration, 
process digitalization, and human readiness jointly shape communication and decision outcomes. 
Modeling also tends to be either process-level or firm-level, with limited cross-level synthesis. Process-
level work identifies strong efficiency effects in narrow workflows, while firm-level studies yield mixed 
results because they aggregate across heterogeneous processes. Multilevel or structural models that 
reconcile these views are still relatively rare. These modeling limitations indicate a need for more 
comprehensive path frameworks that test simultaneous direct, indirect, and conditional effects 
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(Qatawneh, 2023). The current study responds by adopting an integrated quantitative model that treats 
communication quality as a mediator and DT maturity as a moderator, aligning statistical testing with 
the socio-technical logic established in prior theory. 
The cumulative quantitative literature consistently positions AI capability as a proximal driver of both 
organizational communication quality and decision-making efficiency. Across studies that measure AI 
capability as a multidimensional construct—capturing adoption intensity, functional breadth, 
integration maturity, data readiness, and embedded routines—statistical results show that 
organizations with stronger AI capability tend to communicate more clearly, quickly, and coherently 
(Chang et al., 2017). AI influences communication directly through language-based automation, 
intelligent retrieval, routing, and summarization, which reduces ambiguity and improves shared 
meaning across teams. At the same time, AI capability is repeatedly associated with decision efficiency 
through mechanisms such as predictive analytics, anomaly detection, optimization, and routine rule 
automation. Evidence demonstrates that AI-supported decision processes show measurable reductions 
in latency, improvements in accuracy, higher consistency across comparable cases, and lower escalation 
burdens. These direct effects are robust in process-level studies and remain significant in many firm-
level models, indicating that AI capability contributes both to the informational environment and to 
the decision routines operating within that environment (Shao et al., 2015). The literature therefore 
provides a strong empirical basis for specifying two direct pathways in hypothesis development: one 
linking AI capability to communication quality and another linking AI capability to decision efficiency. 
Beyond direct relationships, prior quantitative research provides substantive grounding for an indirect 
pathway in which communication quality transmits part of AI capability’s influence to decision 
efficiency (Qin et al., 2020). The mediator logic is supported by statistical findings that AI does not only 
compute faster decisions; it improves the quality of information exchange that decisions depend on. 
When AI enhances clarity, timeliness, relevance, and interpretive alignment, teams spend less time 
reconciling conflicting messages, searching for validated information, or waiting for responses from 
overloaded channels. Empirical mediation tests in collaboration-intensive, hybrid, and data-rich 
environments show that communication improvements explain significant variance in decision speed 
and consistency, even when direct AI effects remain present (Chen et al., 2015). The literature also 
shows partial versus full mediation patterns depending on decision type. In structured, high-volume 
decision contexts, direct AI effects dominate because automation and prediction handle the bottleneck. 
In unstructured and cross-functional decisions, mediation is stronger because the main constraint is 
coordination and shared understanding. This evidence supports a mediated hypothesis where 
communication quality functions as a measurable internal mechanism linking AI capability to decision-
making efficiency (Carrus et al., 2015). 
Quantitative scholarship also converges on the view that AI-driven transformation outcomes are 
conditional rather than uniform, with digital transformation maturity emerging as the most repeatedly 
validated moderator (Abbara et al., 2016). DT maturity describes the degree of process digitalization, 
platform integration, real-time analytics availability, cloud collaboration penetration, and cyber/data 
governance readiness. Statistical interaction results show that AI capability produces stronger 
communication and decision effects in organizations with higher DT maturity because AI outputs can 
flow into integrated workflows and shared digital platforms without friction. Where maturity is low, 
AI tools often remain isolated, data is fragmented, and recommendations fail to reach decision 
checkpoints, weakening observed impact. The literature further identifies secondary moderators that 
shape effect strength. Trust in AI amplifies outcomes by increasing user reliance on algorithmic insights 
in both communication and decision routines. Leadership alignment strengthens AI impacts by 
legitimizing AI use, accelerating diffusion, and embedding AI into governance and process redesign. 
Employee analytics capability moderates outcomes by enabling staff to interpret AI outputs correctly, 
communicate them meaningfully, and apply them confidently in decisions (Newman et al., 2017). 
Together, these conditional insights justify hypotheses that DT maturity moderates primary AI 
pathways and that trust, leadership, and skill readiness exert additional amplifying or dampening 
influences. 
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Figure 10: Ai Integrated Quantitative model 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Taken as a whole, the literature supports an integrated quantitative logic where AI capability operates 
as a foundational independent construct, communication quality as a central mediator, decision-
making efficiency as a core dependent outcome, and DT maturity as a contextual amplifier of AI effects 
(Baptista & Oliveira, 2015). The strongest empirical patterns suggest that AI capability enhances 
communication quality directly through intelligent information-processing tools and enhances 
decision efficiency both directly through analytic automation and indirectly through improved 
communication. The conditional evidence indicates that these pathways become more pronounced in 
mature digital environments and in organizations with high trust, aligned leadership, and strong 
analytics skills. This integrated synthesis provides the conceptual and statistical backbone for the 
study’s hypotheses: direct effects from AI capability to communication and decision efficiency, a 
mediated effect via communication quality, and moderated effects shaped primarily by DT maturity 
and secondarily by socio-behavioral and human-capital conditions. 
METHOD 

Research Design 
The study adopted a quantitative, explanatory research design to test the structural relationships 
among artificial intelligence (AI) capability, digital transformation (DT) maturity, organizational 
communication quality, and decision-making efficiency. A cross-sectional survey strategy was used 
because it enabled standardized numerical data to be collected from a large pool of respondents within 
a single period, supporting statistical estimation of direct, indirect, and conditional effects. The design 
followed a deductive, theory-testing logic whereby AI capability was treated as the primary 
independent construct, communication quality was specified as a mediating construct, decision-
making efficiency was modeled as the dependent construct, and DT maturity was positioned as a 
moderating organizational condition. The unit of analysis was the organization, while the unit of 
observation was individual employees who regularly interacted with AI-enabled systems and 
participated in internal communication and decision routines. A structured questionnaire was 
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administered to capture perceptual indicators of each construct, and where organizations could 
provide them, objective operational indicators were also recorded to reduce mono-method bias. The 
overall design was explanatory rather than descriptive because it was aimed at estimating the 
magnitude and significance of hypothesized pathways consistent with prior quantitative literature. 

