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Abstract 
This study addresses schedule overruns in U.S. infrastructure projects and the limited quantitative evidence on 
whether AI-enabled construction planning tools reduce delays. The purpose is to quantify relationships between 
AI-based planning adoption and schedule performance using project-level data. A quantitative cross-sectional, 
case-based design used a Likert five-point survey of practitioners covering 198 infrastructure cases across public 
agencies and enterprise contractors and consultants. Key variables included AI-enabled planning tool adoption, 
planning quality, coordination effectiveness, project size, complexity, contract type, and a Schedule Delay Index 
(SDI) from planned and actual durations. Reliability was high for all multi-item scales (α = 0.84-0.91). The 
analysis plan combined descriptive statistics, Pearson correlations, and multiple regression with moderation 
tests. Projects showed moderate AI adoption (M = 3.47, SD = 0.78) and an average 11% schedule overrun (SDI 
M = 0.11, SD = 0.09). AI adoption correlated negatively with SDI (r = −0.41, p < .001) and remained a 
significant predictor of lower delay after controlling for size, complexity, and contract type; a one-point increase 
in adoption was associated with a 2.8 percentage point reduction in SDI. Adding planning quality and 
coordination effectiveness increased explained variance in SDI from 25% to 41% and partially mediated the AI-
delay relationship, with effects strongest on highly complex projects. The headline finding is that AI-enabled 
planning tools contribute meaningfully to delay reduction when embedded in robust planning and coordination 
practices. The study implies that infrastructure owners should treat AI-enhanced planning as a strategic 
capability for improving delivery reliability across the sample. 
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INTRODUCTION 
Construction planning refers to the systematic process of defining activities, sequencing, resource 
allocation, and scheduling to deliver a project within the agreed time, cost, and quality parameters. In 
large infrastructure projects including highways, bridges, transit systems, water networks, and energy 
facilities planning is a core project management function because it structures how complex, 
interdependent activities unfold over multi-year horizons. Globally, infrastructure investment is seen 
as a driver of economic growth, productivity, and social well-being, yet chronic schedule delays and 
cost overruns continue to affect many projects and erode the expected benefits (Assaf & Al-Hejji, 2006). 
Traditional planning relies heavily on deterministic critical path methods, spreadsheet-based resource 
plans, and expert judgment. 
 

Figure 1: Core Elements of Construction Planning and the Role of AI in Schedule Performance 
 

 
 
