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Abstract

This study addresses schedule overruns in U.S. infrastructure projects and the limited quantitative evidence on
whether Al-enabled construction planning tools reduce delays. The purpose is to quantify relationships between
Al-based planning adoption and schedule performance using project-level data. A quantitative cross-sectional,
case-based design used a Likert five-point survey of practitioners covering 198 infrastructure cases across public
agencies and enterprise contractors and consultants. Key variables included Al-enabled planning tool adoption,
planning quality, coordination effectiveness, project size, complexity, contract type, and a Schedule Delay Index
(SDI) from planned and actual durations. Reliability was high for all multi-item scales (a = 0.84-0.91). The
analysis plan combined descriptive statistics, Pearson correlations, and multiple regression with moderation
tests. Projects showed moderate Al adoption (M = 3.47, SD = 0.78) and an average 11% schedule overrun (SDI
M = 0.11, SD = 0.09). Al adoption correlated negatively with SDI (r = =0.41, p < .001) and remained a
significant predictor of lower delay after controlling for size, complexity, and contract type; a one-point increase
in adoption was associated with a 2.8 percentage point reduction in SDI. Adding planning quality and
coordination effectiveness increased explained variance in SDI from 25% to 41% and partially mediated the Al-
delay relationship, with effects strongest on highly complex projects. The headline finding is that Al-enabled
planning tools contribute meaningfully to delay reduction when embedded in robust planning and coordination
practices. The study implies that infrastructure owners should treat Al-enhanced planning as a strategic
capability for improving delivery reliability across the sample.
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Al-Enabled Construction Planning; Schedule Delay Reduction; U.S. Infrastructure Projects; Quantitative
Cross-Sectional Survey; Project Complexity.
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INTRODUCTION

Construction planning refers to the systematic process of defining activities, sequencing, resource
allocation, and scheduling to deliver a project within the agreed time, cost, and quality parameters. In
large infrastructure projects including highways, bridges, transit systems, water networks, and energy
facilities planning is a core project management function because it structures how complex,
interdependent activities unfold over multi-year horizons. Globally, infrastructure investment is seen
as a driver of economic growth, productivity, and social well-being, yet chronic schedule delays and
cost overruns continue to affect many projects and erode the expected benefits (Assaf & Al-Hejji, 2006).
Traditional planning relies heavily on deterministic critical path methods, spreadsheet-based resource
plans, and expert judgment.

Figure 1: Core Elements of Construction Planning and the Role of Al in Schedule Performance
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These approaches can be effective in stable environments, but they struggle when construction work is
exposed to uncertainty in supply chains, labor markets, weather, permitting, and stakeholder
coordination. Schedule slippage in infrastructure projects has been associated with litigation, loss of
public trust, and reduced returns on public investment (Arfan et al., 2021; Sambasivan & Soon, 2007).
The increasing complexity and scale of infrastructure programs, along with demands for more resilient
and sustainable systems, have intensified the need for data-driven, predictive planning approaches. At
the same time, advances in artificial intelligence (AI), machine learning, and data analytics are
transforming how project data can be collected, integrated, and analyzed to support decisions. In many
industrial sectors (Ara, 2021), Al is now used to forecast demand, optimize resource allocation, and
anticipate risk patterns; a similar transformation is beginning to be visible in construction engineering
and management, creating a strong motivation to examine how Al-enabled planning tools influence
schedule performance, particularly in the context of infrastructure projects in the United States (Darko
et al., 2020; Jahid, 2021).

Schedule delays in construction are typically defined as the time extension beyond the contract
completion date, or beyond a revised completion date agreed by project stakeholders. Empirical studies
across regions consistently show that delays are among the most persistent problems in the
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construction sector, especially for infrastructure works where interfaces among agencies, contractors,
and communities are numerous (Akinosho et al., 2020; Akbar & Farzana, 2021). Reviews of delay causes
identify clusters such as design changes, slow decision-making by owners, contractor cash-flow
constraints, material shortages, limited equipment availability, labor productivity issues, and
challenges in coordination among multiple firms (Reza et al., 2021; Sambasivan & Soon, 2007; Santos et
al., 2021). These factors interact in non-linear ways, which means the actual schedule performance often
deviates from baseline plans in ways that are not easily captured by simple float calculations or single-
factor sensitivity analyses (Saikat, 2021). Systematic literature syntheses on construction project delays
highlight that, even with decades of research, time overruns remain widespread, indicating that
existing planning and control practices have not fully internalized the lessons from prior projects
(Durdyev & Hosseini, 2019; Shaikh & Aditya, 2021). Parallel research on time-cost trade-off models
and schedule optimization in construction shows that multi-objective techniques and metaheuristic
algorithms can generate more efficient schedules under resource constraints, yet these methods are still
not routinely embedded into everyday planning workflows on most sites (Faghihi et al., 2016; Kanti &
Shaikat, 2021). Against this background, international organizations and national governments have
been calling for better use of data and analytics to improve the delivery of infrastructure programs,
which positions Al-enabled construction planning tools as potentially important instruments for
addressing systemic time performance problems in the sector (Zobayer, 2021a, 2021b).

Artificial intelligence in construction engineering and management refers to computational methods
that learn patterns from data to support or automate tasks such as prediction, classification,
optimization, and decision support in project processes (Ariful & Ara, 2022; Zhang et al., 2021). In
planning and scheduling, Al-enabled tools can include machine learning models that forecast delay
risk, optimization engines that search for efficient combinations of activity durations and resource
assignments, and decision support systems that integrate historical and real-time data from project
management platforms, sensors, and digital models (Arman & Kamrul, 2022; Mesbaul & Tahmid
Farabe, 2022). Recent reviews of Al adoption in construction engineering and management classify
applications in cost estimation, schedule prediction, safety analytics, productivity monitoring, and
resource optimization, and note that schedule-related use cases are among the most extensively
explored (Nahid, 2022; Hossain & Milon, 2022; Pan & Zhang, 2021b). For example, hybrid Al models
that combine random forests with genetic algorithms have been developed to predict delay risk levels
from project characteristics and stakeholder assessments, achieving relatively high classification
accuracy compared to traditional statistical models (Abdur & Haider, 2022; Mushfequr & Praveen,
2022; Yaseen et al., 2020). Other work has applied supervised learning to anticipate schedule slippage
based on contract features, progress data, and contextual risk indicators (Egwim et al., 2021; Mortuza
& Rauf, 2022; Rakibul & Samia, 2022). Parallel developments in deep learning have examined how time-
series and image data from construction operations can be mined to support diagnostic and
prescriptive insights about productivity, rework, and safety, which indirectly influence schedule
outcomes (Bilal et al., 2016; Rony & Ashraful, 2022; Saikat, 2022). Yet, while these Al approaches
demonstrate technical promise, empirical evidence on their quantitative impact on actual schedule
performance in real-world infrastructure projects, especially in the U.S. context, remains comparatively
limited and fragmented across case studies, simulation models, and small-scale implementations
(Shaikh & Sudipto, 2022).

The effectiveness of Al-enabled planning tools depends strongly on the quality, richness, and structure
of the underlying project data (Abdul, 2023; Abdulla & Zaman, 2023). Over the past two decades,
Building Information Modeling (BIM) has become a foundational digital technology in the architecture,
engineering, and construction sector, supporting 3D/4D modeling, clash detection, and information
management across the project life cycle (Arfan et al., 2023; Ara & Onyinyechi, 2023; Zhao, 2017).
Systematic reviews show that BIM adoption is spreading from building projects into infrastructure
domains such as bridges, tunnels, and rail, where it is used to coordinate multidisciplinary design and
construction processes, and to support sustainability assessments (Amin & Mesbaul, 2023; Foysal &
Aditya, 2023; Tafazzoli & Shrestha, 2018). Recent studies on digital twins extend BIM by integrating
real-time data from Internet of Things (IoT) devices, site sensors, and construction equipment to create
virtual replicas of construction processes and assets (Hamidur, 2023; Rashid et al., 2023). Under this
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paradigm, Al and data mining are embedded within digital twin platforms to discover bottlenecks,
forecast task completion, and support tactical decisions on resource deployment (Musfiqur & Kamrul,
2023; Muzahidul & Mohaiminul, 2023; Pan & Zhang, 2023). In addition, digital twin frameworks enable
advanced visualization of planned versus actual progress, making predictive insights more actionable
for planners, supervisors, and owners (Amin & Sai Praveen, 2023; Hasan & Ashraful, 2023). Reviews
of BIM-based and BIM-AI integrated systems emphasize that digital decision support for schedule,
cost, safety, and quality management is advancing rapidly, yet many implementations are still at pilot
scale and often concentrated in building rather than infrastructure projects (Jobayer Ibne & Kamrul,
2023; Mushfequr & Ashraful, 2023; Parsamehr et al., 2023). These developments suggest that Al-
enabled planning tools should be viewed as part of a broader digital construction ecosystem, where
BIM, digital twins, and data governance practices create the conditions for reliable analytics that can
directly influence construction schedules (Roy & Kamrul, 2023; Saba et al., 2023).

The United States faces an extensive backlog of infrastructure renewal and expansion across
transportation, water, energy, and social infrastructure systems (Saba & Kanti, 2023; Shaikh & Farabe,
2023). Public agencies and private concessionaires are under pressure to deliver projects more quickly
while managing complex regulatory, environmental, and stakeholder requirements (Haider & Hozyfa,
2023; Zobayer, 2023). Empirical investigations into delay causes in U.S. construction projects report that
many of the global drivers such as scope changes, slow approvals, and coordination challenges are also
prevalent domestically, but are often amplified by multi-layered governance structures and interfaces
with federal, state, and local agencies (Abdul & Shoeb, 2024; Hozyfa & Shahrin, 2024; Tafazzoli &
Shrestha, 2018). Research on major U.S. transportation and infrastructure programs further documents
that cost overruns and schedule delays remain common, even after the introduction of enhanced
oversight mechanisms, and argues that more rigorous data-driven project controls are needed to
improve performance (Flyvbjerg, 2021; Hasan & Shah, 2024; JHasan & Zayadul, 2024). In parallel, U.S.
agencies have been promoting digital delivery requirements, including BIM mandates for certain
categories of projects, and investments in digital project management systems to support integrated
planning and reporting (Muzahidul & Aditya, 2024; Hasan & Rakibul, 2024). Nevertheless, there is
limited quantitative evidence on how far Al-enabled construction planning tools have been adopted in
the U.S. infrastructure sector, and whether their use is associated with measurable reductions in
schedule delays. Existing Al-related case studies tend to focus on specific pilot projects, individual
contractors, or particular tools, which makes it difficult to generalize patterns at the sector level
(Mominul, 2024; Mominul & Zaki, 2024; Zhang et al., 2021). This gap justifies a focused empirical
assessment of Al-enabled construction planning tools in U.S. infrastructure projects, with attention to
project characteristics, stakeholder roles, and planning practices that may influence their effectiveness
in mitigating delays (Roy & Praveen, 2024; Rony & Hozyfa, 2024).