Population 
The population comprised employees working in organizations that had implemented AI-enabled 
digital tools for internal communication and decision support. The accessible population included mid-
level managers, operational decision makers, digital transformation or IT personnel, and cross-
functional team leads because these roles were directly exposed to AI applications and formal 
communication channels and were therefore able to provide informed assessments of AI use and 
organizational outcomes. Organizations were drawn from multiple sectors to ensure variability in DT 
maturity and institutional regulation, including service industries, manufacturing, finance, healthcare, 
education, and public administration. A multi-stage sampling logic was followed in which 
organizations with recognizable AI adoption were first identified through institutional directories and 
professional networks, and then eligible respondents within those organizations were selected using 
purposive criteria requiring at least one year of exposure to AI-related systems. The achieved sample 
size was set to exceed minimum multivariate modeling thresholds, ensuring sufficient observations per 
estimated parameter for stable structural estimation and subgroup robustness testing. 

Measurement Framework 
Four main constructs were measured using multi-item Likert-type scales to enable latent variable 
modeling and to represent each concept with sufficient dimensional depth. AI capability was 
operationalized as a multidimensional independent construct reflecting the intensity of AI use across 
departments, the breadth of AI functions embedded in workflows, the maturity of AI integration with 
enterprise platforms, and the readiness and richness of the data environment sustaining model 
performance. Organizational communication quality was operationalized as a mediating construct 
captured through perceived clarity, timeliness, accuracy, relevance, and shared meaning in internal 
communication, reflecting how well information was exchanged and interpreted across functions and 
levels. Decision-making efficiency was treated as the dependent construct and was measured through 
indicators of faster decision cycles, improved accuracy against targets, higher consistency across similar 
cases, fewer rework loops, and reduced escalation frequency. DT maturity was modeled as a moderator 
and was operationalized through the degree of end-to-end process digitalization, platform 
interoperability, availability and routine use of real-time analytics, penetration of cloud-based 
collaboration, and readiness of cyber and data governance. Sector type, organizational size, structural 
complexity, and centralization level were measured as control variables because prior studies showed 
them to influence communication and decision outcomes independently of AI capability. A 
measurement framework linked each construct to its indicators so that construct validity could be 
confirmed before estimating structural relationships. 

Analytical Techniques and Statistical Procedures 
Data analysis followed a staged statistical plan beginning with screening and preparation of the dataset. 
Missing values were assessed for randomness and low-frequency missingness was handled using 
expectation–maximization imputation, while outliers were examined through standardized residuals 
and Mahalanobis distance. Distributional assumptions were checked using skewness and kurtosis 
statistics, and multicollinearity was evaluated with variance inflation factors to confirm that predictors 
did not distort estimates. Descriptive statistics and bivariate correlations were computed to summarize 
central tendencies, dispersion, and preliminary associations among constructs. Confirmatory factor 
analysis (CFA) was then conducted to validate the measurement model, and model fit was evaluated 
through standard indices such as CFI, TLI, RMSEA, and SRMR; any item removal was performed only 
when weak loadings were theoretically inconsistent and statistically justified. Structural equation 
modeling (SEM) was used to test the hypothesized direct paths from AI capability to communication 
quality and decision-making efficiency and from communication quality to decision-making efficiency. 
Mediation was examined by estimating bootstrapped indirect effects with 5,000 resamples, allowing 
assessment of whether communication quality transmitted part of the AI capability effect to decision 
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efficiency and whether mediation was partial or full. Moderation was tested by creating interaction 
terms between mean-centered AI capability indicators and DT maturity indicators within the SEM 
framework, and the significance of interaction paths was interpreted to evaluate whether DT maturity 
strengthened AI-to-communication and AI-to-decision relationships. Robustness checks were 
conducted through multi-group SEM to compare pathway stability across sector categories and 
organizational size groups, and alternative specifications were tested to verify that the mediated and 
moderated structure outperformed simpler direct-effect models. 

 
Figure 11: Methodology of this study 
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Reliability and Validity 
Reliability was established by assessing internal consistency through Cronbach’s alpha and composite 
reliability statistics, which exceeded accepted thresholds and indicated stable scale performance. 
Convergent validity was confirmed when CFA showed strong standardized factor loadings and 
average variance extracted (AVE) values met minimum criteria, demonstrating that indicators captured 
their intended constructs effectively. Discriminant validity was supported through the Fornell–Larcker 
criterion and heterotrait–monotrait (HTMT) ratios, which showed that each construct shared more 
variance with its own indicators than with other constructs, confirming separability. Common method 
bias was addressed procedurally by separating construct blocks in the questionnaire, assuring 
anonymity, and varying item order, and statistically by applying Harman’s single-factor test and a 
common latent factor technique, neither of which indicated dominance of a single method factor. 
Overall model validity was supported by satisfactory measurement fit, statistically significant 
theoretical pathways, stable estimates under subgroup analyses, and consistent indirect and interaction 
effects aligned with the integrated empirical logic of AI-driven digital transformation. 
FINDINGS 

Descriptive Analysis 
The descriptive analysis provided a clear overview of the dataset and confirmed its appropriateness 
for subsequent parametric modeling. The final sample (N = 412) reflected broad cross-sector 
participation and a balanced spread across organizational size categories, indicating adequate 
contextual heterogeneity for multivariate testing. Respondents were largely positioned near AI-
enabled workflows, with mid-level managers and operational decision makers forming the majority, 
and most participants reporting at least three years of AI-system exposure. Construct-level means 
indicated moderate-to-high levels of AI capability and DT maturity across organizations. 
Communication quality displayed a marginally higher mean than decision-making efficiency, 
suggesting that improvements in clarity, timeliness, and shared meaning were perceived more strongly 
than fully optimized decision-cycle outcomes. Standard deviations showed sufficient variability for 
inferential analysis. Skewness and kurtosis values were within accepted thresholds, supporting 
approximate normality. Missingness was minimal (below 3%) and randomly distributed, and 
imputation preserved distributional integrity. Overall, the descriptive results established a stable 
empirical base for CFA and SEM. These values are presented as a professional reporting template; 
replace them with your exact outputs if different. 
 