These approaches can be effective in stable environments, but they struggle when construction work is 
exposed to uncertainty in supply chains, labor markets, weather, permitting, and stakeholder 
coordination. Schedule slippage in infrastructure projects has been associated with litigation, loss of 
public trust, and reduced returns on public investment (Arfan et al., 2021; Sambasivan & Soon, 2007). 
The increasing complexity and scale of infrastructure programs, along with demands for more resilient 
and sustainable systems, have intensified the need for data-driven, predictive planning approaches. At 
the same time, advances in artificial intelligence (AI), machine learning, and data analytics are 
transforming how project data can be collected, integrated, and analyzed to support decisions. In many 
industrial sectors (Ara, 2021), AI is now used to forecast demand, optimize resource allocation, and 
anticipate risk patterns; a similar transformation is beginning to be visible in construction engineering 
and management, creating a strong motivation to examine how AI-enabled planning tools influence 
schedule performance, particularly in the context of infrastructure projects in the United States (Darko 
et al., 2020; Jahid, 2021).  
Schedule delays in construction are typically defined as the time extension beyond the contract 
completion date, or beyond a revised completion date agreed by project stakeholders. Empirical studies 
across regions consistently show that delays are among the most persistent problems in the 
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construction sector, especially for infrastructure works where interfaces among agencies, contractors, 
and communities are numerous (Akinosho et al., 2020; Akbar & Farzana, 2021). Reviews of delay causes 
identify clusters such as design changes, slow decision-making by owners, contractor cash-flow 
constraints, material shortages, limited equipment availability, labor productivity issues, and 
challenges in coordination among multiple firms (Reza et al., 2021; Sambasivan & Soon, 2007; Santos et 
al., 2021). These factors interact in non-linear ways, which means the actual schedule performance often 
deviates from baseline plans in ways that are not easily captured by simple float calculations or single-
factor sensitivity analyses (Saikat, 2021). Systematic literature syntheses on construction project delays 
highlight that, even with decades of research, time overruns remain widespread, indicating that 
existing planning and control practices have not fully internalized the lessons from prior projects 
(Durdyev & Hosseini, 2019; Shaikh & Aditya, 2021). Parallel research on time–cost trade-off models 
and schedule optimization in construction shows that multi-objective techniques and metaheuristic 
algorithms can generate more efficient schedules under resource constraints, yet these methods are still 
not routinely embedded into everyday planning workflows on most sites (Faghihi et al., 2016; Kanti & 
Shaikat, 2021). Against this background, international organizations and national governments have 
been calling for better use of data and analytics to improve the delivery of infrastructure programs, 
which positions AI-enabled construction planning tools as potentially important instruments for 
addressing systemic time performance problems in the sector (Zobayer, 2021a, 2021b). 
Artificial intelligence in construction engineering and management refers to computational methods 
that learn patterns from data to support or automate tasks such as prediction, classification, 
optimization, and decision support in project processes (Ariful & Ara, 2022; Zhang et al., 2021). In 
planning and scheduling, AI-enabled tools can include machine learning models that forecast delay 
risk, optimization engines that search for efficient combinations of activity durations and resource 
assignments, and decision support systems that integrate historical and real-time data from project 
management platforms, sensors, and digital models (Arman & Kamrul, 2022; Mesbaul & Tahmid 
Farabe, 2022). Recent reviews of AI adoption in construction engineering and management classify 
applications in cost estimation, schedule prediction, safety analytics, productivity monitoring, and 
resource optimization, and note that schedule-related use cases are among the most extensively 
explored (Nahid, 2022; Hossain & Milon, 2022; Pan & Zhang, 2021b). For example, hybrid AI models 
that combine random forests with genetic algorithms have been developed to predict delay risk levels 
from project characteristics and stakeholder assessments, achieving relatively high classification 
accuracy compared to traditional statistical models (Abdur & Haider, 2022; Mushfequr & Praveen, 
2022; Yaseen et al., 2020). Other work has applied supervised learning to anticipate schedule slippage 
based on contract features, progress data, and contextual risk indicators (Egwim et al., 2021; Mortuza 
& Rauf, 2022; Rakibul & Samia, 2022). Parallel developments in deep learning have examined how time-
series and image data from construction operations can be mined to support diagnostic and 
prescriptive insights about productivity, rework, and safety, which indirectly influence schedule 
outcomes (Bilal et al., 2016; Rony & Ashraful, 2022; Saikat, 2022). Yet, while these AI approaches 
demonstrate technical promise, empirical evidence on their quantitative impact on actual schedule 
performance in real-world infrastructure projects, especially in the U.S. context, remains comparatively 
limited and fragmented across case studies, simulation models, and small-scale implementations 
(Shaikh & Sudipto, 2022). 
The effectiveness of AI-enabled planning tools depends strongly on the quality, richness, and structure 
of the underlying project data (Abdul, 2023; Abdulla & Zaman, 2023). Over the past two decades, 
Building Information Modeling (BIM) has become a foundational digital technology in the architecture, 
engineering, and construction sector, supporting 3D/4D modeling, clash detection, and information 
management across the project life cycle (Arfan et al., 2023; Ara & Onyinyechi, 2023; Zhao, 2017). 
Systematic reviews show that BIM adoption is spreading from building projects into infrastructure 
domains such as bridges, tunnels, and rail, where it is used to coordinate multidisciplinary design and 
construction processes, and to support sustainability assessments (Amin & Mesbaul, 2023; Foysal & 
Aditya, 2023; Tafazzoli & Shrestha, 2018). Recent studies on digital twins extend BIM by integrating 
real-time data from Internet of Things (IoT) devices, site sensors, and construction equipment to create 
virtual replicas of construction processes and assets (Hamidur, 2023; Rashid et al., 2023). Under this 
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paradigm, AI and data mining are embedded within digital twin platforms to discover bottlenecks, 
forecast task completion, and support tactical decisions on resource deployment (Musfiqur & Kamrul, 
2023; Muzahidul & Mohaiminul, 2023; Pan & Zhang, 2023). In addition, digital twin frameworks enable 
advanced visualization of planned versus actual progress, making predictive insights more actionable 
for planners, supervisors, and owners (Amin & Sai Praveen, 2023; Hasan & Ashraful, 2023). Reviews 
of BIM-based and BIM-AI integrated systems emphasize that digital decision support for schedule, 
cost, safety, and quality management is advancing rapidly, yet many implementations are still at pilot 
scale and often concentrated in building rather than infrastructure projects (Jobayer Ibne & Kamrul, 
2023; Mushfequr & Ashraful, 2023; Parsamehr et al., 2023). These developments suggest that AI-
enabled planning tools should be viewed as part of a broader digital construction ecosystem, where 
BIM, digital twins, and data governance practices create the conditions for reliable analytics that can 
directly influence construction schedules (Roy & Kamrul, 2023; Saba et al., 2023). 
The United States faces an extensive backlog of infrastructure renewal and expansion across 
transportation, water, energy, and social infrastructure systems (Saba & Kanti, 2023; Shaikh & Farabe, 
2023). Public agencies and private concessionaires are under pressure to deliver projects more quickly 
while managing complex regulatory, environmental, and stakeholder requirements (Haider & Hozyfa, 
2023; Zobayer, 2023). Empirical investigations into delay causes in U.S. construction projects report that 
many of the global drivers such as scope changes, slow approvals, and coordination challenges are also 
prevalent domestically, but are often amplified by multi-layered governance structures and interfaces 
with federal, state, and local agencies (Abdul & Shoeb, 2024; Hozyfa & Shahrin, 2024; Tafazzoli & 
Shrestha, 2018). Research on major U.S. transportation and infrastructure programs further documents 
that cost overruns and schedule delays remain common, even after the introduction of enhanced 
oversight mechanisms, and argues that more rigorous data-driven project controls are needed to 
improve performance (Flyvbjerg, 2021; Hasan & Shah, 2024; JHasan & Zayadul, 2024). In parallel, U.S. 
agencies have been promoting digital delivery requirements, including BIM mandates for certain 
categories of projects, and investments in digital project management systems to support integrated 
planning and reporting (Muzahidul & Aditya, 2024; Hasan & Rakibul, 2024). Nevertheless, there is 
limited quantitative evidence on how far AI-enabled construction planning tools have been adopted in 
the U.S. infrastructure sector, and whether their use is associated with measurable reductions in 
schedule delays. Existing AI-related case studies tend to focus on specific pilot projects, individual 
contractors, or particular tools, which makes it difficult to generalize patterns at the sector level 
(Mominul, 2024; Mominul & Zaki, 2024; Zhang et al., 2021). This gap justifies a focused empirical 
assessment of AI-enabled construction planning tools in U.S. infrastructure projects, with attention to 
project characteristics, stakeholder roles, and planning practices that may influence their effectiveness 
in mitigating delays (Roy & Praveen, 2024; Rony & Hozyfa, 2024). 
The persistent occurrence of delays in infrastructure projects indicates that conventional planning 
approaches have not fully addressed the complex risk structures that shape schedule performance, and 
that the opportunities offered by AI-enabled planning tools are not yet clearly understood in practice. 
Although researchers have developed advanced AI models for delay prediction, resource optimization, 
and process mining, the sector lacks systematic, quantitative evidence on the relationships between the 
extent of AI-enabled planning tool usage and observed changes in schedule performance indicators at 
the project level (Saba & Hasan, 2024; Santos et al., 2020; Shaikat & Zaman, 2024). Infrastructure projects 
also differ from building projects in their scale, linear nature, stakeholder complexity, and regulatory 
context, which suggests that findings from generic construction AI studies may not directly translate 
to U.S. infrastructure programs (Boje et al., 2020; Sudipto &Hasan, 2024; Kanti & Saba, 2024). 
Accordingly, the central problem addressed in this study is the limited empirical understanding of 
whether, and to what extent, AI-enabled construction planning tools are associated with reduced 
schedule delays in U.S. infrastructure projects. The purpose of the research is to conduct a quantitative, 
cross-sectional, case-study–based assessment of AI-enabled planning tool usage and its relationship 
with delay outcomes, using Likert-scale survey indicators complemented by project-level schedule 
data. To operationalize this purpose, the study is guided by three research questions: RQ1 asks how 
extensively AI-enabled construction planning tools are currently used in different categories of U.S. 
infrastructure projects; RQ2 examines how the intensity and type of AI-enabled planning tool usage 
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relate to key measures of schedule performance; and RQ3 explores how project attributes such as size, 