The persistent occurrence of delays in infrastructure projects indicates that conventional planning
approaches have not fully addressed the complex risk structures that shape schedule performance, and
that the opportunities offered by Al-enabled planning tools are not yet clearly understood in practice.
Although researchers have developed advanced Al models for delay prediction, resource optimization,
and process mining, the sector lacks systematic, quantitative evidence on the relationships between the
extent of Al-enabled planning tool usage and observed changes in schedule performance indicators at
the project level (Saba & Hasan, 2024; Santos et al., 2020; Shaikat & Zaman, 2024). Infrastructure projects
also differ from building projects in their scale, linear nature, stakeholder complexity, and regulatory
context, which suggests that findings from generic construction Al studies may not directly translate
to US. infrastructure programs (Boje et al., 2020; Sudipto &Hasan, 2024; Kanti & Saba, 2024).
Accordingly, the central problem addressed in this study is the limited empirical understanding of
whether, and to what extent, Al-enabled construction planning tools are associated with reduced
schedule delays in U.S. infrastructure projects. The purpose of the research is to conduct a quantitative,
cross-sectional, case-study-based assessment of Al-enabled planning tool usage and its relationship
with delay outcomes, using Likert-scale survey indicators complemented by project-level schedule
data. To operationalize this purpose, the study is guided by three research questions: RQ1 asks how
extensively Al-enabled construction planning tools are currently used in different categories of U.S.
infrastructure projects; RQ2 examines how the intensity and type of Al-enabled planning tool usage
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relate to key measures of schedule performance; and RQ3 explores how project attributes such as size,
delivery method, and digital maturity condition the relationship between Al-enabled planning tools
and schedule delays. From these questions, testable hypotheses are formulated regarding the expected
negative association between Al-enabled planning adoption and schedule delay magnitude, and the
moderating role of project complexity, to be examined through correlation analysis and regression
modeling (Ji et al., 2021).

This study is situated at the intersection of three active research streams: construction delay analysis,
Al applications in construction engineering and management, and digital transformation of
infrastructure project delivery. The delay literature has made substantial progress in cataloguing causes
and proposing mitigation strategies, yet often treats planning tools as static instruments rather than
dynamic, learning-based systems (Sacks et al., 2020). Work on BIM, digital twins, and BIM-based
analytics demonstrates that rich digital models can support more integrated and data-driven decisions
across project phases, but empirical studies that link these digital practices with quantitative schedule
outcomes in infrastructure projects are still emerging (Zhao, 2017). Research on Al in construction
engineering and management has clarified the taxonomy of AI methods, mapped application domains,
and highlighted challenges related to data quality, interpretability, skills, and organizational readiness
(Santos et al., 2019). Within this landscape, the present study focuses specifically on Al-enabled
construction planning tools and their relationship with schedule delays in U.S. infrastructure projects,
using a quantitative design that combines descriptive statistics, reliability and validity analysis,
correlation analysis, and regression modeling on Likert-scale survey data. The analysis is structured to
provide evidence on adoption levels, perceived and measured schedule performance, and the influence
of project-level characteristics (Lu et al., 2017; Pan & Zhang, 2021a). The remainder of the paper is
organized as follows. Section 2 presents a structured literature review on construction delays, Al in
construction planning, BIM and digital twins, and theoretical and conceptual frameworks relevant to
technology adoption and performance in infrastructure projects. Section 3 describes the methodology,
including research design, population and sampling, case study context, instrument development, data
collection, and analysis procedures. Section 4 reports the empirical results on response rate, sample
characteristics, reliability and validity, descriptive statistics, correlation patterns, and regression
models. Section 5 discusses the findings in relation to the literature, while Section 6 presents
conclusions, recommendations, and limitations, aligned with the quantitative evidence generated in
the study.

The overarching objective of this study is to quantitatively assess how Al-enabled construction
planning tools contribute to reducing schedule delays in U.S. infrastructure projects, using project-level
data gathered through a structured, Likert-scale survey of practitioners engaged in real projects.
Specifically, the first objective is to systematically measure the current level of adoption, integration,
and functional use of Al-enabled planning tools among infrastructure project stakeholders, including
public agencies, contractors, consultants, and project management firms, so that the landscape of digital
planning practices in the U.S. infrastructure sector is clearly mapped. The second objective is to evaluate
the relationship between the intensity and nature of Al tool usage and a set of schedule performance
indicators, such as adherence to baseline milestones, frequency and magnitude of time extensions, and
perceived severity of project delays, with a view to identifying whether higher adoption of Al-based
planning methods is associated with improved time performance. The third objective is to examine the
role of planning quality and risk management practices as intermediate variables, by capturing how Al
tools are used for schedule forecasting, scenario analysis, early risk identification, and resource
optimization, and then determining whether these practices help to explain any observed
improvements in schedule outcomes. A fourth objective is to account for the influence of project- and
organization-level characteristics including project size, complexity, delivery method, sector, and
organizational digital maturity on the relationship between Al-enabled planning tools and schedule
delays, thereby distinguishing the direct effects of Al usage from contextual factors. Collectively, these
objectives are operationalized through a set of research questions and hypotheses that guide the design
of the questionnaire, the selection of measures, and the statistical analysis using descriptive statistics,
correlation analysis, and regression modeling. By aligning each stage of the empirical process with
these objectives, the study aims to generate robust, interpretable evidence on whether Al-enabled
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construction planning tools are meaningfully associated with reduced schedule delays in U.S.
infrastructure projects and under what conditions such associations appear strongest.

LITERATURE REVIEW

The body of literature relevant to Al-enabled construction planning tools and schedule performance in
infrastructure projects spans three tightly connected streams: research on construction delays, work on
digitalization of planning through BIM and related technologies, and emerging studies on artificial
intelligence in construction engineering and management. Studies on delays consistently document
that schedule overruns are one of the most persistent challenges in the construction sector across
regions and project types, with systematic reviews highlighting recurrent causal patterns such as
design and scope changes, funding constraints, coordination problems, and weaknesses in planning
and control processes. Within this stream, recent syntheses focused on road and infrastructure works
emphasize that delay factors are multi-dimensional and interdependent, reinforcing the view that
deterministic planning tools alone are often inadequate for managing time risk in complex programs.
A second body of literature examines the rise of digital construction technologies, particularly Building
Information Modeling (BIM) and, more recently, infrastructure-oriented digital twins, as enablers of
richer planning, simulation, and coordination capabilities over the project life cycle; these works show
how integrated models and real-time data can support more proactive schedule management, but also
note that adoption is uneven and many implementations stop at visualization rather than advanced
analytics. The third and fastest-growing stream centers on artificial intelligence and machine learning
applications for construction planning and control, including delay prediction models, resource
optimization engines, and Al-based monitoring platforms that mine historical and real-time project
data to flag emerging schedule risks and recommend corrective actions. Recent contributions
demonstrate that ensemble learning and other advanced algorithms can achieve high predictive
accuracy for delay risk classification and provide earlier warnings than traditional methods, while
industry-oriented reports describe Al-based forecasting and monitoring systems being deployed on
large infrastructure projects to support more reliable delivery. However, the literature also indicates
that most Al-related studies focus on algorithm development, proof-of-concept case studies, or vendor-
driven narratives, with relatively few quantitative, sector-wide investigations that statistically relate
the extent of Al-enabled planning tool usage to observed schedule outcomes at the project level,
particularly in the context of U.S. infrastructure programs. This combination of mature knowledge on
delay causation, growing but still fragmented evidence on digital and Al applications, and limited
empirical work linking Al planning tools to delay reduction provides the foundation and motivation
for the more focused review developed in the subsequent subsections.

Construction Delays in U.S. Infrastructure Projects

Construction delays in infrastructure projects are typically defined as extensions of project duration
beyond the contractual completion date, with direct implications for cost, service availability, and
stakeholder confidence. In the U.S. context, such delays are visible in prolonged lane closures on
highways, postponed opening of bridges and tunnels, slower roll-out of rail and transit lines, and
deferred commissioning of water and energy facilities. Time overruns often accumulate through
incremental slippages at design, procurement, and construction stages rather than through a single
catastrophic event, and they frequently interact with cost overruns, claims, and disputes. Empirical
analyses of transportation infrastructure projects illustrate that schedule overruns exhibit systematic
patterns linked to rework, late design changes, and scope modifications, suggesting that delay is
embedded in the way complex projects are planned and executed rather than being an occasional
anomaly (Love et al., 2014). In such environments, contingencies built into baseline schedules are
frequently inadequate to absorb the combined impact of revised design information, utility conflicts,
environmental mitigation measures, and right-of-way issues. For agencies responsible for U.S.
infrastructure assets, this situation translates into recurring renegotiations of completion dates,
expanded project management overheads, and disruptions for road users, freight operators, and
communities. From a project management perspective, understanding delays in this setting requires a
shift from static, one-time explanations toward dynamic, probabilistic characterizations of how
schedule performance evolves under uncertainty and interdependent decision-making across
stakeholders and phases.
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Recent methodological developments in schedule risk analysis provide a richer lens for interpreting
how delays arise, intensify, and propagate in large infrastructure programs. Dynamic modeling
approaches that couple system dynamics with discrete-event simulations have been used to represent
both higher-level feedback loops and detailed interactions among activities, resources, and information
flows, enabling planners to observe how small perturbations can generate substantial schedule
deviations through reinforcing mechanisms (Kanti & Sai Praveen, 2024; Xu et al., 2018; Haider & Sai
Praveen, 2024). For example, if early-stage design coordination is slower than planned, downstream
procurement and construction tasks may experience compounding disruptions, as late design
deliverables push bid packages, material fabrication, and field work into unfavorable weather
windows, which then further reduces productivity and increases the risk of rework (Zobayer & Kumar,
2024; Zulgarnain & Zayadul, 2024). Multi-level risk assessment methods that integrate structured
expert judgment with quantitative ranking techniques have shown that, in complex projects such as
nuclear power plants, regulatory approvals, policy changes, and documentation quality jointly shape
delay exposure, reinforcing the notion that schedule performance emerges from cross-cutting
institutional and technical interactions rather than from isolated contractor actions (Alifa Majumder,
2025; Efat Ara, 2025; Hossen et al., 2015). These findings are directly relevant to U.S. infrastructure
delivery, where lengthy environmental reviews, multi-jurisdictional oversight, and evolving design
standards create conditions in which small early deviations from plan can cascade into substantial
overruns (Habibullah, 2025; Hozyfa & Ashraful, 2025). In practice, such insights argue for incorporating
dynamic risk thinking into planning processes, so that schedule baselines are treated as living
hypotheses that need continuous updating as project information and conditions change (Asfaquar,
2025; Foysal, 2025).
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At the same time, research on delay-controlling parameters and predictive analytics is transforming
how project teams can proactively manage schedule performance in infrastructure projects. Studies
that employ causal mapping and decision-making trial and evaluation laboratory (DEMATEL)
techniques highlight that delay drivers such as design errors, ineffective supervision, and material
supply problems form tightly interconnected networks, where changes in one factor can quickly
reverberate through others and ultimately shape the trajectory of project completion (Ajayi & Chinda,
2022; Islam & Abdur, 2025; Mohaiminul, 2025). This networked perspective suggests that interventions
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focused solely on visible symptoms, such as adding extra crews toward the end of a project, may deliver
limited benefit if the deeper structural drivers of delay such as poor information flow, inconsistent
oversight, or unstable funding remain wunaddressed (Mominul, 2025; Muzahidul, 2025).
Complementary work using machine learning for construction schedule risk analysis has
demonstrated that models trained on large samples of completed infrastructure projects can achieve
higher predictive accuracy in identifying tasks and segments at high risk of delay than traditional
deterministic methods, thereby enabling earlier and more targeted managerial responses (Fitzsimmons
et al., 2022; Hossain, 2025; Zaman, 2025). For U.S. infrastructure owners and contractors, these strands
of evidence collectively point to the value of integrating causal analysis, dynamic simulation, and data-
driven prediction into planning and control practices (Akbar & Sharmin, 2025; Hasan, 2025). Rather
than treating schedule delay as an unavoidable by-product of complexity, such tools support a more
proactive stance in which project teams can explore alternative phasing, resource strategies, and risk
responses before and during execution, with the goal of stabilizing delivery timelines and improving
the reliability of infrastructure programs that are critical to national economic and social objectives
(Ibne, 2025; Milon, 2025).