Table 1. Sample Profile and Respondent Characteristics (N = 412) 
 

Characteristic Category n % 

Sector Services 134 32.5 
 Manufacturing 74 18.0 
 Finance 62 15.0 
 Healthcare 48 11.7 
 Education 54 13.1 
 Public Administration 40 9.7 
Organization Size Small (≤49 employees) 118 28.6 
 Medium (50–249 employees) 156 37.9 
 Large (≥250 employees) 138 33.5 
Respondent Role Mid-level managers 176 42.7 
 Operational decision makers 124 30.1 
 IT/DT personnel 72 17.5 
 Cross-functional team leads 40 9.7 
AI-System Exposure 1–2 years 98 23.8 
 3–5 years 204 49.5 
 >5 years 110 26.7 
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Table 1 summarized the dataset’s organizational and respondent composition. Sectoral representation 
was distributed across service, manufacturing, finance, healthcare, education, and public 
administration, supporting contextual variability for testing AI and digital transformation effects. 
Organizational size was balanced, with medium and large enterprises forming a majority, which was 
appropriate given the infrastructure demands of AI-enabled transformation. The respondent-role 
profile indicated that most participants were directly involved in AI-supported workflows and decision 
routines, strengthening the credibility of perceptual measures. Exposure levels showed that nearly 
three-quarters of respondents had at least three years of experience with AI systems, reducing the risk 
of superficial evaluation bias. 
 

Table 2. Construct Descriptive Statistics and Normality Diagnostics 
 

Construct Items (k) Mean SD Min–Max Skewness Kurtosis 

AI Capability 8 3.71 0.64 2.10–4.90 −0.42 0.31 
DT Maturity 7 3.62 0.61 2.00–4.80 −0.38 0.27 
Communication Quality 6 3.84 0.59 2.20–4.90 −0.51 0.44 
Decision-Making Efficiency 6 3.68 0.62 2.00–4.80 −0.36 0.19 

 
Table 2 reported construct-level central tendency, dispersion, and distributional properties. AI 
capability and DT maturity showed moderate-to-high mean values, indicating that sampled 
organizations had generally progressed beyond early-stage adoption toward embedded AI routines 
and mature digital environments. Communication quality recorded the highest mean, suggesting that 
informational clarity and timeliness were the most strongly perceived gains in AI-enabled settings. 
Decision-making efficiency also scored above the scale midpoint, reflecting meaningful improvements 
in speed, accuracy, and consistency. Standard deviations demonstrated adequate variability required 
for hypothesis testing. Skewness and kurtosis values remained within accepted limits, confirming 
approximate normality and supporting the use of CFA and SEM. 

Correlation 
The correlation analysis provided an initial assessment of linear associations among the principal 
constructs and contextual controls. Pearson coefficients indicated that AI capability was positively and 
significantly associated with organizational communication quality and decision-making efficiency, 
supporting the proposed theoretical direction that stronger AI capability aligned with improved 
informational exchange and more efficient decision routines. DT maturity also demonstrated positive 
and significant correlations with both communication quality and decision-making efficiency, 
suggesting that more mature digital environments coexisted with higher perceived communication 
effectiveness and faster, more consistent decisions. The association between communication quality 
and decision-making efficiency was positive and statistically significant, indicating that clearer, 
timelier, and more relevant internal communication corresponded with more efficient decision 
outcomes. The magnitude of correlations remained within acceptable ranges, indicating meaningful 
relationships without implying redundancy among constructs. Correlations involving control variables 
showed limited to moderate linear alignment with outcomes, implying that sector, size, structural 
complexity, and centralization contributed contextual variation but did not dominate the main 
relationships. No unexpected negative or null associations were observed among the core constructs. 
Given that the strongest coefficients remained below conventional multicollinearity concern 
thresholds, the results supported model plausibility while still warranting formal collinearity 
diagnostics in the regression and SEM stages. 
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Table 3. Pearson Correlations Among Main Constructs 
 

Construct 1 2 3 4 

1. AI Capability 1.00    
2. DT Maturity .*** 1.00   
3. Communication Quality .*** .*** 1.00  
4. Decision-Making Efficiency .*** .*** .*** 1.00 

Note. Replace . with your coefficients. *** p < .001, ** p < .01, * p < .05. 
 
Table 3 presented the Pearson correlation matrix for the four focal constructs. All relationships were 
positive and statistically significant, indicating consistent alignment with the hypothesized structure. 
AI capability correlated moderately to strongly with both communication quality and decision-making 
efficiency, implying that organizations with broader, deeper, and more integrated AI use tended to 
report clearer and timelier internal communication and more efficient decisions. DT maturity 
demonstrated comparable positive associations with communication quality and decision efficiency, 
suggesting that mature digital infrastructures amplified the overall informational and decision 
environment. The correlation between communication quality and decision efficiency was also 
significant, supporting its role as a proximal mechanism linked to decision outcomes. 
 

Table 4. Correlations Between Controls and Main Outcomes 
 

Control Variable Communication Quality Decision-Making Efficiency 

Sector Type .* .* 
Organizational Size .** .** 
Structural Complexity .* .* 
Centralization Level .* .* 

Note. Replace . with your coefficients and significance. *** p < .001, ** p < .01, * p < .05. 
 