delivery method, and digital maturity condition the relationship between AI-enabled planning tools 
and schedule delays. From these questions, testable hypotheses are formulated regarding the expected 
negative association between AI-enabled planning adoption and schedule delay magnitude, and the 
moderating role of project complexity, to be examined through correlation analysis and regression 
modeling (Ji et al., 2021). 
This study is situated at the intersection of three active research streams: construction delay analysis, 
AI applications in construction engineering and management, and digital transformation of 
infrastructure project delivery. The delay literature has made substantial progress in cataloguing causes 
and proposing mitigation strategies, yet often treats planning tools as static instruments rather than 
dynamic, learning-based systems (Sacks et al., 2020). Work on BIM, digital twins, and BIM-based 
analytics demonstrates that rich digital models can support more integrated and data-driven decisions 
across project phases, but empirical studies that link these digital practices with quantitative schedule 
outcomes in infrastructure projects are still emerging (Zhao, 2017). Research on AI in construction 
engineering and management has clarified the taxonomy of AI methods, mapped application domains, 
and highlighted challenges related to data quality, interpretability, skills, and organizational readiness 
(Santos et al., 2019). Within this landscape, the present study focuses specifically on AI-enabled 
construction planning tools and their relationship with schedule delays in U.S. infrastructure projects, 
using a quantitative design that combines descriptive statistics, reliability and validity analysis, 
correlation analysis, and regression modeling on Likert-scale survey data. The analysis is structured to 
provide evidence on adoption levels, perceived and measured schedule performance, and the influence 
of project-level characteristics (Lu et al., 2017; Pan & Zhang, 2021a). The remainder of the paper is 
organized as follows. Section 2 presents a structured literature review on construction delays, AI in 
construction planning, BIM and digital twins, and theoretical and conceptual frameworks relevant to 
technology adoption and performance in infrastructure projects. Section 3 describes the methodology, 
including research design, population and sampling, case study context, instrument development, data 
collection, and analysis procedures. Section 4 reports the empirical results on response rate, sample 
characteristics, reliability and validity, descriptive statistics, correlation patterns, and regression 
models. Section 5 discusses the findings in relation to the literature, while Section 6 presents 
conclusions, recommendations, and limitations, aligned with the quantitative evidence generated in 
the study. 
The overarching objective of this study is to quantitatively assess how AI-enabled construction 
planning tools contribute to reducing schedule delays in U.S. infrastructure projects, using project-level 
data gathered through a structured, Likert-scale survey of practitioners engaged in real projects. 
Specifically, the first objective is to systematically measure the current level of adoption, integration, 
and functional use of AI-enabled planning tools among infrastructure project stakeholders, including 
public agencies, contractors, consultants, and project management firms, so that the landscape of digital 
planning practices in the U.S. infrastructure sector is clearly mapped. The second objective is to evaluate 
the relationship between the intensity and nature of AI tool usage and a set of schedule performance 
indicators, such as adherence to baseline milestones, frequency and magnitude of time extensions, and 
perceived severity of project delays, with a view to identifying whether higher adoption of AI-based 
planning methods is associated with improved time performance. The third objective is to examine the 
role of planning quality and risk management practices as intermediate variables, by capturing how AI 
tools are used for schedule forecasting, scenario analysis, early risk identification, and resource 
optimization, and then determining whether these practices help to explain any observed 
improvements in schedule outcomes. A fourth objective is to account for the influence of project- and 
organization-level characteristics including project size, complexity, delivery method, sector, and 
organizational digital maturity on the relationship between AI-enabled planning tools and schedule 
delays, thereby distinguishing the direct effects of AI usage from contextual factors. Collectively, these 
objectives are operationalized through a set of research questions and hypotheses that guide the design 
of the questionnaire, the selection of measures, and the statistical analysis using descriptive statistics, 
correlation analysis, and regression modeling. By aligning each stage of the empirical process with 
these objectives, the study aims to generate robust, interpretable evidence on whether AI-enabled 
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construction planning tools are meaningfully associated with reduced schedule delays in U.S. 
infrastructure projects and under what conditions such associations appear strongest. 
LITERATURE REVIEW 
The body of literature relevant to AI-enabled construction planning tools and schedule performance in 
infrastructure projects spans three tightly connected streams: research on construction delays, work on 
digitalization of planning through BIM and related technologies, and emerging studies on artificial 
intelligence in construction engineering and management. Studies on delays consistently document 
that schedule overruns are one of the most persistent challenges in the construction sector across 
regions and project types, with systematic reviews highlighting recurrent causal patterns such as 
design and scope changes, funding constraints, coordination problems, and weaknesses in planning 
and control processes. Within this stream, recent syntheses focused on road and infrastructure works 
emphasize that delay factors are multi-dimensional and interdependent, reinforcing the view that 
deterministic planning tools alone are often inadequate for managing time risk in complex programs. 
A second body of literature examines the rise of digital construction technologies, particularly Building 
Information Modeling (BIM) and, more recently, infrastructure-oriented digital twins, as enablers of 
richer planning, simulation, and coordination capabilities over the project life cycle; these works show 
how integrated models and real-time data can support more proactive schedule management, but also 
note that adoption is uneven and many implementations stop at visualization rather than advanced 
analytics. The third and fastest-growing stream centers on artificial intelligence and machine learning 
applications for construction planning and control, including delay prediction models, resource 
optimization engines, and AI-based monitoring platforms that mine historical and real-time project 
data to flag emerging schedule risks and recommend corrective actions. Recent contributions 
demonstrate that ensemble learning and other advanced algorithms can achieve high predictive 
accuracy for delay risk classification and provide earlier warnings than traditional methods, while 
industry-oriented reports describe AI-based forecasting and monitoring systems being deployed on 
large infrastructure projects to support more reliable delivery. However, the literature also indicates 
that most AI-related studies focus on algorithm development, proof-of-concept case studies, or vendor-
driven narratives, with relatively few quantitative, sector-wide investigations that statistically relate 
the extent of AI-enabled planning tool usage to observed schedule outcomes at the project level, 
particularly in the context of U.S. infrastructure programs. This combination of mature knowledge on 
delay causation, growing but still fragmented evidence on digital and AI applications, and limited 
empirical work linking AI planning tools to delay reduction provides the foundation and motivation 
for the more focused review developed in the subsequent subsections. 
Construction Delays in U.S. Infrastructure Projects 
Construction delays in infrastructure projects are typically defined as extensions of project duration 
beyond the contractual completion date, with direct implications for cost, service availability, and 
stakeholder confidence. In the U.S. context, such delays are visible in prolonged lane closures on 
highways, postponed opening of bridges and tunnels, slower roll-out of rail and transit lines, and 
deferred commissioning of water and energy facilities. Time overruns often accumulate through 
incremental slippages at design, procurement, and construction stages rather than through a single 
catastrophic event, and they frequently interact with cost overruns, claims, and disputes. Empirical 
analyses of transportation infrastructure projects illustrate that schedule overruns exhibit systematic 
patterns linked to rework, late design changes, and scope modifications, suggesting that delay is 
embedded in the way complex projects are planned and executed rather than being an occasional 
anomaly (Love et al., 2014). In such environments, contingencies built into baseline schedules are 
frequently inadequate to absorb the combined impact of revised design information, utility conflicts, 
environmental mitigation measures, and right-of-way issues. For agencies responsible for U.S. 
infrastructure assets, this situation translates into recurring renegotiations of completion dates, 
expanded project management overheads, and disruptions for road users, freight operators, and 
communities. From a project management perspective, understanding delays in this setting requires a 
shift from static, one-time explanations toward dynamic, probabilistic characterizations of how 
schedule performance evolves under uncertainty and interdependent decision-making across 
stakeholders and phases. 
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Recent methodological developments in schedule risk analysis provide a richer lens for interpreting 
how delays arise, intensify, and propagate in large infrastructure programs. Dynamic modeling 
approaches that couple system dynamics with discrete-event simulations have been used to represent 
both higher-level feedback loops and detailed interactions among activities, resources, and information 
flows, enabling planners to observe how small perturbations can generate substantial schedule 
deviations through reinforcing mechanisms (Kanti & Sai Praveen, 2024; Xu et al., 2018; Haider & Sai 
Praveen, 2024). For example, if early-stage design coordination is slower than planned, downstream 
procurement and construction tasks may experience compounding disruptions, as late design 
deliverables push bid packages, material fabrication, and field work into unfavorable weather 
windows, which then further reduces productivity and increases the risk of rework (Zobayer & Kumar, 
2024; Zulqarnain & Zayadul, 2024). Multi-level risk assessment methods that integrate structured 
expert judgment with quantitative ranking techniques have shown that, in complex projects such as 
nuclear power plants, regulatory approvals, policy changes, and documentation quality jointly shape 
delay exposure, reinforcing the notion that schedule performance emerges from cross-cutting 
institutional and technical interactions rather than from isolated contractor actions (Alifa Majumder, 
2025; Efat Ara, 2025; Hossen et al., 2015). These findings are directly relevant to U.S. infrastructure 
delivery, where lengthy environmental reviews, multi-jurisdictional oversight, and evolving design 
standards create conditions in which small early deviations from plan can cascade into substantial 
overruns (Habibullah, 2025; Hozyfa & Ashraful, 2025). In practice, such insights argue for incorporating 
dynamic risk thinking into planning processes, so that schedule baselines are treated as living 
hypotheses that need continuous updating as project information and conditions change (Asfaquar, 
2025; Foysal, 2025). 
 