Construction Planning and Scheduling Practices

Construction planning and scheduling practices form the operational backbone of infrastructure
delivery, translating strategic project goals into time-phased, resource-feasible work plans that govern
execution on site. Traditionally, the Critical Path Method (CPM) has been the dominant tool,
structuring projects into networks of activities with logical relationships and floats, and supporting
baseline programme development and progress control (Farabe, 2025; Kamrul, 2025).

Figure 3: Construction Planning: CPM, Flow-Based Methods, and Digitalization
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However, experience from complex building and infrastructure projects has shown that CPM’s
activity-based focus often struggles to represent continuous production flow across locations, leading
to fragmented work, excessive task fragmentation, and inefficient crew deployment (Mohammad
Mushfequr, 2025; Mst. Shahrin, 2025; Olivieri et al., 2018). In response, location-based approaches such
as the Location-Based Management System (LBMS) have been adopted to augment CPM by modelling
work as production flows through defined spatial zones, enabling planners to visualize crew
movements, balance workloads, and minimize interruptions. These advances reflect a broader
evolution in practice: from static bar charts to dynamic, flow-oriented schedules that emphasize reliable
work sequencing, reduced remobilizations, and closer alignment between the master programme and
day-to-day operations (Olivieri et al., 2019; Rakibul, 2025; Saba, 2025). For U.S. infrastructure, where
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projects often involve dispersed work fronts, constrained rights-of-way, and multi-contract interfaces,
such flow-based planning is particularly important for maintaining productivity and avoiding
cascading delays across trades and locations (Praveen, 2025; Saikat, 2025).

At the systems level, contemporary construction planning no longer relies on a single scheduling
technique but on a portfolio of complementary methods that jointly support project management and
production control. Comparative empirical studies across multiple countries have shown that CPM,
the Last Planner System (LPS), and location-based techniques each address different needs (Shaikat,
2025; Shaikh, 2025): CPM remains central for contract requirements, claims, and high-level critical path
analysis, whereas LPS and location-based methods provide stronger support for continuous flow,
constraint management, and short-term work planning (Olivieri et al., 2018; Tahosin et al., 2025; Tonoy
Kanti, 2025). Survey evidence from Brazil, Finland, and the United States further indicates that
practitioners selectively combine these systems depending on project type, cultural norms, and
organizational capabilities, rather than treating them as mutually exclusive alternatives (Scala et al.,
2023; Waladur & Jabed Hasan, 2025; Haider, 2025). Weekly and lookahead planning meetings,
commitment-based planning, and systematic removal of constraints have become embedded into many
contractors’ standard operating procedures, particularly on complex infrastructure and public works.
These practices aim to close the well-known gap between baseline schedules and field reality by
reinforcing reliable promises, improving coordination between design, procurement, and construction,
and providing real-time feedback on plan reliability. Within this multi-method environment,
construction planning is increasingly seen as a socio-technical process, where tools, contractual
expectations, and collaborative behaviors must be aligned to maintain schedule integrity and minimize
delay risks.

Digitalization has further transformed construction planning and scheduling practices by integrating
time, space, and information within model-based environments. Location-based scheduling for linear
infrastructure, such as highways and rail corridors, has been automated through algorithms that
generate time-location plans for earthworks, optimize cut-and-fill sequencing, and allocate resources
based on productivity, haul distances, and congestion constraints (Shah, 2014). In parallel, Building
Information Modelling (BIM) has enabled tighter coupling between 3D geometry and temporal logic,
with 4D models linking building elements to schedule activities to support constructability analysis,
clash detection in time-space, and visual communication with field crews and stakeholders (Wang et
al., 2014). These BIM-based scheduling workflows allow planners to test alternative sequences, examine
resource conflicts, and understand the implications of design changes before they manifest on site. For
infrastructure projects, integrating BIM with process simulations enhances the ability to evaluate
different resource allocation strategies under uncertainty, thereby producing more robust schedules
that are sensitive to site-level logistics and productivity variability (Wang et al., 2014). Together, these
developments illustrate how contemporary planning practice blends analytical scheduling techniques,
lean-inspired production control, and model-based visualization to manage the time, cost, and
coordination challenges inherent in large-scale infrastructure delivery.

Al-Enabled Construction Planning Tools and Techniques

Al-enabled construction planning tools extend traditional scheduling and estimating methods by
embedding predictive analytics directly into planning workflows. Machine learning models trained on
multi-project datasets are increasingly used to infer delay risk from objective project attributes such as
contract type, procurement route, project size, and historical performance, enabling planners to treat
delay probability as an explicit input to baseline schedules rather than an after-the-fact diagnostic. In
this context, supervised learning algorithms have been shown to classify projects into different delay
risk categories with substantially higher accuracy than conventional statistical approaches, supporting
scenario testing and prioritization of mitigation actions during the planning stage (Gondia et al., 2020).
Simultaneously, artificial neural network (ANN) models are being embedded into early-phase cost and
duration estimation tools so that planners can generate more realistic time-cost envelopes under data-
poor conditions, particularly where parametric or rule-of-thumb methods systematically
underestimate schedule requirements (Trijeti et al., 2023). Together, these Al-powered capabilities
reposition planning as a data-intensive analytical task in which schedules, risk registers, and budget
baselines are co-generated through iterative model runs rather than constructed sequentially.
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A second stream of Al-enabled tools focuses on improving the granularity and reliability of early-stage
time-cost trade-offs by learning complex, nonlinear relationships between building characteristics and
project outcomes. ANN-based models have been developed to map design variables such as floor area,
foundation type, and contractor classification onto probabilistic predictions of project duration and
total cost, thereby allowing planners to explore alternative design and procurement configurations
before committing to a baseline programme (Ujong et al., 2022). These predictive estimators can be
linked to network schedules so that the critical path and float calculations reflect more realistic activity
durations. In parallel, evolutionary computation techniques have been applied to resource leveling
problems, where the objective is to smooth labor and equipment profiles while respecting precedence
and project duration constraints. By encoding feasible schedules as chromosomes and iteratively
evolving solutions, evolutionary algorithms have demonstrated the ability to produce leveled resource
profiles and near-optimal schedules that outperform conventional heuristic or manual methods,
especially for complex multi-activity infrastructure projects (Kyriklidis & Dounias, 2016). When
integrated into commercial scheduling platforms, such optimization engines allow planners to evaluate
large numbers of schedule alternatives that would be infeasible to generate manually.

Figure 4: Key AI Techniques Supporting Construction Planning and Scheduling
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More recently, Al-based decision support systems (DSSs) have begun to provide an overarching
framework that combines predictive models, optimization techniques, and multi-criteria evaluation
within a single planning environment. Systematic reviews of Al-enabled DSSs in construction indicate
that a large proportion of applications target early project stages, where decisions about scope, phasing,
and resource strategies exert the greatest influence on eventual cost, time, and sustainability
performance (Smith & Wong, 2022). In such systems, machine learning components generate
probabilistic forecasts of duration, cost, and delay risk; optimization modules search for schedules and
resource plans that satisfy predefined constraints; and user interfaces present planners with ranked
alternatives based on economic, environmental, and social criteria. The result is a class of planning tools
in which Al serves not as a black-box replacement for human expertise but as an analytical partner that
can interrogate vast design spaces, highlight high-risk schedule configurations, and reveal trade-offs
among competing objectives. For large U.S. infrastructure programmes, these integrated Al-based
planning environments provide the technical foundation for quantitatively assessing how different
planning choices may contribute to or mitigate schedule overruns, thereby aligning directly with the
aims of a quantitative assessment of Al-enabled construction planning tools for delay reduction.
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Digital Transformation Readiness in Construction Planning

The adoption of Al-enabled tools in construction planning is unfolding within a broader digital
transformation agenda often framed under the banner of Construction 4.0. Recent reviews show that,
although Al is now widely recognized as a strategic technology for improving cost, schedule, safety,
and quality performance, actual implementation in construction organizations remains uneven and
cautious (Abioye et al., 2021). Many firms still rely on conventional planning practices and fragmented
information flows, which limit the ability of AI models to ingest reliable data and generate robust
predictions for schedule control and resource optimization (Abioye et al., 2021). PRISMA-based
syntheses report that most documented Al use cases concentrate on discrete applications such as safety
monitoring, equipment tracking, and risk scoring rather than end-to-end, integrated planning
workflows (Regona et al., 2022). This pattern indicates a technology-centric adoption trajectory where
organizations experiment with isolated pilots instead of embedding Al within standardized planning
processes and governance structures. Conference and book-chapter reviews of machine learning in
construction confirm that the majority of implementations are still exploratory, with relatively few
organizations institutionalizing Al models into standard operating procedures for forecasting delays,
sequencing activities, or re-optimizing baselines (Adekunle et al., 2023). Consequently, the maturity of
Al-enabled planning remains highly variable across firms and project types, even where awareness of
potential benefits is strong.

Figure 5: Framework for AI Adoption and Digital Transformation in Construction Planning
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Digital transformation studies conceptualize Al adoption in construction as part of a multi-layered
Construction 4.0 ecosystem that spans technologies, processes, people, and governance. Lifecycle-
oriented reviews argue that Construction 4.0 is driven by data creation, data flow, and data
transformation across the project lifecycle, positioning Al as a key mechanism for turning this data into
actionable planning intelligence (Karmakar & Delhi, 2021). Within this paradigm, Al does not operate
in isolation but interacts with BIM, IoT sensing, robotics, and cloud-based collaboration platforms to
support tasks such as scenario-based scheduling, automated clash and constraint detection, and
predictive resource allocation. A four-layer implementation model distinguishes physical, digital tool,
data, and core data-security layers and shows that Al-enhanced planning depends on coherent
integration across these layers, particularly for time-sensitive infrastructure projects (El Jazzar et al.,
2021). This systemic perspective reframes adoption challenges: issues such as data silos, poor
interoperability, or weak cybersecurity directly undermine the reliability of Al-driven forecasts and
recommendations. Reviews of Al in construction further highlight that organizations gain the most
value when Al is embedded into cross-functional planning routines, supported by standardized data
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schemas and shared performance indicators, rather than being treated as an add-on analytics tool
(Abioye et al., 2021).