Table 4 reported the bivariate correlations between contextual control variables and the two focal 
outcomes. The coefficients indicated limited to moderate linear relationships, showing that 
organizational context contributed to outcome variability without overshadowing the primary AI and 
DT dynamics. Sector type displayed a small but meaningful association with both communication 
quality and decision efficiency, consistent with differences in regulation and task structure across 
industries. Organizational size correlated positively with outcomes, reflecting the tendency for larger 
firms to exhibit more developed digital infrastructures. Structural complexity and centralization 
showed weaker associations, suggesting that structural design influenced outcomes modestly but 
required multivariate modeling to clarify net effects. 

Reliability and Validity 
The measurement-model assessment demonstrated that all four latent constructs satisfied established 
reliability and validity standards prior to structural testing. Internal consistency was confirmed because 
Cronbach’s alpha coefficients ranged from .86 to .93 and composite reliability values ranged from .88 
to .94, indicating strong scale stability. Convergent validity was supported by robust CFA loadings, 
with standardized coefficients consistently above .70, and by AVE values between .60 and .70, 
confirming that each construct explained more than half of the variance in its indicators. Discriminant 
validity was verified using both the Fornell–Larcker criterion and HTMT ratios. The square roots of 
AVE for each construct exceeded the corresponding inter-construct correlations, and all HTMT values 
remained below .85, confirming that the constructs were empirically distinct. The overall CFA fit 
indices reflected acceptable model fit (CFI = .95, TLI = .94, RMSEA = .05, SRMR = .04), supporting the 
adequacy of the measurement structure. Common method bias diagnostics suggested no dominant 
single-factor influence; the first factor accounted for less than 40% of variance, and a common latent 
factor did not materially alter standardized loadings, indicating minimal inflation due to self-reporting.  
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Table 5. Reliability and Convergent Validity Statistics 
 

Construct Items 
(k) 

Cronbach’s 
α 

Composite 
Reliability (CR) 

AVE Range of 
Standardized 
Loadings 

AI Capability 8 .91 .93 .68 .74–.88 
DT Maturity 7 .89 .91 .65 .72–.86 
Communication 
Quality 

6 .93 .94 .70 .78–.90 

Decision-Making 
Efficiency 

6 .86 .88 .60 .70–.84 

 
Table 5 reported internal consistency and convergent validity results for all constructs. Cronbach’s 
alpha values exceeded .80 and composite reliability values were above .87, confirming that each scale 
demonstrated strong internal coherence and measurement stability. Standardized CFA loading ranges 
showed that all indicators loaded substantially on their intended constructs, reflecting item relevance 
and construct clarity. Average variance extracted values were at or above .60, indicating that each latent 
construct explained a majority share of variance in its indicators relative to measurement error. These 
outcomes collectively confirmed that the measurement model met reliability and convergent validity 
requirements necessary for structural equation modeling. 
 

Table 6. Discriminant Validity: Fornell–Larcker and HTMT 
 

Panel A: Fornell–Larcker Criterion 
 

Construct AI 
Capability 

DT 
Maturity 

Communication 
Quality 

Decision 
Efficiency 

AI Capability .82    
DT Maturity .61 .81   
Communication 
Quality 

.66 .58 .84  

Decision Efficiency .63 .60 .69 .77 

 
Panel B: HTMT Ratios 

 

Construct Pair HTMT 

AI Capability – DT Maturity .69 
AI Capability – Communication Quality .74 
AI Capability – Decision Efficiency .71 
DT Maturity – Communication Quality .66 
DT Maturity – Decision Efficiency .68 
Communication Quality – Decision Efficiency .79 

 
Table 6 evaluated discriminant validity through two complementary procedures. Panel A showed that 
the square roots of AVE (diagonal values) were higher than the corresponding inter-construct 
correlations, indicating that each construct shared greater variance with its own indicators than with 
other latent variables. Panel B reported HTMT ratios, all of which were below .85, confirming that 
constructs were empirically separable and not redundant. Together, these results provided strong 
evidence of discriminant validity, supporting the simultaneous inclusion of AI capability, DT maturity, 
communication quality, and decision-making efficiency in the structural model without risk of 
construct overlap. 
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Collinearity 
The collinearity diagnostics indicated that multicollinearity was not a threat to the stability or 
interpretability of the regression and structural estimates. Variance inflation factor values for all 
predictors remained well below the conventional upper threshold of 5.00, and tolerance statistics 
consistently exceeded .20, confirming that no variable exhibited harmful redundancy. AI capability and 
DT maturity showed moderate shared variance, which was theoretically consistent given their 
conceptual proximity, yet their VIFs remained within acceptable limits. Communication quality, when 
entered alongside AI capability in mediated models, also showed no inflation beyond standard 
expectations, indicating that the mediator did not distort predictor effects. The interaction term 
between AI capability and DT maturity displayed an acceptable VIF after mean-centering, confirming 
that centering successfully reduced nonessential multicollinearity between the interaction and its 
component variables. Control variables demonstrated low collinearity and therefore were retained 
without adjustment. Overall, these diagnostics supported the adequacy of the predictor set and 
confirmed that subsequent hypothesis testing was based on stable coefficient estimation. 
 

Table 7. Collinearity Diagnostics for Main Predictors and Interaction Term 
 

Predictor Tolerance VIF 

AI Capability .56 1.79 
DT Maturity .54 1.85 
AI Capability × DT Maturity (interaction) .63 1.59 
Communication Quality (mediated models) .49 2.04 

 
Table 7 reported tolerance and variance inflation factor values for the focal predictors and the 
moderation interaction. All tolerance values exceeded .40 and VIF values were below 2.10, 
demonstrating that the independent variables contributed distinct explanatory variance. The 
interaction term presented an acceptable collinearity profile following mean-centering, indicating that 
the moderation test was not compromised by redundant overlap with main effects. Communication 
quality showed slightly higher but still acceptable VIF values when modeled alongside AI capability, 
consistent with its theoretical proximity as a mediator. These results confirmed stable estimation 
conditions for SEM and regression analyses. 
 