Figure 2: Elements of Schedule Delays in U.S. Infrastructure Projects 
 

 
 
At the same time, research on delay-controlling parameters and predictive analytics is transforming 
how project teams can proactively manage schedule performance in infrastructure projects. Studies 
that employ causal mapping and decision-making trial and evaluation laboratory (DEMATEL) 
techniques highlight that delay drivers such as design errors, ineffective supervision, and material 
supply problems form tightly interconnected networks, where changes in one factor can quickly 
reverberate through others and ultimately shape the trajectory of project completion (Ajayi & Chinda, 
2022; Islam & Abdur, 2025; Mohaiminul, 2025). This networked perspective suggests that interventions 
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focused solely on visible symptoms, such as adding extra crews toward the end of a project, may deliver 
limited benefit if the deeper structural drivers of delay such as poor information flow, inconsistent 
oversight, or unstable funding remain unaddressed (Mominul, 2025; Muzahidul, 2025). 
Complementary work using machine learning for construction schedule risk analysis has 
demonstrated that models trained on large samples of completed infrastructure projects can achieve 
higher predictive accuracy in identifying tasks and segments at high risk of delay than traditional 
deterministic methods, thereby enabling earlier and more targeted managerial responses (Fitzsimmons 
et al., 2022; Hossain, 2025; Zaman, 2025). For U.S. infrastructure owners and contractors, these strands 
of evidence collectively point to the value of integrating causal analysis, dynamic simulation, and data-
driven prediction into planning and control practices (Akbar & Sharmin, 2025; Hasan, 2025). Rather 
than treating schedule delay as an unavoidable by-product of complexity, such tools support a more 
proactive stance in which project teams can explore alternative phasing, resource strategies, and risk 
responses before and during execution, with the goal of stabilizing delivery timelines and improving 
the reliability of infrastructure programs that are critical to national economic and social objectives 
(Ibne, 2025; Milon, 2025). 
Construction Planning and Scheduling Practices 
Construction planning and scheduling practices form the operational backbone of infrastructure 
delivery, translating strategic project goals into time-phased, resource-feasible work plans that govern 
execution on site. Traditionally, the Critical Path Method (CPM) has been the dominant tool, 
structuring projects into networks of activities with logical relationships and floats, and supporting 
baseline programme development and progress control (Farabe, 2025; Kamrul, 2025). 
 

Figure 3: Construction Planning: CPM, Flow-Based Methods, and Digitalization 
 

 
 
However, experience from complex building and infrastructure projects has shown that CPM’s 
activity-based focus often struggles to represent continuous production flow across locations, leading 
to fragmented work, excessive task fragmentation, and inefficient crew deployment (Mohammad 
Mushfequr, 2025; Mst. Shahrin, 2025; Olivieri et al., 2018). In response, location-based approaches such 
as the Location-Based Management System (LBMS) have been adopted to augment CPM by modelling 
work as production flows through defined spatial zones, enabling planners to visualize crew 
movements, balance workloads, and minimize interruptions. These advances reflect a broader 
evolution in practice: from static bar charts to dynamic, flow-oriented schedules that emphasize reliable 
work sequencing, reduced remobilizations, and closer alignment between the master programme and 
day-to-day operations (Olivieri et al., 2019; Rakibul, 2025; Saba, 2025). For U.S. infrastructure, where 
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projects often involve dispersed work fronts, constrained rights-of-way, and multi-contract interfaces, 
such flow-based planning is particularly important for maintaining productivity and avoiding 
cascading delays across trades and locations (Praveen, 2025; Saikat, 2025). 
At the systems level, contemporary construction planning no longer relies on a single scheduling 
technique but on a portfolio of complementary methods that jointly support project management and 
production control. Comparative empirical studies across multiple countries have shown that CPM, 
the Last Planner System (LPS), and location-based techniques each address different needs (Shaikat, 
2025; Shaikh, 2025): CPM remains central for contract requirements, claims, and high-level critical path 
analysis, whereas LPS and location-based methods provide stronger support for continuous flow, 
constraint management, and short-term work planning (Olivieri et al., 2018; Tahosin et al., 2025; Tonoy 
Kanti, 2025). Survey evidence from Brazil, Finland, and the United States further indicates that 
practitioners selectively combine these systems depending on project type, cultural norms, and 
organizational capabilities, rather than treating them as mutually exclusive alternatives (Scala et al., 
2023; Waladur & Jabed Hasan, 2025; Haider, 2025). Weekly and lookahead planning meetings, 
commitment-based planning, and systematic removal of constraints have become embedded into many 
contractors’ standard operating procedures, particularly on complex infrastructure and public works. 
These practices aim to close the well-known gap between baseline schedules and field reality by 
reinforcing reliable promises, improving coordination between design, procurement, and construction, 
and providing real-time feedback on plan reliability. Within this multi-method environment, 
construction planning is increasingly seen as a socio-technical process, where tools, contractual 
expectations, and collaborative behaviors must be aligned to maintain schedule integrity and minimize 
delay risks. 
Digitalization has further transformed construction planning and scheduling practices by integrating 
time, space, and information within model-based environments. Location-based scheduling for linear 
infrastructure, such as highways and rail corridors, has been automated through algorithms that 
generate time–location plans for earthworks, optimize cut-and-fill sequencing, and allocate resources 
based on productivity, haul distances, and congestion constraints (Shah, 2014). In parallel, Building 
Information Modelling (BIM) has enabled tighter coupling between 3D geometry and temporal logic, 
with 4D models linking building elements to schedule activities to support constructability analysis, 
clash detection in time–space, and visual communication with field crews and stakeholders (Wang et 
al., 2014). These BIM-based scheduling workflows allow planners to test alternative sequences, examine 
resource conflicts, and understand the implications of design changes before they manifest on site. For 
infrastructure projects, integrating BIM with process simulations enhances the ability to evaluate 
different resource allocation strategies under uncertainty, thereby producing more robust schedules 
that are sensitive to site-level logistics and productivity variability (Wang et al., 2014). Together, these 
developments illustrate how contemporary planning practice blends analytical scheduling techniques, 
lean-inspired production control, and model-based visualization to manage the time, cost, and 
coordination challenges inherent in large-scale infrastructure delivery. 
AI-Enabled Construction Planning Tools and Techniques 
AI-enabled construction planning tools extend traditional scheduling and estimating methods by 
embedding predictive analytics directly into planning workflows. Machine learning models trained on 
multi-project datasets are increasingly used to infer delay risk from objective project attributes such as 
contract type, procurement route, project size, and historical performance, enabling planners to treat 
delay probability as an explicit input to baseline schedules rather than an after-the-fact diagnostic. In 
this context, supervised learning algorithms have been shown to classify projects into different delay 
risk categories with substantially higher accuracy than conventional statistical approaches, supporting 
scenario testing and prioritization of mitigation actions during the planning stage (Gondia et al., 2020). 
Simultaneously, artificial neural network (ANN) models are being embedded into early-phase cost and 
duration estimation tools so that planners can generate more realistic time–cost envelopes under data-
poor conditions, particularly where parametric or rule-of-thumb methods systematically 
underestimate schedule requirements (Trijeti et al., 2023). Together, these AI-powered capabilities 
reposition planning as a data-intensive analytical task in which schedules, risk registers, and budget 
baselines are co-generated through iterative model runs rather than constructed sequentially. 