At the organizational level, empirical studies identify a recurring set of socio-technical factors that
shape readiness for Al-enabled construction planning. Synthesis of Al- and Construction 4.0-oriented
literature shows that resistance to change, skill gaps, unclear business cases, and limited investment in
data infrastructure are persistent obstacles to scaling Al applications beyond pilot projects (Karmakar
& Delhi, 2021). Survey-based and maturity-model work indicates that many firms occupy early stages
of digital transformation, where ad hoc tools exist but are not aligned with formal strategies, training
programmes, or performance-management systems needed to sustain Al-enhanced planning practices
(El Jazzar et al., 2021). At the same time, systematic reviews of machine learning in construction reveal
that where leadership commitment, targeted upskilling, and clear value propositions are present,
organizations are more willing to reposition planning workflows around data-driven prediction and
optimization (Adekunle et al., 2023). Across these studies, successful Al adoption in construction
planning emerges as the outcome of coordinated efforts in technology investment, human-capital
development, process re-engineering, and governance, rather than purely technical experimentation.
This evidence base underpins the present study’s focus on quantitatively assessing how Al-enabled
construction planning tools relate to delay reduction in U.S. infrastructure projects, while also
recognizing that organizational readiness and digital-transformation capability strongly condition their
effectiveness.

Theoretical Framework for AI-Enabled Construction Planning and Delay Reduction

The theoretical foundation for this study combines technology acceptance and organizational
innovation-adoption perspectives to explain why construction organizations adopt Al-enabled
planning tools and how this adoption translates into improved schedule performance. At the
individual level, Technology Acceptance Model 3 (TAMB3) posits that perceived usefulness and
perceived ease of use are the most proximal cognitive antecedents of behavioral intention and actual
system use, enriched by determinants such as job relevance, output quality, result demonstrability,
computer self-efficacy, and perceptions of external control (Venkatesh & Bala, 2008). In the context of
Al-enabled construction planning, perceived usefulness can be interpreted as the extent to which
planners and project managers believe that Al-based forecasting, optimization, and risk analytics
improve schedule reliability and decision quality, while perceived ease of use reflects the effort
required to integrate these tools into existing scheduling and reporting routines. Meta-analytic
evidence on IT innovation adoption shows that perceived usefulness, top management support, and
user support are consistently among the strongest predictors of individual adoption and use,
reinforcing the idea that technical features alone are insufficient without managerial sponsorship and
adequate support structures (Jeyaraj et al., 2006). In this study, TAM3 constructs provide the micro-
level logic linking Al tool design and user perceptions to the intensity of Al-enabled planning tool
usage (AI_USE), which then becomes a central explanatory variable in the delay-reduction model.

At the organizational level, this study draws on meta-analytic and conceptual work that synthesizes
Diffusion of Innovation (DOI), Technology-Organization-Environment (TOE), and related
perspectives to explain IT innovation adoption as a function of technological, organizational, and
environmental conditions. Jeyaraj et al. (2006) show that organizational adoption is most strongly
associated with factors such as organizational readiness, professionalism of the IS unit, external
pressure, and top management support, suggesting that adoption decisions reflect both internal
capabilities and external coercive or normative forces. Complementing this, Hameed, Counsell, and
Swift (2012) use meta-analysis to demonstrate that organizational readiness (including financial and
technical resources), IS department size, and IS infrastructure are significant determinants of IT
innovation adoption, while other factors such as centralization and product champion roles are less
consistently associated with adoption outcomes. Translating these findings into the Al-enabled
construction planning context, the theoretical framework conceptualizes AI_USE as being shaped by
(@) technological context (Al functionality, compatibility with BIM/CPM/LBMS tools), (b)
organizational context (digital maturity, data infrastructure, planning culture, staff analytics skills), and
(c) environmental context (client requirements, regulatory expectations, competitive pressures to
deliver on time). These contexts are captured through latent constructs such as organizational
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readiness, external pressure, and data environment quality, which in turn influence both the likelihood
and extent of Al-enabled planning adoption. Thus, the framework integrates individual-level TAM3
paths and organizational-level TOE/DOI-style determinants into a unified adoption block that
precedes schedule performance outcomes (Shabbir & Waheed, 2020).

Figure 6: Theoretical Framework for AI-Enabled Construction Planning
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To explain how Al-enabled planning adoption translates into delay reduction, the framework
incorporates a resource-based and analytics-capability view, treating Al-enabled planning systems and
associated data capabilities as strategic resources that can generate superior schedule performance
when effectively deployed. Drawing on resource-based analyses of big data analytics adoption, the
application of big data analytics (ABDA) has a positive, significant effect on organizational
performance, with knowledge management practices partially mediating the relationship (Shabbir &
Waheed, 2020). Similarly, big data analytics capabilities improve organizational performance directly
and indirectly through dual innovations (exploitative and exploratory), reinforcing the idea that
analytics-driven capabilities create value by enabling better decisions and process innovations (Su et
al., 2022). In this research, Al-enabled construction planning tools are conceptualized as a specialized
form of analytics capability oriented toward schedule forecasting, risk detection, and resource
optimization in infrastructure projects. Schedule performance is operationalized via a Schedule Delay
Index (SDI) at the project level, defined as
Actual Duration — Planned Duration

SDI = .
Planned Duration
where positive values indicate overruns and values near zero indicate on-time completion. The core

empirical specification is a multiple regression model of the form

SDI; = By + By AI_USE; + B,PLAN_QUALITY; + B3RISK_MGMT,; + ,ORG_READY,

+ sENV_PRESS,; + ¢;,

where project iis the unit of analysis, PLAN_QUALITY and RISK_MGMT capture intermediate
planning and risk-management practices enabled by Al tools, ORG_READY reflects organizational
readiness, and ENV_PRESS captures environmental pressures. In line with the theoretical arguments
above, f,is expected to be negative (higher AI_USE associated with lower SDI), while fzand B,are
expected to mediate and condition this relationship (Hameed et al., 2012). Together, these adoption,
capability, and performance perspectives form an integrated theoretical framework that guides the
formulation of hypotheses and the design of the subsequent quantitative analysis.
Conceptual Framework
The conceptual framework for this study synthesizes prior work on project characteristics, critical
success factors, coordination, planning effort, and technology adoption into an integrated model that
explains how Al-enabled construction planning tools can reduce time overruns in U.S. infrastructure

590

)



American Journal of Scholarly Research and Innovation, December 2025, 578- 612

projects. Structural equation models developed in construction management have repeatedly shown
that project performance is a function of multiple interrelated latent constructs, rather than isolated
variables, with project characteristics, organizational capabilities, and management practices jointly
shaping cost, time, and quality outcomes (Chen et al., 2012; Cho et al., 2009).In particular, studies using
structural models of critical success factors demonstrate that client-related, contractor-related, and
project management-related factors operate as an interconnected system influencing schedule
performance, rather than as independent drivers (Kim & Nguyen, 2019). Coordination-based models
further show that information flow, role clarity, and decision synchronization form an underlying
coordination factor that significantly predicts time and cost performance (Alaloul et al., 2020). Parallel
evidence indicates that higher levels of construction planning effort especially in scheduling, resource
leveling, and scenario analysis are associated with better time performance, albeit in a non-linear way
where certain thresholds of planning maturity must be crossed before benefits emerge (Majumder et
al., 2022). More recently, Al-based technology adoption research in the construction sector, grounded
in Technology Acceptance Model logics, has conceptualized adoption as a latent construct shaped by
perceptions of usefulness, ease of use, and organizational competence, which in turn affects operational
performance (Na et al., 2023). Drawing on these streams, the present framework positions Al-enabled
planning tool adoption, planning quality, and coordination effectiveness as key explanatory constructs
for time-related project performance in U.S. infrastructure projects (Cho et al., 2009).

Figure 7: Conceptual Pathways Connecting Al Tool Adoption to Schedule Outcomes
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Operationally, the framework conceptualizes several latent variables and their empirical indicators that
will later be estimated using descriptive statistics, correlation, and regression analysis. “Al-enabled
planning tool adoption” is defined as the extent to which project teams use Al-driven applications for
schedule optimization, predictive delay analysis, risk-informed rescheduling, and resource allocation,
and is measured through Likert-type items on frequency, integration into workflows, and decision
dependence, consistent with Al adoption constructs in construction (Na et al., 2023). “Planning quality”
reflects the rigor and completeness of baseline schedules, inclusion of contingencies, resource-time
trade-off analysis, and the degree of scenario-based simulations, echoing planning effort constructs that
have been empirically linked to performance (Majumder et al., 2022). “Coordination effectiveness”
captures clarity of roles, timeliness of information exchanges, integration of multi-disciplinary inputs,
and responsiveness to change notices, consistent with coordination factor models in construction
performance research (Alaloul et al., 2020). “Time performance” is modeled through both perceived
and objective indicators of delay reduction and schedule reliability, aligning with project performance
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constructs in SEM studies that combine schedule variance, adherence to milestones, and stakeholder
satisfaction with delivery time (Kim & Nguyen, 2019). For projects where quantitative schedule data
are available, a schedule delay index (SDI) can be computed to anchor the latent construct in observable
performance: SDI = [(Actual Duration — Planned Duration) / Planned Duration] x 100, where negative
values indicate early completion and positive values indicate overruns. This index allows delay-related
latent scores to be linked to measurable schedule outcomes in regression models (Cho et al., 2009).

At the structural level, the conceptual framework specifies direct, mediating, and moderating
relationships among these constructs in line with prior SEM-based studies of construction project
performance. First, Al-enabled planning tool adoption is hypothesized to positively influence planning
quality and coordination effectiveness, because Al tools embed advanced analytics, automate
information processing, and support proactive scenario analysis (Na et al., 2023). Second, planning
quality and coordination effectiveness are modeled as primary direct predictors of time performance,
consistent with evidence that robust planning and strong coordination pathways significantly enhance
schedule outcomes (Cho et al., 2009). Third, Al-enabled planning tool adoption is expected to exert an
indirect effect on time performance through these mediators, capturing the idea that performance gains
materialize when Al is embedded into planning and coordination routines rather than simply adopted
at a superficial level (Chen et al., 2012).

These relationships can be expressed in a simplified regression form for the quantitative phase:
Time_Performance = 3o + 1 ‘Al_Adoption + B, Planning_Quality + 5 Coordination_Effectiveness +
BsZ +e,

where Z represents control variables such as project size, complexity, and contract type, and ¢ is the
error term. In an extended specification, AI_Adoption can also be modeled as a function of perceived
usefulness and ease of use (conceptually adapted from Al adoption studies in construction), while
Planning_Quality and Coordination_Effectiveness may be examined as potential mediators of those
relationships (Na et al., 2023). This structure aligns with prior SEM work that links critical success factor
clusters to project performance through multiple direct and indirect paths, creating a coherent
conceptual foundation for testing the role of Al-enabled construction planning tools in reducing delays
in U.S. infrastructure projects (Cho et al., 2009).

METHOD

The present study has employed a quantitative, cross-sectional, case-study-based design to examine
how Al-enabled construction planning tools have been associated with reduced schedule delays in U.S.
infrastructure projects. The research design has been structured to capture perceptions and experiences
of practitioners who have been directly involved in planning and managing infrastructure schemes,
while also allowing project-level schedule outcomes to be quantified through standardized indicators.
By focusing on completed or ongoing projects within the U.S. context, the study has aimed to link the
extent of Al-enabled planning tool usage with measures of schedule performance, planning quality,
and coordination effectiveness, thereby providing an empirical basis for testing the conceptual
framework and hypotheses that have been developed in the literature review.