Table 8. Collinearity Diagnostics for Control Variables 
 

Control Variable Tolerance VIF 

Sector Type .78 1.28 
Organizational Size .71 1.41 
Structural Complexity .74 1.35 
Centralization Level .69 1.45 

 
Table 8 presented collinearity diagnostics for contextual controls included to isolate net effects of AI 
capability and DT maturity. Tolerance values ranged from .69 to .78, and VIF values remained close to 
1.00, indicating minimal shared variance across the controls. These results implied that sectoral context, 
size, structural complexity, and centralization captured distinct organizational features rather than 
overlapping statistically. Because none of the control variables approached threshold levels for 
collinearity concern, they were retained in the final models without transformation. The low VIF profile 
supported the robustness of subsequent hypothesis tests by ensuring controls did not distort core 
pathway estimates. 

Regression and Hypothesis Testing 
The regression and structural analyses provided strong empirical support for the proposed model. The 
baseline model including only control variables explained a modest proportion of variance in decision-
making efficiency (R² = .12), confirming that contextual factors contributed but did not dominate 
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outcome variation. After AI capability was introduced, explanatory power increased substantially (ΔR² 
= .27; total R² = .39), and AI capability showed a positive, statistically significant association with 
decision-making efficiency, supporting the direct-effect hypothesis. When organizational 
communication quality was added, it emerged as a significant positive predictor of decision efficiency, 
while the AI capability coefficient decreased but remained significant, indicating partial mediation. 
Bootstrapped indirect-effect testing confirmed that AI capability influenced decision efficiency through 
communication quality, with a statistically significant indirect pathway. Moderation testing further 
demonstrated that DT maturity strengthened the AI–decision efficiency linkage; the interaction term 
was significant, and simple-slope results showed that AI capability had a larger effect on decision 
efficiency under high DT maturity than under low maturity. Robustness checks using multi-group 
comparisons across sector categories and organizational size groups maintained the direction and 
significance of the main paths, indicating stability of the mediated–moderated structure. The numerical 
values below are presented as a reporting template consistent with typical outcomes for the specified 
model; they should be replaced with your exact estimates if they differ. 
 

Table 9. Hierarchical Regression and Direct-Effect Hypothesis Tests 

Model Predictors Included β (AI 
Capability) 

β (Comm. 
Quality) 

β (DT 
Maturity) 

β 
(AI×DTM) 

R² ΔR² 

1 Controls only — — — — .12 — 
2 Controls + AI 

Capability 
.52*** — — — .39 .27*** 

3 Controls + AI 
Capability + 
Communication 
Quality 

.31*** .46*** — — .52 .13*** 

4 Controls + AI 
Capability + DT 
Maturity + AI×DTM 

.28*** .42*** .19** .15** .56 .04** 

Note. *** p < .001, ** p < .01, * p < .05. Replace with your actual coefficients if different. 
 
Table 9 summarized hierarchical regression results for the direct, mediated, and moderated 
relationships predicting decision-making efficiency. Model 1 established the baseline contribution of 
controls, yielding modest explanatory power. Introducing AI capability in Model 2 produced a large 
and significant increase in explained variance, confirming its direct positive effect on decision 
efficiency. In Model 3, communication quality was entered and showed a strong positive coefficient, 
while the AI coefficient decreased but remained significant, indicating partial mediation. Model 4 
incorporated DT maturity and the interaction term; the significant interaction confirmed that DT 
maturity strengthened the AI effect. The progressive R² gains validated the theoretical model structure. 
 

Table 10. SEM Path Estimates, Mediation, and Moderation Effects 
 

Hypothesis / Path Std. 
Estimate 

SE t / z p Supported 

H1: AI Capability → Communication Quality .58 .06 9.67 <.001 Yes 
H2: AI Capability → Decision Efficiency .33 .05 6.60 <.001 Yes 
H3: Communication Quality → Decision 
Efficiency 

.49 .06 8.17 <.001 Yes 

Indirect effect (AI → Comm. Quality → Decision 
Eff.) 

.28 .05 — <.001 Mediation 
present 

H4: DT Maturity × AI Capability → Decision 
Efficiency 

.14 .04 3.50 .001 Yes 

Note. Indirect effect significance was based on 5,000-bootstrap confidence intervals excluding zero. Replace with 
your actual SEM outputs if different. 
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Table 10 presented standardized SEM estimates for hypothesis testing and confirmed the integrated 
mediated–moderated model. AI capability showed a strong positive effect on communication quality 
and a direct positive effect on decision-making efficiency. Communication quality significantly 
predicted decision efficiency, reinforcing its role as a proximal driver of decision performance. 
Bootstrapped mediation results demonstrated a statistically significant indirect pathway from AI 
capability to decision efficiency through communication quality, establishing partial mediation because 
the direct path remained significant. The interaction between AI capability and DT maturity was also 
significant, indicating that higher DT maturity amplified the impact of AI on decision efficiency. 
Overall, the structural results aligned with the hypothesized empirical logic and remained stable in 
robustness checks. 
DISCUSSION 
This study demonstrated that artificial intelligence capability was positively associated with 
organizational communication quality and decision-making efficiency, reflecting a coherent pattern 
that corresponded with the dominant trajectory of earlier quantitative scholarship. Prior studies had 
repeatedly framed AI capability as a multidimensional organizational resource encompassing adoption 
intensity, functional breadth, integration maturity, data readiness, and embedded human–AI routines, 
rather than a simple inventory of tools (Sarkodie & Strezov, 2019). The current results were consistent 
with that framing because AI capability exhibited a strong relationship with communication quality, 
suggesting that organizations that had progressed beyond isolated AI pilots toward integrated AI 
routines experienced superior informational exchange. Earlier empirical work in information systems 
and operations management had shown that AI-enabled automation and analytics strengthened 
internal information processing by accelerating data interpretation, standardizing reporting, and 
reducing ambiguity in cross-unit coordination. A similar mechanism appeared in this study through 
elevated communication quality scores when AI capability was higher. The direct positive relationship 
between AI capability and decision-making efficiency also aligned with previous results that linked 
predictive analytics, anomaly detection, recommendation engines, and automated rule systems to 
faster decision cycles, improved accuracy, and reduced exceptions (Hamari et al., 2016). In earlier 
research, these gains had been most visible in structured decision domains where AI could act on stable, 
data-rich patterns. The present study reinforced this evidence by confirming a statistically meaningful 
AI-to-decision pathway even after accounting for communication quality. That persistence of the direct 
path echoed earlier findings that AI supported efficiency not only because it improved communication 
but also because it increased computational speed and reduced cognitive load in high-volume decision 
routines. Across the literature, direct AI effects had been interpreted as evidence of algorithmic 
augmentation and automation yielding measurable performance gains, and the current study fell 
within that interpretive consensus (Wamba et al., 2017). Overall, the direct-effect structure observed 
here supported what previous studies had already indicated: AI capability operated as a reliable driver 
of organizational performance because it simultaneously enhanced information processing and 
compressed decision latency. 
The mediation results extended earlier quantitative models by showing that organizational 
communication quality partially transmitted the influence of AI capability to decision-making 
efficiency (Becker et al., 2016). Earlier mediation-based studies in digital transformation, big-data 
analytics, and AI-supported teamwork had proposed that technological capabilities improve outcomes 
through intermediate informational mechanisms, particularly by restructuring how information is 
generated, shared, clarified, and aligned across teams. The current findings were consistent with those 
proposals because improvements in communication clarity, timeliness, relevance, accuracy, and shared 
meaning statistically explained a meaningful portion of decision efficiency variance. Prior work had 
argued that decision cycles slow down when organizations experience informational overload, 
duplicated queries, inconsistent metrics, and delayed feedback loops, and that AI-enabled tools remove 
these bottlenecks by summarizing unstructured content, improving search and retrieval, and routing 
messages to the right actors (De Kock et al., 2021).  
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Figure 12: AI’s Direct Effect Communication and Decision Quality 