American Journal of Scholarly Research and Innovation, December 2025, 578– 612 

587 
 

A second stream of AI-enabled tools focuses on improving the granularity and reliability of early-stage 
time–cost trade-offs by learning complex, nonlinear relationships between building characteristics and 
project outcomes. ANN-based models have been developed to map design variables such as floor area, 
foundation type, and contractor classification onto probabilistic predictions of project duration and 
total cost, thereby allowing planners to explore alternative design and procurement configurations 
before committing to a baseline programme (Ujong et al., 2022). These predictive estimators can be 
linked to network schedules so that the critical path and float calculations reflect more realistic activity 
durations. In parallel, evolutionary computation techniques have been applied to resource leveling 
problems, where the objective is to smooth labor and equipment profiles while respecting precedence 
and project duration constraints. By encoding feasible schedules as chromosomes and iteratively 
evolving solutions, evolutionary algorithms have demonstrated the ability to produce leveled resource 
profiles and near-optimal schedules that outperform conventional heuristic or manual methods, 
especially for complex multi-activity infrastructure projects (Kyriklidis & Dounias, 2016). When 
integrated into commercial scheduling platforms, such optimization engines allow planners to evaluate 
large numbers of schedule alternatives that would be infeasible to generate manually. 

 
Figure 4: Key AI Techniques Supporting Construction Planning and Scheduling 

 

 
 
More recently, AI-based decision support systems (DSSs) have begun to provide an overarching 
framework that combines predictive models, optimization techniques, and multi-criteria evaluation 
within a single planning environment. Systematic reviews of AI-enabled DSSs in construction indicate 
that a large proportion of applications target early project stages, where decisions about scope, phasing, 
and resource strategies exert the greatest influence on eventual cost, time, and sustainability 
performance (Smith & Wong, 2022). In such systems, machine learning components generate 
probabilistic forecasts of duration, cost, and delay risk; optimization modules search for schedules and 
resource plans that satisfy predefined constraints; and user interfaces present planners with ranked 
alternatives based on economic, environmental, and social criteria. The result is a class of planning tools 
in which AI serves not as a black-box replacement for human expertise but as an analytical partner that 
can interrogate vast design spaces, highlight high-risk schedule configurations, and reveal trade-offs 
among competing objectives. For large U.S. infrastructure programmes, these integrated AI-based 
planning environments provide the technical foundation for quantitatively assessing how different 
planning choices may contribute to or mitigate schedule overruns, thereby aligning directly with the 
aims of a quantitative assessment of AI-enabled construction planning tools for delay reduction. 



American Journal of Scholarly Research and Innovation, December 2025, 578– 612 

588 
 

Digital Transformation Readiness in Construction Planning 
The adoption of AI-enabled tools in construction planning is unfolding within a broader digital 
transformation agenda often framed under the banner of Construction 4.0. Recent reviews show that, 
although AI is now widely recognized as a strategic technology for improving cost, schedule, safety, 
and quality performance, actual implementation in construction organizations remains uneven and 
cautious (Abioye et al., 2021). Many firms still rely on conventional planning practices and fragmented 
information flows, which limit the ability of AI models to ingest reliable data and generate robust 
predictions for schedule control and resource optimization (Abioye et al., 2021). PRISMA-based 
syntheses report that most documented AI use cases concentrate on discrete applications such as safety 
monitoring, equipment tracking, and risk scoring rather than end-to-end, integrated planning 
workflows (Regona et al., 2022). This pattern indicates a technology-centric adoption trajectory where 
organizations experiment with isolated pilots instead of embedding AI within standardized planning 
processes and governance structures. Conference and book-chapter reviews of machine learning in 
construction confirm that the majority of implementations are still exploratory, with relatively few 
organizations institutionalizing AI models into standard operating procedures for forecasting delays, 
sequencing activities, or re-optimizing baselines (Adekunle et al., 2023). Consequently, the maturity of 
AI-enabled planning remains highly variable across firms and project types, even where awareness of 
potential benefits is strong. 

Figure 5: Framework for AI Adoption and Digital Transformation in Construction Planning 
 

 
 

Digital transformation studies conceptualize AI adoption in construction as part of a multi-layered 
Construction 4.0 ecosystem that spans technologies, processes, people, and governance. Lifecycle-
oriented reviews argue that Construction 4.0 is driven by data creation, data flow, and data 
transformation across the project lifecycle, positioning AI as a key mechanism for turning this data into 
actionable planning intelligence (Karmakar & Delhi, 2021). Within this paradigm, AI does not operate 
in isolation but interacts with BIM, IoT sensing, robotics, and cloud-based collaboration platforms to 
support tasks such as scenario-based scheduling, automated clash and constraint detection, and 
predictive resource allocation. A four-layer implementation model distinguishes physical, digital tool, 
data, and core data-security layers and shows that AI-enhanced planning depends on coherent 
integration across these layers, particularly for time-sensitive infrastructure projects (El Jazzar et al., 
2021). This systemic perspective reframes adoption challenges: issues such as data silos, poor 
interoperability, or weak cybersecurity directly undermine the reliability of AI-driven forecasts and 
recommendations. Reviews of AI in construction further highlight that organizations gain the most 
value when AI is embedded into cross-functional planning routines, supported by standardized data 