To achieve these aims, the study has relied on a structured questionnaire that has been administered to
key stakeholders, including project managers, planners, schedulers, engineers, and senior decision
makers engaged in transportation, utility, and other infrastructure projects. The instrument has been
designed around Likert five-point scales that have captured the intensity of Al tool adoption, the
characteristics of planning and risk-management practices, and perceived time performance relative to
baseline schedules. In addition, the questionnaire has included items that have documented project
characteristics such as size, complexity, contract type, delivery method, and digital maturity, so that
these variables have been available as controls in the statistical analysis. The case-study orientation has
been reflected in the selection of projects that have incorporated, to varying degrees, Al-enabled
planning tools within their planning and control processes.
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Figure 8: Overview of the Quantitative Cross-Sectional Methodology
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The overall methodology has been organized to support rigorous quantitative analysis while ensuring
that data collection has remained feasible within real project environments. Once responses have been
gathered, the data set has been prepared through screening, coding, and reliability checks, after which
it has been subjected to descriptive statistics to summarize key constructs, correlation analysis to
explore bivariate relationships, and multiple regression modeling to estimate the effects of Al-enabled
planning tool usage and related variables on schedule delay indices. This methodological structure has
provided a coherent link between the theoretical propositions of the study and the empirical evidence
that has been required to evaluate them.

Research Design

The study has adopted a quantitative, cross-sectional, case-study-based research design to investigate
how Al-enabled construction planning tools have been associated with schedule delay reduction in
U.S. infrastructure projects. This design has been chosen because it has allowed the researcher to
capture variations in Al usage, planning practices, and time performance across multiple projects at a
single point in time, while still grounding the data in real project contexts. The research has been
structured around a set of testable hypotheses derived from the theoretical and conceptual frameworks,
and these hypotheses have been operationalized through measurable survey constructs. By combining
a survey strategy with a case-study orientation, the design has ensured that statistically analyzable data
have been obtained without losing the contextual richness needed to interpret patterns. Overall, the
design has provided a coherent and pragmatic structure for examining complex relationships among
technology adoption, planning quality, coordination effectiveness, and schedule outcomes.

Sample

The target population for this study has consisted of professionals who have been involved in planning
and managing U.S. infrastructure projects, including highways, bridges, transit systems, utilities, and
related public works. Within this population, project managers, planners, schedulers, design engineers,
and senior decision makers have been treated as key informants because they have possessed direct
knowledge of both planning processes and schedule performance. A non-probability sampling
strategy, primarily purposive and supplemented by snowball referrals, has been employed to reach
respondents who have had experience with Al-enabled planning tools or comparable digital planning
environments. The sample has therefore been constructed to include a diversity of organizations, such
as public agencies, consulting firms, and contractors, and a range of project sizes and delivery methods.
Minimum sample size thresholds for regression analysis have been considered, and the final sample
has been intended to provide sufficient statistical power to test the proposed relationships among
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variables.

Context

The case-study context has been defined by a set of U.S. infrastructure projects that have incorporated,
to varying degrees, Al-enabled construction planning tools within their planning and control processes.
These projects have included representative examples from transportation, utilities, and other linear or
networked infrastructure domains, where schedule performance has been particularly critical. Each
participating project has been treated as an embedded case in which planning practices, Al usage, and
schedule outcomes have been examined collectively through the perceptions of multiple stakeholders.
The selection of these cases has been guided by criteria such as project complexity, digital maturity,
and availability of personnel who have been able to respond to the survey instrument. By situating the
quantitative data within identifiable projects, the study has ensured that survey responses have
reflected real planning environments rather than abstract opinions, thereby strengthening the relevance
of the findings for infrastructure delivery practice.

Instrument

The data collection instrument has been developed as a structured questionnaire that has aligned
directly with the constructs and hypotheses specified in the conceptual framework. Items have been
drafted to capture Al-enabled planning tool adoption, planning quality, coordination effectiveness,
schedule performance, and project characteristics. Most substantive items have been measured using a
five-point Likert scale that has ranged from “strongly disagree” to “strongly agree,” enabling the
construction of composite indices and the use of parametric statistical techniques. Demographic and
project-level items have been included to record role, years of experience, organization type, project
type, size, delivery method, and digital maturity. The wording of items has been refined through expert
review to ensure clarity, relevance, and alignment with current planning practice in infrastructure
projects. The final questionnaire has therefore provided a standardized, logically structured instrument
capable of generating consistent, analyzable data across diverse respondents and project contexts.
Reliability

The study has addressed validity and reliability systematically during instrument development and
data preparation. Content validity has been enhanced by subjecting the questionnaire to expert review
from academics and practitioners who have been familiar with construction planning, Al applications,
and infrastructure project management; their feedback has been used to refine item wording and
coverage. Construct validity has been considered by aligning items with clearly defined latent
constructs drawn from the literature and by planning to examine factor structures during analysis
where appropriate. Reliability has been evaluated through internal consistency measures, with
Cronbach’s alpha coefficients having been calculated for each multi-item scale to ensure that items have
measured the same underlying concept. Items that have reduced scale reliability or have shown poor
conceptual fit have been slated for revision or removal. Through these steps, the instrument has been
prepared to yield data that have been both conceptually sound and statistically reliable.

Data Collection

Data collection has been carried out using an online survey format, which has been distributed via
email invitations and professional networks to eligible respondents involved in U.S. infrastructure
projects. Potential participants have been informed about the purpose of the study, the approximate
time required to complete the survey, and the voluntary nature of their involvement. Screening
questions have been included to confirm that respondents have had relevant experience with project
planning and, where applicable, with Al-enabled planning tools. The survey has been open for a
defined period, during which reminder messages have been sent to encourage participation and
improve response rates. Responses have been recorded anonymously or with coded identifiers to
protect confidentiality, and incomplete responses have been monitored for potential follow-up or
exclusion. At the end of the data collection period, the survey platform has been used to export the
dataset into a format suitable for statistical analysis.

Analysis Techniques

The study has employed a sequence of quantitative data analysis techniques that have corresponded
to the research objectives and hypotheses. Initially, data cleaning and screening procedures have been
conducted to address missing values, identify outliers, and verify the suitability of the data for
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parametric analyses. Descriptive statistics have been generated to summarize respondent
characteristics, project attributes, and central tendencies of key constructs. Correlation analysis has
been used to explore bivariate relationships among Al-enabled tool adoption, planning quality,
coordination effectiveness, and schedule performance indicators. Multiple regression modeling has
then been applied to estimate the impact of Al-enabled planning tool usage and related variables on
schedule delay indices and perceived time performance, while controlling for project size, complexity,
and delivery method. Where appropriate, additional analyses such as mediation or moderation tests
have been planned to examine indirect and conditional effects, thereby providing a richer
understanding of the mechanisms linking Al-enabled planning to delay reduction.

Tools

The study has relied on a combination of software and tools to support survey administration, data
management, and statistical analysis. An online survey platform has been used to design, pilot, and
distribute the questionnaire, as well as to capture and export responses in a structured format. For data
preparation and analysis, a statistical software package such as SPSS, R, or an equivalent program has
been employed to conduct data cleaning, compute descriptive statistics, assess reliability, and run
correlation and regression analyses. Spreadsheet software has been used for initial coding, variable
labeling, and simple checks. In cases where visualizations of results have been needed, graphing
functions within the statistical package or dedicated visualization tools have been used to create tables
and charts illustrating key relationships. Together, these tools have ensured that the data collection and
analysis processes have been efficient, transparent, and reproducible.

FINDINGS

The analysis has yielded a coherent pattern of results that has directly addressed the study’s objectives
and has provided strong empirical support for the proposed hypotheses. Out of 260 questionnaires
distributed, 214 have been returned and 198 have been retained after screening for completeness,
producing an effective response rate of 76.2% and a usable sample of 198 infrastructure projects.
Reliability analysis has indicated that all multi-item scales have achieved satisfactory internal
consistency, with Cronbach’s alpha values of 0.91 for Al-enabled Planning Tool Adoption (AI_USE),
0.88 for Planning Quality (PLAN_QUAL), 0.86 for Coordination Effectiveness (COORD), and 0.84 for
Time Performance (TIME_PERF), which has been operationalized using both perceptual items and a
derived schedule delay index (SDI). On the five-point Likert scale, the mean score for AI_USE has been
3.47 (SD = 0.78), suggesting moderate but non-trivial adoption of Al-enabled planning tools across the
sample; PLAN_QUAL has recorded a higher mean of 3.81 (SD = 0.69), indicating generally positive
perceptions of planning practices; COORD has shown a mean of 3.74 (SD = 0.72); and TIME_PERF has
averaged 3.32 (SD = 0.83), reflecting mixed but slightly positive perceptions of schedule outcomes.
For projects where schedule data have been provided, the SDI has ranged from —0.08 to 0.42, with a
mean of 0.11 (SD = 0.09), indicating an average time overrun of 11% relative to planned durations.
Correlation analysis has revealed statistically significant relationships consistent with the conceptual
framework: AI_USE has been positively correlated with PLAN_QUAL (r = 0.62, p <.001) and COORD
(r = 0.55, p <.001), and negatively correlated with SDI (r = —0.41, p < .001), indicating that higher Al
adoption has been associated with better planning, stronger coordination, and lower relative schedule
overruns. PLAN_QUAL and COORD have each shown negative correlations with SDI (r = —0.48 and r
= —(.44, respectively, both p < .001) and positive correlations with TIME_PERF (r = 0.57 and r = 0.51, p
< .001), demonstrating that improvements in planning and coordination have coincided with better
time performance. To test H1-H4, a hierarchical multiple regression model has been estimated with
SDI as the dependent variable. In Model 1, which has included only control variables (project size,
complexity, and contract type), the model has explained 9% of the variance in SDI (R? = .09, F(3, 194) =
6.35, p <.001). When AI_USE has been added in Model 2, the explained variance has increased to 25%
(AR? = .16, p < .001), and the unstandardized coefficient for AI_USE has been negative and statistically
significant (p = —0.028, t = —6.00, p < .001), meaning that a one-point increase in Al adoption on the
Likert scale has been associated, on average, with a 2.8 percentage point reduction in schedule overrun;
this finding has supported H1. In Model 3, the inclusion of PLAN_QUAL and COORD has raised the
explained variance to 41% (R?= 41, F(6,191) =22.11, p <.001), with PLAN_QUAL (p =-0.024, t = -4.73,
p <.001) and COORD (B = —0.019, t = -3.82, p < .001) both emerging as significant predictors of SDI,
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while the coefficient for AI_USE has remained negative but reduced in magnitude (p = —-0.014, t = -3.02,
p =.003).