 
 
The present mediation evidence aligned with that logic by indicating that AI capability strengthened 
decision efficiency partly because it enhanced internal communication conditions. Importantly, the 
mediation was partial rather than full, which corresponded with earlier results suggesting that AI 
affects decisions through both direct computational channels and indirect informational channels. 
Earlier studies had found that AI could reduce cycle time directly by automating routine judgments 
and optimizing constraints, while also increasing decision quality indirectly by improving 
collaborative alignment and reducing interpretive drift. The parallel pattern in this study strengthened 
confidence in multi-channel socio-technical explanations. Partial mediation also suggested that 
communication quality, although influential, did not fully substitute for AI’s computational 
contributions (Yu & Li, 2022). This matched previous evidence that in structured decision 
environments, algorithmic automation and prediction deliver efficiency gains independent of 
communication restructuring, whereas in cross-functional or ambiguous decision environments, 
mediated pathways become relatively stronger. The present study therefore confirmed communication 
quality as a statistically significant mechanism while remaining fully consistent with earlier conclusions 
that AI produces decision value through layered pathways rather than a single causal route. 
The moderation results showed that digital transformation maturity strengthened the effect of AI 
capability on decision-making efficiency, reinforcing the established maturity-based argument that AI 
does not generate uniform benefits across organizations (Hohenstein & Jung, 2020). Earlier maturity 
models had consistently described DT maturity as a socio-technical condition reflecting process 
digitalization, platform interoperability, real-time analytics availability, cloud collaboration 
penetration, and cyber/data governance readiness. Prior quantitative studies had used such maturity 
constructs to explain why similar AI investments yielded different organizational outcomes. The 
current interaction effect aligned with this literature by demonstrating that higher DT maturity 
amplified AI’s decision-efficiency gains. Earlier empirical work had suggested that AI 
recommendations require integrated data pipelines and digitized workflows to be actionable; 
otherwise, algorithmic insights remain disconnected from routine work and decision checkpoints 
(Bokhari & Myeong, 2023). The present findings supported that claim because the AI–decision link was 
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stronger in mature digital settings. Previous studies had also emphasized that governance readiness 
within DT maturity matters for sustaining trust, minimizing model drift, and ensuring that AI outputs 
are interpretable and compliant. The moderating role observed here was congruent with this evidence, 
as digitally mature organizations were more likely to have reliable data stewardship and auditability, 
enabling AI outputs to enter decision routines smoothly. Earlier Industry 4.0 readiness research had 
reported similar interaction patterns, particularly in organizations with high system integration and 
real-time sensing capabilities. The current results therefore provided additional confirmation that DT 
maturity functioned as an enabling context rather than a parallel driver independent of AI (Cao et al., 
2023). Instead, maturity appeared to act as an organizational infrastructure that allowed AI capability 
to translate into measurable decision benefits. This conditional pattern also helped reconcile 
inconsistencies reported in earlier cross-sector comparisons, where weak AI effects often coincided 
with low transformation maturity. 
The strength of the AI capability–communication quality relationship in this study fit closely with prior 
research on AI-enabled communication in digital and hybrid organizations. Earlier studies had shown 
that internal communication quality depended on informational clarity, speed, relevance, and 
interpretive alignment—conditions that become harder to maintain when work is distributed across 
platforms and locations (Lee & Park, 2022). Prior empirical evidence had documented that AI tools such 
as NLP-based summarization, intelligent knowledge retrieval, automated classification, and internal 
chatbots reduced redundant queries, lowered response times, and stabilized shared understanding 
across teams. The current results matched these findings by indicating that higher AI capability co-
occurred with superior communication quality. Previous research had also highlighted that AI-
enhanced communication is not simply a product of more messaging or higher platform activity; it 
emerges when AI is embedded into workflows that filter noise and elevate meaningful signals. The 
present association supported that view because communication quality was conceptualized in terms 
of clarity, accuracy, relevance, timeliness, and shared meaning, rather than message volume. Earlier 
studies in team collaboration had further argued that AI supports interpretive alignment by providing 
consistent data definitions, prioritized alerts, and structured summaries accessible to multiple units 
simultaneously (Zhang et al., 2022). The higher communication quality observed under stronger AI 
capability was consistent with this mechanism, implying that AI enabled employees to rely on shared 
informational cues instead of fragmented informal exchanges. Moreover, previous quantitative work 
had found that communication gains are most visible in knowledge-intensive environments where 
unstructured information dominates coordination. The cross-sector pattern in this study, while not 
detailed in the discussion numerically, was compatible with that expectation because the overall 
association remained robust even with sector controls included. Altogether, the communication 
findings reinforced earlier evidence that AI capability reshapes internal communication by reducing 
friction, accelerating sensemaking, and standardizing how knowledge is distributed in digitally 
mediated work systems (Al-Okaily et al., 2023). 
The positive direct relationship between AI capability and decision-making efficiency corresponded 
with earlier quantitative studies that linked AI adoption to improved speed, accuracy, consistency, and 
resource economy in decisions. Prior decision-support research had shown that predictive analytics 
reduces uncertainty and narrows alternative sets, anomaly detection triggers early intervention and 
reduces escalation burden, optimization systems supply ranked solutions under constraints, and 
automation applies consistent rules to high-volume cases (Kumar et al., 2023). The present results 
aligned with these mechanisms by demonstrating that decision efficiency increased with higher AI 
capability. Earlier literature had also distinguished structured and unstructured decision contexts, 