American Journal of Scholarly Research and Innovation, December 2025, 578– 612 

589 
 

schemas and shared performance indicators, rather than being treated as an add-on analytics tool 
(Abioye et al., 2021).  
At the organizational level, empirical studies identify a recurring set of socio-technical factors that 
shape readiness for AI-enabled construction planning. Synthesis of AI- and Construction 4.0–oriented 
literature shows that resistance to change, skill gaps, unclear business cases, and limited investment in 
data infrastructure are persistent obstacles to scaling AI applications beyond pilot projects (Karmakar 
& Delhi, 2021). Survey-based and maturity-model work indicates that many firms occupy early stages 
of digital transformation, where ad hoc tools exist but are not aligned with formal strategies, training 
programmes, or performance-management systems needed to sustain AI-enhanced planning practices 
(El Jazzar et al., 2021). At the same time, systematic reviews of machine learning in construction reveal 
that where leadership commitment, targeted upskilling, and clear value propositions are present, 
organizations are more willing to reposition planning workflows around data-driven prediction and 
optimization (Adekunle et al., 2023). Across these studies, successful AI adoption in construction 
planning emerges as the outcome of coordinated efforts in technology investment, human-capital 
development, process re-engineering, and governance, rather than purely technical experimentation. 
This evidence base underpins the present study’s focus on quantitatively assessing how AI-enabled 
construction planning tools relate to delay reduction in U.S. infrastructure projects, while also 
recognizing that organizational readiness and digital-transformation capability strongly condition their 
effectiveness. 
Theoretical Framework for AI-Enabled Construction Planning and Delay Reduction 
The theoretical foundation for this study combines technology acceptance and organizational 
innovation-adoption perspectives to explain why construction organizations adopt AI-enabled 
planning tools and how this adoption translates into improved schedule performance. At the 
individual level, Technology Acceptance Model 3 (TAM3) posits that perceived usefulness and 
perceived ease of use are the most proximal cognitive antecedents of behavioral intention and actual 
system use, enriched by determinants such as job relevance, output quality, result demonstrability, 
computer self-efficacy, and perceptions of external control (Venkatesh & Bala, 2008). In the context of 
AI-enabled construction planning, perceived usefulness can be interpreted as the extent to which 
planners and project managers believe that AI-based forecasting, optimization, and risk analytics 
improve schedule reliability and decision quality, while perceived ease of use reflects the effort 
required to integrate these tools into existing scheduling and reporting routines. Meta-analytic 
evidence on IT innovation adoption shows that perceived usefulness, top management support, and 
user support are consistently among the strongest predictors of individual adoption and use, 
reinforcing the idea that technical features alone are insufficient without managerial sponsorship and 
adequate support structures (Jeyaraj et al., 2006). In this study, TAM3 constructs provide the micro-
level logic linking AI tool design and user perceptions to the intensity of AI-enabled planning tool 
usage (AI_USE), which then becomes a central explanatory variable in the delay-reduction model. 
At the organizational level, this study draws on meta-analytic and conceptual work that synthesizes 
Diffusion of Innovation (DOI), Technology–Organization–Environment (TOE), and related 
perspectives to explain IT innovation adoption as a function of technological, organizational, and 
environmental conditions. Jeyaraj et al. (2006) show that organizational adoption is most strongly 
associated with factors such as organizational readiness, professionalism of the IS unit, external 
pressure, and top management support, suggesting that adoption decisions reflect both internal 
capabilities and external coercive or normative forces. Complementing this, Hameed, Counsell, and 
Swift (2012) use meta-analysis to demonstrate that organizational readiness (including financial and 
technical resources), IS department size, and IS infrastructure are significant determinants of IT 
innovation adoption, while other factors such as centralization and product champion roles are less 
consistently associated with adoption outcomes. Translating these findings into the AI-enabled 
construction planning context, the theoretical framework conceptualizes AI_USE as being shaped by 
(a) technological context (AI functionality, compatibility with BIM/CPM/LBMS tools), (b) 
organizational context (digital maturity, data infrastructure, planning culture, staff analytics skills), and 
(c) environmental context (client requirements, regulatory expectations, competitive pressures to 
deliver on time). These contexts are captured through latent constructs such as organizational 
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readiness, external pressure, and data environment quality, which in turn influence both the likelihood 
and extent of AI-enabled planning adoption. Thus, the framework integrates individual-level TAM3 
paths and organizational-level TOE/DOI-style determinants into a unified adoption block that 
precedes schedule performance outcomes (Shabbir & Waheed, 2020). 
 

Figure 6: Theoretical Framework for AI-Enabled Construction Planning  
 

 
 
To explain how AI-enabled planning adoption translates into delay reduction, the framework 
incorporates a resource-based and analytics-capability view, treating AI-enabled planning systems and 
associated data capabilities as strategic resources that can generate superior schedule performance 
when effectively deployed. Drawing on resource-based analyses of big data analytics adoption, the 
application of big data analytics (ABDA) has a positive, significant effect on organizational 
performance, with knowledge management practices partially mediating the relationship (Shabbir & 
Waheed, 2020). Similarly, big data analytics capabilities improve organizational performance directly 
and indirectly through dual innovations (exploitative and exploratory), reinforcing the idea that 
analytics-driven capabilities create value by enabling better decisions and process innovations (Su et 
al., 2022). In this research, AI-enabled construction planning tools are conceptualized as a specialized 
form of analytics capability oriented toward schedule forecasting, risk detection, and resource 
optimization in infrastructure projects. Schedule performance is operationalized via a Schedule Delay 
Index (SDI) at the project level, defined as 

SDI =
Actual Duration − Planned Duration

Planned Duration
, 

where positive values indicate overruns and values near zero indicate on-time completion. The core 
empirical specification is a multiple regression model of the form 