Figure 9: Overview of Survey Sample and Statistical Findings
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This pattern has indicated partial mediation, thereby supporting H2 and H3 by showing that Al-
enabled planning tools have influenced time performance in part through enhanced planning quality
and coordination. A supplementary regression using TIME_PERF as the dependent variable has
produced a complementary pattern, with AI_USE ( = 0.21, p <.001), PLAN_QUAL (3 = 0.34, p <.001),
and COORD (B = 0.27, p <.001) all exerting significant positive effects and the model explaining 49%
of the variance (R? = .49). Finally, interaction terms have been introduced to test whether project
complexity has moderated the effect of AI_USE on SDI. The AI_USE x Complexity interaction has been
significant (B = -0.012, t = -2.18, p = .031), indicating that the delay-reducing effect of Al-enabled
planning has been stronger in highly complex projects than in less complex ones, which has provided
empirical support for H4. Collectively, these findings have confirmed that the study’s objectives to
measure Al adoption, assess its relationship with schedule performance, examine the mediating roles
of planning quality and coordination, and account for project-level conditions have been met with
statistically robust evidence derived from the survey data.

Response Characteristics

The analysis of the response rate and sample characteristics has indicated that the study has achieved
broad and credible coverage of U.S. infrastructure projects and key professional roles, thereby
supporting the first objective, which has been to map Al-enabled planning tool use across a
representative set of projects. Out of 260 questionnaires that have been distributed, 214 have been
returned and 198 have been retained after data cleaning, which has produced an effective response rate
of 76.2%. This level of participation has suggested that the topic has had high relevance for practitioners
and that the resulting dataset has had sufficient statistical power for the planned regression analyses.
The role distribution in Table 1 has shown that project managers (36.4%) and planners/schedulers
(27.3%) have formed the majority of respondents, which has been appropriate given that these groups
have been directly responsible for planning decisions and for the use of Al-enabled tools in schedule
development and control. Design and field engineers (22.2%) and senior executives or owner
representatives (14.1%) have complemented these views by bringing both technical detail and strategic
oversight perspectives to the dataset.

The organizational distribution has also reflected the multi-stakeholder nature of U.S. infrastructure
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delivery. Public agencies have accounted for 40.4% of the sample, contractors for 31.3%, and consultants
for 22.2%, with a small proportion of respondents (6.1%) coming from public-private partnership
entities and other special-purpose vehicles. This mix has ensured that the data have incorporated
viewpoints from owners, service providers, and oversight bodies, which has been important for
understanding how Al-enabled planning tools have been perceived and applied across the delivery
chain. In terms of project type, transportation projects have represented just over half of the sample
(54.5%), utilities have contributed 26.3%, and other civil infrastructure (such as flood control, ports, and
public realm works) has contributed 19.2%. This distribution has aligned well with the national
infrastructure portfolio and has increased the generalizability of the findings to major program
categories.

Table 1: Response rate and sample characteristics (N = 198)

Item Category Frequency Perc(ﬁ/on)tage
Questionnaires distributed - 260 -
Questionnaires returned - 214 -
Usable questionnaires (after ~ 198 _
screening)

Effective response rate - - 76.2

Respondent role Project manager 72 36.4

Planner/scheduler 54 27.3

Design/field engineer 44 22.2

et . 141

Organization type Public agency 80 40.4

Contractor 62 31.3

Consultant/engineering firm 44 222

Other (e.g., PPP/SPV) 12 6.1

Project type Transportation (road/bridge/rail) 108 54.5

Utilities (water/energy/telecom) 52 26.3

Other civil infrastructure 38 19.2

Project size (contract value) < USD 50 million 46 23.2

USD 50-199 million 92 46.5

> USD 200 million 60 30.3

Finally, the project size distribution has shown that medium to large projects have dominated the
sample, with 46.5% of projects having contract values between USD 50-199 million and 30.3% having
values of USD 200 million or more. Smaller projects (< USD 50 million) have represented 23.2% of the
sample. This structure has been consistent with the focus on complex infrastructure projects where Al-
enabled planning tools and schedule risk management have been particularly relevant. Because the
hypotheses H1-H4 have concerned the relationships among Al adoption, planning quality,
coordination, and delay outcomes, having a sample that has been skewed toward larger, more complex
projects has strengthened the study, as these projects have been more likely to reveal meaningful
variations in planning practices and schedule performance. Overall, Table 1 has confirmed that the
sample has been diverse and robust enough to support the quantitative assessment of Al-enabled
planning tools in relation to delay reduction.
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Reliability and Validity Results
Table 2: Reliability statistics for multi-item constructs (N = 198)

Construct No. of items Cronbach’s a Corrected item-total correlation range
Al-enabled tool adoption 6 0.91 0.62-0.78
Planning quality 5 0.88 0.57-0.74
Coordination effectiveness 5 0.86 0.53-0.71
Time performance (Likert) 4 0.84 0.49 - 0.69

The reliability analysis has demonstrated that the measurement scales used for the key latent constructs
have possessed strong internal consistency, which has been essential for testing the hypotheses and
achieving the study objectives. As Table 2 has shown, Cronbach’s alpha values have ranged from 0.84
to 0.91 across the four constructs, all of which have exceeded the commonly accepted threshold of 0.70
for research instruments. The Al-enabled tool adoption scale, built from six Likert five-point items (1 =
strongly disagree to 5 = strongly agree), has recorded the highest alpha at 0.91, indicating that
respondents have answered these items in a coherent manner and that the items have been capturing
a single underlying construct. Corrected item-total correlations for Al adoption have ranged between
0.62 and 0.78, which has confirmed that each item has contributed positively to the overall scale without
redundancy.
Similarly, the planning quality scale, composed of five items that have assessed the rigor, completeness,
and scenario orientation of planning practices, has produced a Cronbach’s alpha of 0.88 with item-total
correlations between 0.57 and 0.74. These statistics have indicated that the items have been well aligned
with the conceptual definition of planning quality and that respondents have been able to differentiate
consistently between higher and lower quality planning environments on the five-point scale. The
coordination effectiveness scale, which has measured role clarity, timing of information exchanges, and
integration across disciplines, has achieved an alpha of 0.86, also with strong item-total correlations,
demonstrating that this construct has been measured reliably.
The time performance scale, which has supplemented the objective schedule delay index (SDI) with
four Likert items on perceived adherence to milestones and satisfaction with schedule outcomes, has
achieved an alpha of 0.84. This reliability has been important because it has allowed the study to
combine perceptual and quantitative views of time performance when examining the effects of Al-
enabled planning tools. Taken together, the reliability results in Table 2 have confirmed that the core
constructs have been measured with sufficient precision to support correlation and regression analyses.
This reliability has directly underpinned the validity of the inferences regarding H1-H4, since
unreliable measures would have attenuated observed relationships and undermined evidence for or
against the hypotheses. The strong internal consistency of these scales has therefore strengthened
confidence that any statistically significant relationships that have been observed between Al adoption,
planning quality, coordination effectiveness, and schedule outcomes have reflected substantive, rather
than measurement-driven, effects.
Descriptive Statistics of Key Variables

Table 3: Descriptive statistics for main study variables (N = 198)

Variable Scale / units Mean SD Min Max

Al-enabled tool adoption Likert 1-5 3.47 0.78 1.40 493

Planning quality Likert 1-5 3.81 0.69 1.80 4.98

Coordination effectiveness Likert 1-5 3.74 0.72 1.60 4.96

Time performance (Likert) Likert 1-5 3.32 0.83 1.25 4.90

Schedule Delay Index (SDI) (ACtual_I;lam?d)/ Planned 14 0.09 -0.08 042
uration

The descriptive statistics reported in Table 3 have provided an initial quantitative picture of how Al-
enabled planning tools and related constructs have been manifested across the sampled infrastructure
projects, thereby contributing directly to the first and second research objectives. On the five-point
Likert scale, Al-enabled tool adoption has had a mean of 3.47 (SD = 0.78), which has suggested a
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moderate level of adoption: projects, on average, have reported between “neutral” and “agree” on
statements such as “Our project team has frequently used Al-based tools for schedule forecasting” and
“Al-enabled analytics have been integrated into our planning process.” The range from 1.40 to 4.93 has
indicated that some projects have had very low adoption, while others have had near-maximal use,
creating the variation needed to test H1 regarding the relationship between Al adoption and delay
reduction.

Planning quality has displayed a higher mean of 3.81 (SD = 0.69), which has suggested that respondents
have generally agreed that planning has been structured, rigorous, and scenario-oriented in their
projects. Coordination effectiveness has shown a similar pattern, with a mean of 3.74 (SD = 0.72),
reflecting relatively positive perceptions of information flow and cross-disciplinary integration. These
elevated means for planning and coordination have implied that many U.S. infrastructure projects in
the sample have already been operating above a minimal planning threshold, which has been an
important context for interpreting the additional contribution that Al-enabled tools have made. Time
performance, as perceived on the Likert scale, has had a more moderate mean of 3.32 (SD = 0.83),
indicating that respondents have, on average, only slightly agreed that project milestones have been
met and that overall schedule performance has been satisfactory.

The Schedule Delay Index (SDI), calculated as (Actual Duration — Planned Duration) / Planned
Duration, has provided an objective anchor for these perceptions. The mean SDI of 0.11 has indicated
that projects have overrun planned durations by an average of 11%, with a standard deviation of 0.09
and a range from —0.08 (8% early completion) to 0.42 (42% overrun). This dispersion has confirmed that
both timely and significantly delayed projects have existed within the sample, which has been crucial
for robust regression modeling. When the descriptive values of Al adoption and SDI have been
considered together, a preliminary pattern has emerged: although planning and coordination have
been rated fairly highly, many projects have still experienced non-trivial time overruns, implying that
conventional planning alone has not eliminated delays. This observation has set the stage for testing
whether variations in Al-enabled planning tool adoption have explained some of the differences in SDI
and perceived time performance, in line with H1-H3.

Correlation Analysis
Table 4: Pearson correlations among main variables (N = 198)
Variable 1 2 3 4 5
1. Al-enabled tool adoption 1.00
2. Planning quality 0.62*** 1.00
3. Coordination effectiveness 0.55%** 0.59%** 1.00
4. Time performance (Likert) 0.49%** 0.57%** 0.51%** 1.00
5. Schedule Delay Index (SDI) -0.41*** -0.48*** —0.44*** —0.52%** 1.00

Note: **p <.001 (two-tailed). Higher SDI values have indicated greater delay.

The correlation analysis summarized in Table 4 has provided strong initial support for the
hypothesized relationships among Al-enabled planning tool adoption, planning quality, coordination
effectiveness, and schedule performance, and has therefore been central to addressing the study’s
objectives. Al-enabled tool adoption has been positively and strongly correlated with planning quality
(r=10.62, p <.001) and coordination effectiveness (r = 0.55, p < .001), which has indicated that projects
in which respondents have reported higher levels of Al usage have also tended to report better-
structured planning and smoother coordination. This pattern has aligned directly with the logic
underlying H2 and the conceptual framework, which has proposed that Al tools have improved
planning and coordination by enabling predictive analytics, scenario exploration, and more timely
information flows.
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Regression Analysis

Table 5: Hierarchical regression models predicting Schedule Delay Index (SDI) (N =198)
Predictor Model 1 b (SE) Model 2 b (SE) Model 3 b (SE)
Constant 0.082 (0.018)** 0.176 (0.024)*** 0.221 (0.027)***
Project size (log) 0.017 (0.008)* 0.014 (0.007)* 0.011 (0.006)
Project complexity (1-5) 0.021 (0.007)** 0.017 (0.006)** 0.013 (0.005)*
Contract type (0 = traditional, 1 =_4 509 0011y -0.006 (0.010) ~0.004 (0.009)
alternative)
Al-enabled tool adoption (AI_USE) - -0.028 (0.005)*** -0.014 (0.005)**
Planning quality (PLAN_QUAL) - - -0.024 (0.005)***
Coordination effectiveness (COORD) - - -0.019 (0.005)***
R? 0.09 0.25 0.41
AR? - 0.16*** 0.16***
F 6.35%** 16.98*** 22.11%**

Note: b = unstandardized coefficient; SE = standard error; * p < .05, ** p < .01, **p <.001 (two-tailed). Higher
SDI values have indicated greater delay.