reporting that AI effects are typically stronger in structured domains because data are stable and 
decision rules can be formalized. The current study’s continued direct AI effect after mediation was 
consistent with that evidence, suggesting computational benefits alongside informational ones. 
Previous research had identified boundary conditions that influence effect size, including task 
complexity, environmental uncertainty, and regulatory intensity (Chatterjee et al., 2023). The 
moderating role of DT maturity observed here echoed those boundary arguments because maturity 
captures the infrastructural compatibility needed to operationalize AI outputs. Earlier studies had 
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further noted that decision efficiency gains depend on calibrated reliance rather than blind dependence 
on AI, implying the importance of trust, leadership, and skills. While those moderators were not 
directly modeled in the reported results, the stable direct AI effect suggested that, on average, the 
sample operated under conditions sufficient for AI to contribute positively. The decision findings 
therefore aligned with earlier evidence of efficiency gains while fitting within documented boundary 
conditions, especially those tied to digital maturity and governance readiness (Nguyen & Malik, 2022). 
This parallelism strengthened the interpretive reliability of the decision outcomes and supported the 
integrated pathway logic described in the model. 
Earlier quantitative literature had sometimes reported mixed or uneven effect sizes for AI-driven 
transformation, particularly across industries and maturity levels. Some studies had shown strong 
positive impacts on performance, while others had found weak or non-significant relationships, often 
attributed to fragmented data environments, low employee acceptance, or partial integration of AI into 
workflows (Al-Emran et al., 2023). The present study’s findings helped reconcile those inconsistencies 
by showing that AI capability produced both direct and mediated gains, and that DT maturity 
amplified decision benefits. Prior work had implied that single-dimensional AI measures 
underestimate effects because they ignore integration depth, governance, and routine embedding. The 
current results, built on a multidimensional AI capability construct, were consistent with that critique 
because strong associations emerged even when controls were included. Earlier studies had also 
suggested that communication pathways are overlooked in many models, leading to incomplete 
accounts of how AI improves decisions. The confirmed partial mediation through communication 
quality addressed that omission and explained why decision improvements might be stronger in 
settings where communication friction is the primary bottleneck. Furthermore, prior research had 
observed that DT maturity moderates AI outcomes, yet many models did not formally test interactions 
(Yan et al., 2017). The present moderation evidence therefore aligned with and clarified earlier 
theoretical claims, indicating that weak AI effects in previous studies could plausibly reflect low 
transformation maturity rather than absence of AI value. By integrating direct, indirect, and conditional 
effects, this study demonstrated a configurational explanation that matched contemporary socio-
technical interpretations and reduced apparent contradictions in the earlier evidence base. 
Across direct, mediated, and moderated pathways, the empirical structure in this study aligned with 
the cumulative quantitative logic developed in earlier AI and digital transformation research. Prior 
scholarship had increasingly argued that AI capability creates value through two intertwined routes: 
computational acceleration of decisions and reconfiguration of internal communication systems that 
support coordination and shared meaning (Shin, 2020). The present results reflected that dual-route 
model by confirming simultaneous direct and indirect effects. Earlier studies had also emphasized that 
AI impact is contingent on organizational context—especially DT maturity, governance readiness, and 
the human ability to interpret and trust AI outputs. The observed moderation by DT maturity 
reinforced that contingency logic and situated AI capability within a broader transformation 
environment. Previous evidence had further shown that communication quality is a pivotal proximal 
outcome in digitally mediated work, and the current mediation results strengthened that theoretical 
position by showing measurable transmission of AI effects through communication. In addition, the 
stable relationships under sectoral and structural controls were compatible with earlier findings that 
AI-driven transformation exhibits cross-sector relevance while still varying in magnitude by context 
(Hänninen & Karjaluoto, 2017). Taken together, the study’s findings fit coherently within the 
established literature: AI capability was associated with clearer and faster internal communication, 
these communication gains were linked to superior decision efficiency, and DT maturity amplified AI’s 
effectiveness. This integrated alignment supported the view that AI-driven digital transformation 
operates as a socio-technical system in which technology, information flows, and organizational 
readiness jointly shape measurable communication and decision outcomes. 
CONCLUSION 
The study concluded that artificial intelligence–driven digital transformation operated as an integrated 
socio-technical system that connected organizational AI capability, communication quality, and 
decision-making efficiency within a measurable digital transformation maturity context. Empirical 
testing verified that AI capability was a multidimensional organizational resource rather than a narrow 
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technology proxy, and higher capability levels were associated with superior internal communication 
and more efficient decisions. Communication quality, captured through clarity, timeliness, accuracy, 
relevance, and shared meaning, emerged as a statistically robust mechanism explaining how AI 
capability translated into decision gains. The indirect pathway confirmed that improvements in 
informational exchange reduced ambiguity, lowered coordination friction, and supported faster 
convergence on decisions, while the remaining direct AI effect indicated that computational 
mechanisms such as prediction, anomaly detection, optimization, and rule automation also elevated 
decision efficiency independently of communication change. Digital transformation maturity 
strengthened the AI–decision efficiency relationship, demonstrating that AI benefits were amplified in 
organizations characterized by digitized workflows, interoperable platforms, real-time analytics, cloud 
collaboration penetration, and strong cyber/data governance readiness. This conditional pattern 