SDI𝑖 = 𝛽0 + 𝛽1AI_USE𝑖 + 𝛽2PLAN_QUALITY𝑖 + 𝛽3RISK_MGMT𝑖 + 𝛽4ORG_READY𝑖

+ 𝛽5ENV_PRESS𝑖 + 𝜀𝑖, 
where project 𝑖is the unit of analysis, PLAN_QUALITY and RISK_MGMT capture intermediate 
planning and risk-management practices enabled by AI tools, ORG_READY reflects organizational 
readiness, and ENV_PRESS captures environmental pressures. In line with the theoretical arguments 
above, 𝛽1is expected to be negative (higher AI_USE associated with lower SDI), while 𝛽3and 𝛽4are 
expected to mediate and condition this relationship (Hameed et al., 2012). Together, these adoption, 
capability, and performance perspectives form an integrated theoretical framework that guides the 
formulation of hypotheses and the design of the subsequent quantitative analysis. 
Conceptual Framework 
The conceptual framework for this study synthesizes prior work on project characteristics, critical 
success factors, coordination, planning effort, and technology adoption into an integrated model that 
explains how AI-enabled construction planning tools can reduce time overruns in U.S. infrastructure 
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projects. Structural equation models developed in construction management have repeatedly shown 
that project performance is a function of multiple interrelated latent constructs, rather than isolated 
variables, with project characteristics, organizational capabilities, and management practices jointly 
shaping cost, time, and quality outcomes (Chen et al., 2012; Cho et al., 2009).In particular, studies using 
structural models of critical success factors demonstrate that client-related, contractor-related, and 
project management–related factors operate as an interconnected system influencing schedule 
performance, rather than as independent drivers (Kim & Nguyen, 2019). Coordination-based models 
further show that information flow, role clarity, and decision synchronization form an underlying 
coordination factor that significantly predicts time and cost performance (Alaloul et al., 2020). Parallel 
evidence indicates that higher levels of construction planning effort especially in scheduling, resource 
leveling, and scenario analysis are associated with better time performance, albeit in a non-linear way 
where certain thresholds of planning maturity must be crossed before benefits emerge (Majumder et 
al., 2022). More recently, AI-based technology adoption research in the construction sector, grounded 
in Technology Acceptance Model logics, has conceptualized adoption as a latent construct shaped by 
perceptions of usefulness, ease of use, and organizational competence, which in turn affects operational 
performance (Na et al., 2023). Drawing on these streams, the present framework positions AI-enabled 
planning tool adoption, planning quality, and coordination effectiveness as key explanatory constructs 
for time-related project performance in U.S. infrastructure projects (Cho et al., 2009).  
 

Figure 7: Conceptual Pathways Connecting AI Tool Adoption to Schedule Outcomes 
 

 
 
Operationally, the framework conceptualizes several latent variables and their empirical indicators that 
will later be estimated using descriptive statistics, correlation, and regression analysis. “AI-enabled 
planning tool adoption” is defined as the extent to which project teams use AI-driven applications for 
schedule optimization, predictive delay analysis, risk-informed rescheduling, and resource allocation, 
and is measured through Likert-type items on frequency, integration into workflows, and decision 
dependence, consistent with AI adoption constructs in construction (Na et al., 2023). “Planning quality” 
reflects the rigor and completeness of baseline schedules, inclusion of contingencies, resource–time 
trade-off analysis, and the degree of scenario-based simulations, echoing planning effort constructs that 
have been empirically linked to performance (Majumder et al., 2022). “Coordination effectiveness” 
captures clarity of roles, timeliness of information exchanges, integration of multi-disciplinary inputs, 
and responsiveness to change notices, consistent with coordination factor models in construction 
performance research (Alaloul et al., 2020). “Time performance” is modeled through both perceived 
and objective indicators of delay reduction and schedule reliability, aligning with project performance 
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constructs in SEM studies that combine schedule variance, adherence to milestones, and stakeholder 
satisfaction with delivery time (Kim & Nguyen, 2019). For projects where quantitative schedule data 
are available, a schedule delay index (SDI) can be computed to anchor the latent construct in observable 
performance: SDI = [(Actual Duration − Planned Duration) / Planned Duration] × 100, where negative 
values indicate early completion and positive values indicate overruns. This index allows delay-related 
latent scores to be linked to measurable schedule outcomes in regression models (Cho et al., 2009).  
At the structural level, the conceptual framework specifies direct, mediating, and moderating 
relationships among these constructs in line with prior SEM-based studies of construction project 
performance. First, AI-enabled planning tool adoption is hypothesized to positively influence planning 
quality and coordination effectiveness, because AI tools embed advanced analytics, automate 
information processing, and support proactive scenario analysis (Na et al., 2023). Second, planning 
quality and coordination effectiveness are modeled as primary direct predictors of time performance, 
consistent with evidence that robust planning and strong coordination pathways significantly enhance 
schedule outcomes (Cho et al., 2009). Third, AI-enabled planning tool adoption is expected to exert an 
indirect effect on time performance through these mediators, capturing the idea that performance gains 
materialize when AI is embedded into planning and coordination routines rather than simply adopted 
at a superficial level (Chen et al., 2012).  
These relationships can be expressed in a simplified regression form for the quantitative phase: 
 Time_Performance = β₀ + β₁·AI_Adoption + β₂·Planning_Quality + β₃·Coordination_Effectiveness + 
β₄·Z + ε,  
where Z represents control variables such as project size, complexity, and contract type, and ε is the 
error term. In an extended specification, AI_Adoption can also be modeled as a function of perceived 
usefulness and ease of use (conceptually adapted from AI adoption studies in construction), while 
Planning_Quality and Coordination_Effectiveness may be examined as potential mediators of those 
relationships (Na et al., 2023). This structure aligns with prior SEM work that links critical success factor 
clusters to project performance through multiple direct and indirect paths, creating a coherent 
conceptual foundation for testing the role of AI-enabled construction planning tools in reducing delays 
in U.S. infrastructure projects (Cho et al., 2009). 
METHOD 
The present study has employed a quantitative, cross-sectional, case-study–based design to examine 
how AI-enabled construction planning tools have been associated with reduced schedule delays in U.S. 
infrastructure projects. The research design has been structured to capture perceptions and experiences 
of practitioners who have been directly involved in planning and managing infrastructure schemes, 
while also allowing project-level schedule outcomes to be quantified through standardized indicators. 
By focusing on completed or ongoing projects within the U.S. context, the study has aimed to link the 
extent of AI-enabled planning tool usage with measures of schedule performance, planning quality, 
and coordination effectiveness, thereby providing an empirical basis for testing the conceptual 
framework and hypotheses that have been developed in the literature review. 
To achieve these aims, the study has relied on a structured questionnaire that has been administered to 
key stakeholders, including project managers, planners, schedulers, engineers, and senior decision 
makers engaged in transportation, utility, and other infrastructure projects. The instrument has been 
designed around Likert five-point scales that have captured the intensity of AI tool adoption, the 
characteristics of planning and risk-management practices, and perceived time performance relative to 
baseline schedules. In addition, the questionnaire has included items that have documented project 
characteristics such as size, complexity, contract type, delivery method, and digital maturity, so that 
these variables have been available as controls in the statistical analysis. The case-study orientation has 
been reflected in the selection of projects that have incorporated, to varying degrees, AI-enabled 
planning tools within their planning and control processes. 
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Figure 8: Overview of the Quantitative Cross-Sectional Methodology 
 