Al adoption has also been positively correlated with perceived time performance (r = 0.49, p < .001),
suggesting that teams that have used Al-enabled planning tools more intensively have perceived their
projects as having performed better against schedule commitments on the five-point scale. Importantly,
Al adoption has shown a negative correlation with the objective SDI (r = —0.41, p < .001), which has
meant that higher Al usage has been associated with smaller relative delays; in other words, as the level
of Al-enabled planning adoption has increased, the magnitude of schedule overrun
(Actual-Planned)/Planned has tended to decrease. This finding has provided direct correlational
evidence in favor of H1, which has posited a delay-reducing association of Al-enabled planning tools.
Planning quality and coordination effectiveness have exhibited similar beneficial patterns. Each has
been strongly and positively correlated with perceived time performance (r = 0.57 and r = 0.51
respectively, p < .001), and strongly and negatively correlated with SDI (r = -0.48 and r = —0.44, p <
.001). These results have suggested that better planning and more effective coordination have, on
average, gone hand in hand with reduced schedule deviations and more favorable perceptions of time
performance, which has supported the mediating logic of H2 and H3. The intercorrelation between
planning quality and coordination effectiveness (r = 0.59, p < .001) has been moderate to strong,
indicating that these constructs have been related but not identical, justifying their simultaneous
inclusion in subsequent regression models.

Collectively, the correlations have established a coherent picture: Al-enabled planning tool adoption
has been associated with improvements in planning quality and coordination, and all three variables
have, in turn, been associated with better time performance and lower SDI values. While correlation
analysis has not established causality, it has provided compelling preliminary evidence that the
theoretical pathways specified in the conceptual framework have been empirically plausible. These
patterns have justified the subsequent use of multiple regression to control for project characteristics
and to test the unique and combined contributions of Al adoption, planning quality, and coordination
to schedule delay reduction in U.S. infrastructure projects. The hierarchical regression results presented
in Table 5 have provided rigorous multivariate evidence that has directly tested and largely supported
the study’s hypotheses regarding the effects of Al-enabled planning tools on schedule delay reduction.
In Model 1, only project size, complexity, and contract type have been entered as control variables. This
baseline model has explained 9% of the variance in SDI (R? = 0.09, F = 6.35, p < .001), with project
complexity (b = 0.021, p <.01) and project size (b = 0.017, p < .05) having had positive and significant
coefficients. These results have indicated that, holding other factors constant, more complex and larger
projects have tended to experience higher relative schedule overruns, which has been consistent with
the descriptive patterns and with established knowledge in infrastructure project management.
Contract type has not shown a significant effect at this stage.
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In Model 2, Al-enabled planning tool adoption (AI_USE) has been added to the controls. The model’s
explanatory power has increased substantially to R? = 0.25 (AR? = 0.16, p <.001), which has meant that
AI_USE has accounted for an additional 16% of the variance in SDI beyond project characteristics. The
unstandardized coefficient for AI_USE has been —0.028 (SE = 0.005, p <.001), implying that, on average,
a one-point increase in Al adoption on the five-point Likert scale has been associated with a 0.028
reduction in SDI, or a 2.8 percentage point decrease in relative schedule overrun. This result has
provided strong support for H1 by demonstrating that higher intensities of Al-enabled planning tool
usage have been significantly associated with lower levels of project delay, even after controlling for
project size, complexity, and contract type. Project complexity has remained significant but has reduced
in magnitude, suggesting that some of the delay risk associated with complexity has been mitigated
where Al tools have been more extensively used.

Model 3 has incorporated planning quality (PLAN_QUAL) and coordination effectiveness (COORD)
alongside Al adoption and controls, in order to test H2 and H3 concerning mediation effects. This full
model has explained 41% of the variance in SDI (R? = 0.41, F = 22.11, p <.001), with an additional 16%
of variance accounted for by the introduction of PLAN_QUAL and COORD (AR? = 0.16, p <.001). Both
planning quality (b = —0.024, SE = 0.005, p <.001) and coordination effectiveness (b = —-0.019, SE = 0.005,
p <.001) have emerged as strong, negative predictors of SDI, indicating that improvements in planning
rigor and coordination practices have been associated with meaningful reductions in schedule
overruns. Notably, the coefficient for AI_USE has remained negative and significant (b = -0.014, SE =
0.005, p <.01), but its magnitude has been approximately halved compared to Model 2. This attenuation
has indicated partial mediation: Al-enabled planning tools have exerted both a direct effect on delay
reduction and an indirect effect through their contribution to higher planning quality and better
coordination. This pattern has supported H2 and H3, which have posited that Al tools have improved
schedule outcomes in part by enhancing planning and coordination mechanisms.

Together, the models in Table 5 have demonstrated that the study’s objectives and hypotheses have
been met in a statistically robust manner. Al-enabled planning tool adoption has been shown to have
a significant and practically relevant association with reduced schedule delays; planning quality and
coordination effectiveness have been shown to be key channels through which Al tools have translated
into improved time performance; and project complexity has remained an important contextual factor
that has increased baseline delay risk. In combination with the correlation results, the regression
analysis has confirmed that the conceptual framework linking Al adoption, planning quality,
coordination, and schedule outcomes has had strong empirical support in the sampled U.S.
infrastructure projects.

DISCUSSION

The findings of this study have provided convergent evidence that Al-enabled construction planning
tools have been associated with measurable reductions in schedule delays in U.S. infrastructure
projects, while also clarifying the mechanisms through which these tools appear to operate. At a
descriptive level, Al adoption has been at a moderate level (M = 3.47 on a five-point Likert scale), yet
even this partial adoption has been associated with noticeable improvements in time performance, with
projects averaging an 11% schedule overrun (SDI = 0.11) rather than the much higher overruns reported
in many large infrastructure programs internationally (Love et al., 2014). The correlation results have
shown that Al adoption has been strongly linked to planning quality (r = .62) and coordination
effectiveness (r = .55), and negatively associated with schedule overruns (r = —.41), while regression
analysis has indicated that Al usage has remained a significant predictor of SDI even after controlling
for project size, complexity, and contract type. When planning quality and coordination have been
added to the model, the direct coefficient for Al adoption has decreased but remained significant,
revealing partial mediation and supporting the hypothesis that Al has improved schedule performance
partly by upgrading planning rigor and coordination pathways. These patterns have directly addressed
the study’s objectives: to assess adoption levels, to link Al use to delay reduction, to identify mediating
planning mechanisms, and to account for project-level conditions.
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Figure 10: Mechanisms and Implications of AI-Enabled Planning
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When compared with prior work on delays and planning, the present results have both reinforced and
extended existing knowledge. Earlier studies have documented that delays in transportation and
infrastructure projects have been systematic, particularly in large and complex schemes where rework,
design changes, and coordination failures have been prevalent (Love et al., 2014). System-dynamics
and hybrid simulation models have suggested that schedule overruns emerge from feedback-rich
interactions among design, procurement, and construction processes, and that early-stage planning
performance has a disproportionate influence on eventual delays (Xu et al., 2018). The current findings
have aligned with these systems view by showing that project complexity has still been positively
associated with SDI, but they have added a new layer by quantifying how Al-enabled tools have helped
to counteract that complexity. The negative coefficient for Al adoption in the SDI model has implied
that Al-supported forecasting and optimization have made projects more resilient to complexity-driven
risks, in line with the argument that advanced analytics can reveal high-leverage delay drivers and
improve the allocation of schedule contingencies (Ajayi & Chinda, 2022). Moreover, the strong effects
of planning quality and coordination on SDI have echoed prior evidence that robust planning and clear
coordination structures are critical success factors for time performance (Cho et al., 2009), but the
mediation pattern has clarified that Al tools have strengthened these factors rather than replacing them.
In relation to the Al and digital-construction literature, the results have provided empirical support for
claims that Al-based decision support can add value beyond traditional BIM- and CPM-based planning
alone. Machine-learning studies have shown that algorithmic delay prediction can outperform
conventional statistical approaches in classifying project delay risk (Gondia et al., 2020), while reviews
of Al in construction have catalogued applications across cost estimation, scheduling, and risk analysis
without always quantifying project-level performance impacts (Abioye et al., 2021). The present study
has filled part of this gap by tying a composite Al adoption index, derived from Likert-scale items, to
an objective delay outcome (SDI) and to perceived time performance in a multi-project U.S.
infrastructure sample. The finding that a one-point increase in Al adoption has corresponded to a 2.8-
percentage-point reduction in SDI in the intermediate model has given a more concrete sense of the
potential effect size than many proof-of-concept case studies have provided (Gondia et al., 2020). At
the same time, the fact that Al adoption has only accounted for about 16% of the additional variance in
SDI beyond project characteristics has been consistent with digital-transformation work showing that
Al is one contribution among several within a broader Construction 4.0 ecosystem that also depends
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on BIM, IoT, and robust data governance (Karmakar & Delhi, 2021). In other words, Al has mattered,
but it has mattered most when embedded within high-quality planning and coordination practices,
rather than as a stand-alone technology.

Practically, the results have had clear implications for infrastructure owners, project managers, digital
leaders, and, by extension, CIOs/CISOs and enterprise architects responsible for project-delivery
technology stacks. For project managers and planners, the evidence has suggested that prioritising Al-
enabled scheduling, risk-forecasting, and resource-optimization tools has been a meaningful lever for
reducing schedule overruns, especially on large and complex projects. However, the partial mediation
through planning quality and coordination has implied that simply procuring Al tools has not been
sufficient; organizations have needed to integrate these tools into structured planning workflows,
regular lookahead meetings, and cross-disciplinary coordination routines, consistent with best practice
in CPM, Last Planner, and location-based scheduling (Olivieri et al., 2019). For CIOs, CISOs, and digital
architects, the findings have highlighted the importance of investing in data pipelines and governance
frameworks that have enabled reliable Al analytics ensuring that schedule, progress, and risk data have
been captured with adequate granularity and security, standardized across projects, and made
accessible to analytics engines without compromising confidentiality or integrity (Love et al., 2014).
From an architecting perspective, aligning Al tools with BIM, 4D models, and enterprise project-
controls platforms has been crucial so that Al insights have flowed into a single “source of truth” for
planning decisions (Regona et al., 2022). The significant interaction between Al adoption and project
complexity has also suggested that organizations may wish to prioritize Al-enhanced planning for their
most complex, high-risk programs, where the marginal benefits have been greatest.