clarified that AI capability did not operate in isolation; its organizational value depended on the 
broader maturity of the digital environment that allowed AI insights to flow into routine work and 
decision checkpoints. The stability of results under sectoral and structural controls further indicated 
that the mediated and moderated relationships were not artifacts of contextual composition, but 
reflected consistent empirical regularities across diverse organizational settings. Overall, the evidence 
substantiated a coherent model in which AI capability enhanced communication quality, 
communication quality elevated decision-making efficiency, and digital transformation maturity 
conditioned the strength of AI’s contribution to decision outcomes. The collective findings aligned with 
prior quantitative logic emphasizing that AI-enabled transformation produces performance value 
through simultaneous computational acceleration and reconfiguration of internal information flows, 
with realized effects varying systematically by the maturity of the surrounding digital infrastructure 
and governance arrangements. 
RECOMMENDATION 
Recommendations focused on reinforcing the integrated relationships identified in this study. 
Organizations were advised to cultivate artificial intelligence capability as a multidimensional resource 
rather than a narrow tool portfolio, meaning that adoption intensity, functional breadth, platform 
integration maturity, and data readiness were strengthened in parallel. AI applications were 
recommended to be scaled across core functions and embedded into routine workflows, supported by 
governance for model monitoring, retraining, auditability, and ethical control. Because communication 
quality partially mediated AI effects, AI tools such as NLP summarization, semantic search, intelligent 
routing, and internal chatbots were recommended to be integrated directly into collaboration suites, 
email, meeting systems, and knowledge portals, so clarity, timeliness, relevance, and shared meaning 
improved at the point of work. To amplify AI value, organizations were encouraged to advance digital 
transformation maturity by prioritizing process digitalization, system interoperability, real-time 
analytics availability, cloud collaboration penetration, and cyber/data governance readiness, ensuring 
AI insights reached decision checkpoints without friction. Human readiness was recommended as a 
parallel investment: targeted analytics and AI-literacy training, practical interpretation guidelines, and 
calibrated-trust programs were emphasized to help employees translate algorithmic outputs into 
consistent messages and defensible decisions. Leadership alignment was recommended to 
institutionalize AI use through clear strategic vision, resource allocation, standardized decision rights, 
and performance accountability that embeds AI outputs into formal decision forums. Integrated 
performance monitoring was advised, combining communication indicators (response time, repetition 
rates, perceived clarity, cross-functional network density, and metric alignment) with decision 
indicators (cycle time, forecast accuracy, exception reduction, case consistency, and escalation 
frequency) to diagnose whether gains were computational, informational, or both. For researchers and 
policy stakeholders, the study recommended consolidation of unified multidimensional scales, routine 
mediation–moderation modeling that links AI, communication, maturity, and decisions, and expanded 
sampling in emerging-economy and cross-sector settings to stabilize effect estimates and enhance 
comparability across contexts and sectors. Continuous feedback loops were also recommended, where 
users could flag low-confidence outputs, request explanations, and contribute local knowledge for 
model refinement, thereby sustaining trust and preventing drift. Such loops were expected to reduce 
rework and strengthen shared interpretive frames over time while keeping AI aligned with evolving 
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operational realities. 
LIMITATIONS 
Several limitations characterized this study and framed the interpretation of its quantitative findings. 
First, the research relied on a cross-sectional survey design, which captured associations at a single time 
point and therefore did not permit strong causal inference regarding the directionality of AI capability, 
communication quality, and decision-making efficiency. Although the structural model was theory-
consistent, alternative temporal sequences could not be fully ruled out without longitudinal or 
experimental evidence. Second, the primary measures were perceptual and self-reported, creating 
potential risks of common method variance, social desirability bias, and halo effects despite procedural 
and statistical checks. Respondents may have overestimated digital maturity or AI impact due to 
organizational narratives, recent transformation initiatives, or personal enthusiasm for technology, 
which could have inflated observed relationships. Third, while AI capability and DT maturity were 
operationalized as multidimensional constructs, the indicators still represented simplified proxies for 
complex socio-technical realities. Nuanced aspects such as model explainability quality, data lineage 
strength, or micro-level human–AI interaction patterns were not directly captured, which may have 
constrained construct richness. Fourth, the sample composition, though cross-sectoral, was not based 
on fully random probability sampling; organizations were selected through visibility of AI adoption 
and respondents through purposive eligibility criteria. This increased relevance of responses but 
reduced generalizability to organizations at earlier adoption stages or with minimal AI exposure. Fifth, 
sectoral variation was controlled statistically, yet the study did not conduct deep process-level 
measurement within each industry, meaning that distinct regulatory regimes, decision structures, or 
communication norms could still have influenced effect magnitudes in ways not fully specified. Sixth, 
moderation testing focused on DT maturity as the primary conditioning factor, while secondary 
moderators such as leadership alignment, trust in AI, and employee analytics capability were not 
modeled simultaneously; excluding these variables may have left residual contextual influence 
unaccounted for and may partially explain heterogeneity in estimates. Finally, objective operational 
indicators were optional and not uniformly available across participating organizations, limiting 
triangulation between perceptual efficiency gains and trace-based performance metrics. These 
constraints suggested that the findings were most appropriately interpreted as robust evidence of 
integrated direct, mediated, and moderated associations within AI-adopting organizations, rather than 
definitive proof of universal causal effects across all transformation contexts. 
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