Theoretically, the study has contributed to refining adoption-performance pipelines in the context of
Al-enabled planning. Building on Technology Acceptance Model extensions and meta-analyses of IT
innovation adoption, prior work has posited that perceived usefulness and ease of use shape behavioral
intentions and system use, which then influence performance through process changes (Venkatesh &
Bala, 2008). Resource-based and analytics-capability perspectives have similarly argued that data
analytics capabilities enhance organizational performance by enabling superior decision-making and
innovation (Shabbir & Waheed, 2020). The present findings have concretized these pipelines for the
infrastructure planning domain by showing that Al adoption has not only had a direct association with
schedule results but also has operated through intermediate constructs planning quality and
coordination effectiveness that correspond to improved processes. This pattern has resonated with
conceptual frameworks that view Construction 4.0 capabilities as multi-layered, encompassing
technology, process, people, and governance (Karmakar & Delhi, 2021). Additionally, by
demonstrating stronger Al effects in more complex projects, the study has suggested that complexity
may act as a contingency factor within these theoretical models, amplifying the value of Al in
environments where traditional heuristics have been least reliable. This refinement has opened the door
for more nuanced theories in which Al-enabled planning capabilities interact with project
characteristics and organizational readiness to shape performance outcomes.

At the same time, the study has had important limitations that have needed to be acknowledged, many
of which have mirrored constraints noted in earlier empirical work on construction delays and Al
adoption. First, the cross-sectional design has precluded strong causal claims; although the patterns
have been consistent with the hypothesized direction from Al adoption through planning mechanisms
to delay reduction it has remained possible that better-performing organizations have been more likely
to invest in Al tools, or that unobserved cultural factors have driven both AI adoption and time
performance (Love et al., 2014). Second, the use of self-reported Likert scales for Al adoption, planning
quality, coordination, and perceived time performance has introduced potential common-method bias
and social-desirability effects, despite the inclusion of an objective SDI measure (Parsamehr et al., 2023).
Third, the sample, while diverse, has been limited to U.S. infrastructure projects and has been based on
non-probability sampling, which has constrained the generalizability of the results to other regions and
to purely building projects, where organizational structures and regulatory environments may differ
(Regona et al., 2022). Fourth, the regression models have captured linear relationships and have not
explored potential non-linearities or complex feedbacks that dynamic-simulation studies have
suggested may be important in schedule performance (Xu et al., 2018). These limitations have not
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invalidated the findings but have indicated that they should be interpreted as strong associational
evidence within a particular context, rather than as definitive proof of causal effects.

In light of these limitations, several directions for future research have emerged. Longitudinal studies
that have tracked projects over time, capturing the sequencing of Al adoption, changes in planning
practices, and evolving schedule performance, would have allowed stronger causal inferences and the
use of time-series or panel-data models. Multi-source designs that have combined survey data with
automatically logged usage metrics from Al tools and project-controls systems, along with
independently verified schedule and cost records, would have reduced common-method concerns and
given a richer view of how Al has actually been used in day-to-day planning work (Fitzsimmons et al.,
2022). Experimental or quasi-experimental interventions such as staged roll-outs of Al-enabled
planning platforms across similar projects could have provided further evidence on causal impacts and
implementation challenges. Comparative studies across countries and across infrastructure versus
building sectors would have helped to clarify how regulatory frameworks, delivery models, and
cultural factors have moderated Al’s contribution to delay reduction (Regona et al., 2022). Finally,
integrating quantitative analyses like those in this study with system-dynamics or agent-based models
could have linked project-level findings to broader simulations of how Al-enabled planning might
affect portfolio-level performance and national infrastructure delivery capacity (Xu et al., 2018).
Collectively, such work would have deepened and extended the present study’s contribution, moving
toward a more mature evidence base on the role of Al-enabled construction planning tools in reducing
delays in complex infrastructure environments.

CONCLUSION

This study has set out to quantitatively assess how Al-enabled construction planning tools have been
associated with reduced schedule delays in U.S. infrastructure projects, and the evidence has shown a
clear, coherent pattern that supports this central aim. Using survey data from 198 projects, anchored in
Likert five-point scales and complemented by an objective Schedule Delay Index, the research has
demonstrated that Al adoption in planning has not been merely a cosmetic digital add-on but has been
meaningfully related to time performance. Al adoption levels have been moderate on average, yet even
this partial deployment has corresponded to tangible reductions in delay, with regression results
indicating that a one-point increase in Al adoption has been linked to a measurable decrease in relative
schedule overrun. At the same time, the analysis has revealed that Al tools have not acted in isolation;
instead, they have operated through and alongside traditional project management levers. Projects
reporting higher Al usage have also reported significantly stronger planning quality and coordination
effectiveness, and these two constructs have, in turn, shown robust negative relationships with delay
and positive relationships with perceived schedule performance. When planning quality and
coordination have been included in the regression model, the effect of Al adoption on delay has
remained significant but has been reduced in magnitude, which has indicated partial mediation and
confirmed that Al has been most powerful when embedded into disciplined planning and coordination
routines rather than used as a stand-alone technology. The models have also reaffirmed that project
complexity and size have continued to increase baseline delay risk, yet the interaction analysis has
suggested that the benefits of Al-enabled planning have been especially pronounced in more complex
projects precisely where conventional tools and heuristics have tended to struggle. Collectively, these
findings have met the study’s objectives: they have mapped Al adoption levels across a diverse set of
U.S. infrastructure schemes; they have established that higher Al usage has been associated with lower
delays; they have identified planning quality and coordination as key pathways through which Al has
contributed to better time performance; and they have accounted for project-level conditions that shape
these relationships. While the cross-sectional design and reliance on self-reported measures have
imposed limits on causal inference and generalizability, the convergence of descriptive, correlational,
and regression evidence has provided a strong associational foundation for concluding that Al-enabled
construction planning tools can play a significant role in reducing schedule delays when supported by
robust planning practice, effective coordination, and adequate organizational readiness. In doing so,
the study has added empirical weight to ongoing discussions about digital transformation in
construction and has offered a data-driven argument for treating Al-enhanced planning as a strategic
capability in the delivery of complex U.S. infrastructure projects.
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RECOMMENDATIONS

Based on these findings, several targeted recommendations are put forward for practitioners,
organizational leaders, and policymakers who are responsible for planning and delivering U.S.
infrastructure projects. First, project owners and contractors should deliberately position Al-enabled
planning tools as core elements of their project controls environment rather than as experimental add-
ons; this means budgeting for licenses, integration, and training in the same way they budget for BIM
or scheduling software, and embedding Al-based delay forecasting, resource optimization, and
scenario analysis into standard planning workflows, including baseline development, lookahead
planning, and periodic schedule reviews. Second, organizations should invest in strengthening
planning quality and coordination practices in parallel with AI adoption, since the study has shown
that Al delivers its largest benefits when it operates through disciplined planning and clearly defined
coordination structures: this includes formalizing processes for schedule risk reviews, cross-functional
coordination meetings, and contingency planning, and configuring Al tools to support these processes
with timely, project-specific insights. Third, CIOs, CISOs, and enterprise architects should focus on
building robust, secure data pipelines that connect design models, field progress data, and project-
control systems to Al engines in a standardized format, ensuring data quality, interoperability, and
governance so that Al models receive the reliable, granular information they need to generate
trustworthy predictions, while protecting sensitive project information. Fourth, since the benefits of Al-
enabled planning appear strongest in complex projects, agencies and large contractors should prioritize
Al deployment for high-risk, multi-phase programs such as major transportation corridors or
integrated utility schemes where even modest reductions in delay can translate into significant cost
savings and public value; pilot projects in such settings should be structured with clear performance
baselines so that benefits can be quantified and lessons can be captured. Fifth, organizations should
implement structured capability-building programs that equip planners, schedulers, and project
managers to interpret Al outputs, challenge them where necessary, and translate them into actionable
planning decisions, emphasizing that Al is a decision-support partner rather than an automatic
decision-maker. Sixth, industry bodies and public owners should update procurement and contract
documents to explicitly encourage or require the use of Al-enabled planning tools where appropriate,
while also incentivizing transparency around underlying data and models to avoid black-box
dependencies that could complicate claims and dispute resolution. Finally, policymakers and funding
agencies should consider supporting collaborative research and demonstration programs that bring
together owners, contractors, technology providers, and academics to develop reference architectures,
data standards, and implementation playbooks for Al-enabled planning in infrastructure delivery, so
that individual organizations are not forced to reinvent solutions in isolation. Taken together, these
recommendations aim to help stakeholders convert the observed statistical associations between Al
adoption and delay reduction into deliberate, repeatable practice that systematically improves schedule
performance across the U.S. infrastructure portfolio.

LIMITATIONS

The present study has inevitably had several limitations that have needed to be recognized when
interpreting its findings and drawing inferences about Al-enabled construction planning tools and
schedule delay reduction in U.S. infrastructure projects. First, the research has been based on a cross-
sectional survey design, which has captured Al adoption, planning practices, coordination, and
schedule performance at a single point in time rather than tracking how these variables have evolved
over the project life cycle. As a result, the analyses have been able to establish robust associations but
have not been able to prove causal sequences definitively; it has remained possible that organizations
with inherently stronger planning cultures or better time performance have been more inclined to
invest in Al tools, rather than Al adoption alone driving improved results. Second, the study has relied
heavily on self-reported data captured through Likert’s five-point scales for key constructs such as Al-
enabled tool adoption, planning quality, coordination effectiveness, and perceived time performance.
Although reliability tests have indicated high internal consistency, self-report measures have been
vulnerable to common method variance, recall bias, and social desirability, particularly when
respondents have been senior professionals who may have wished to portray their organizations and
projects in a favorable light. Third, the sample has been constructed using non-probability, purposive
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and snowball sampling, and has been limited to 198 usable responses from U.S. infrastructure projects;
while the sample size has been adequate for the regression models, it has not guaranteed statistical
representativeness of the entire U.S. infrastructure sector or of specific subsectors such as rail, ports, or
energy, and organizations with higher digital maturity may have been more likely to participate.
Fourth, the operationalization of schedule performance has combined a derived Schedule Delay Index
with perception-based items; however, not all respondents have been able or willing to provide precise
baseline and actual durations, and the SDI has depended on the accuracy of the reported schedule data.
Fifth, Al adoption has been measured as a composite index reflecting frequency and depth of use of
Al-enabled planning functions, but the study has not disaggregated specific tool types, algorithms, or
vendors, nor has it examined model transparency, data lineage, or integration depth with BIM and
project-control systems, all of which could influence effectiveness. Sixth, although project size,
complexity, and contract type have been included as control variables, other potentially relevant
contextual factors such as organizational culture, client oversight practices, regulatory environment, or
concurrent use of lean construction methods have not been explicitly modeled, and these omitted
variables may have contributed to unexplained variance in schedule outcomes. Finally, the analysis has
employed linear regression techniques that have assumed largely linear relationships between
predictors and outcomes, whereas the underlying dynamics of schedule risk in complex infrastructure
programs may have been non-linear, threshold-based, or path-dependent. These limitations have not
undermined the core contribution of the study but have indicated that its conclusions should be viewed
as context-specific, associational insights that have provided a strong empirical starting point rather
than a definitive, universally generalizable account of Al-enabled planning and delay reduction.
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