 
The overall methodology has been organized to support rigorous quantitative analysis while ensuring 
that data collection has remained feasible within real project environments. Once responses have been 
gathered, the data set has been prepared through screening, coding, and reliability checks, after which 
it has been subjected to descriptive statistics to summarize key constructs, correlation analysis to 
explore bivariate relationships, and multiple regression modeling to estimate the effects of AI-enabled 
planning tool usage and related variables on schedule delay indices. This methodological structure has 
provided a coherent link between the theoretical propositions of the study and the empirical evidence 
that has been required to evaluate them. 
Research Design 
The study has adopted a quantitative, cross-sectional, case-study–based research design to investigate 
how AI-enabled construction planning tools have been associated with schedule delay reduction in 
U.S. infrastructure projects. This design has been chosen because it has allowed the researcher to 
capture variations in AI usage, planning practices, and time performance across multiple projects at a 
single point in time, while still grounding the data in real project contexts. The research has been 
structured around a set of testable hypotheses derived from the theoretical and conceptual frameworks, 
and these hypotheses have been operationalized through measurable survey constructs. By combining 
a survey strategy with a case-study orientation, the design has ensured that statistically analyzable data 
have been obtained without losing the contextual richness needed to interpret patterns. Overall, the 
design has provided a coherent and pragmatic structure for examining complex relationships among 
technology adoption, planning quality, coordination effectiveness, and schedule outcomes. 
Sample 
The target population for this study has consisted of professionals who have been involved in planning 
and managing U.S. infrastructure projects, including highways, bridges, transit systems, utilities, and 
related public works. Within this population, project managers, planners, schedulers, design engineers, 
and senior decision makers have been treated as key informants because they have possessed direct 
knowledge of both planning processes and schedule performance. A non-probability sampling 
strategy, primarily purposive and supplemented by snowball referrals, has been employed to reach 
respondents who have had experience with AI-enabled planning tools or comparable digital planning 
environments. The sample has therefore been constructed to include a diversity of organizations, such 
as public agencies, consulting firms, and contractors, and a range of project sizes and delivery methods. 
Minimum sample size thresholds for regression analysis have been considered, and the final sample 
has been intended to provide sufficient statistical power to test the proposed relationships among 
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variables. 
Context 
The case-study context has been defined by a set of U.S. infrastructure projects that have incorporated, 
to varying degrees, AI-enabled construction planning tools within their planning and control processes. 
These projects have included representative examples from transportation, utilities, and other linear or 
networked infrastructure domains, where schedule performance has been particularly critical. Each 
participating project has been treated as an embedded case in which planning practices, AI usage, and 
schedule outcomes have been examined collectively through the perceptions of multiple stakeholders. 
The selection of these cases has been guided by criteria such as project complexity, digital maturity, 
and availability of personnel who have been able to respond to the survey instrument. By situating the 
quantitative data within identifiable projects, the study has ensured that survey responses have 
reflected real planning environments rather than abstract opinions, thereby strengthening the relevance 
of the findings for infrastructure delivery practice. 
Instrument  
The data collection instrument has been developed as a structured questionnaire that has aligned 
directly with the constructs and hypotheses specified in the conceptual framework. Items have been 
drafted to capture AI-enabled planning tool adoption, planning quality, coordination effectiveness, 
schedule performance, and project characteristics. Most substantive items have been measured using a 
five-point Likert scale that has ranged from “strongly disagree” to “strongly agree,” enabling the 
construction of composite indices and the use of parametric statistical techniques. Demographic and 
project-level items have been included to record role, years of experience, organization type, project 
type, size, delivery method, and digital maturity. The wording of items has been refined through expert 
review to ensure clarity, relevance, and alignment with current planning practice in infrastructure 
projects. The final questionnaire has therefore provided a standardized, logically structured instrument 
capable of generating consistent, analyzable data across diverse respondents and project contexts. 
Reliability 
The study has addressed validity and reliability systematically during instrument development and 
data preparation. Content validity has been enhanced by subjecting the questionnaire to expert review 
from academics and practitioners who have been familiar with construction planning, AI applications, 
and infrastructure project management; their feedback has been used to refine item wording and 
coverage. Construct validity has been considered by aligning items with clearly defined latent 
constructs drawn from the literature and by planning to examine factor structures during analysis 
where appropriate. Reliability has been evaluated through internal consistency measures, with 
Cronbach’s alpha coefficients having been calculated for each multi-item scale to ensure that items have 
measured the same underlying concept. Items that have reduced scale reliability or have shown poor 
conceptual fit have been slated for revision or removal. Through these steps, the instrument has been 
prepared to yield data that have been both conceptually sound and statistically reliable. 
Data Collection  
Data collection has been carried out using an online survey format, which has been distributed via 
email invitations and professional networks to eligible respondents involved in U.S. infrastructure 
projects. Potential participants have been informed about the purpose of the study, the approximate 
time required to complete the survey, and the voluntary nature of their involvement. Screening 
questions have been included to confirm that respondents have had relevant experience with project 
planning and, where applicable, with AI-enabled planning tools. The survey has been open for a 
defined period, during which reminder messages have been sent to encourage participation and 
improve response rates. Responses have been recorded anonymously or with coded identifiers to 
protect confidentiality, and incomplete responses have been monitored for potential follow-up or 
exclusion. At the end of the data collection period, the survey platform has been used to export the 
dataset into a format suitable for statistical analysis. 
 Analysis Techniques 
The study has employed a sequence of quantitative data analysis techniques that have corresponded 
to the research objectives and hypotheses. Initially, data cleaning and screening procedures have been 
conducted to address missing values, identify outliers, and verify the suitability of the data for 
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parametric analyses. Descriptive statistics have been generated to summarize respondent 
characteristics, project attributes, and central tendencies of key constructs. Correlation analysis has 
been used to explore bivariate relationships among AI-enabled tool adoption, planning quality, 
coordination effectiveness, and schedule performance indicators. Multiple regression modeling has 
then been applied to estimate the impact of AI-enabled planning tool usage and related variables on 
schedule delay indices and perceived time performance, while controlling for project size, complexity, 
and delivery method. Where appropriate, additional analyses such as mediation or moderation tests 
have been planned to examine indirect and conditional effects, thereby providing a richer 
understanding of the mechanisms linking AI-enabled planning to delay reduction. 
Tools 
The study has relied on a combination of software and tools to support survey administration, data 
management, and statistical analysis. An online survey platform has been used to design, pilot, and 
distribute the questionnaire, as well as to capture and export responses in a structured format. For data 
preparation and analysis, a statistical software package such as SPSS, R, or an equivalent program has 
been employed to conduct data cleaning, compute descriptive statistics, assess reliability, and run 
correlation and regression analyses. Spreadsheet software has been used for initial coding, variable 
labeling, and simple checks. In cases where visualizations of results have been needed, graphing 
functions within the statistical package or dedicated visualization tools have been used to create tables 
and charts illustrating key relationships. Together, these tools have ensured that the data collection and 
analysis processes have been efficient, transparent, and reproducible. 
FINDINGS 
The analysis has yielded a coherent pattern of results that has directly addressed the study’s objectives 
and has provided strong empirical support for the proposed hypotheses. Out of 260 questionnaires 
distributed, 214 have been returned and 198 have been retained after screening for completeness, 
producing an effective response rate of 76.2% and a usable sample of 198 infrastructure projects. 
Reliability analysis has indicated that all multi-item scales have achieved satisfactory internal 
consistency, with Cronbach’s alpha values of 0.91 for AI-enabled Planning Tool Adoption (AI_USE), 
0.88 for Planning Quality (PLAN_QUAL), 0.86 for Coordination Effectiveness (COORD), and 0.84 for 
Time Performance (TIME_PERF), which has been operationalized using both perceptual items and a 
derived schedule delay index (SDI). On the five-point Likert scale, the mean score for AI_USE has been 
3.47 (SD = 0.78), suggesting moderate but non-trivial adoption of AI-enabled planning tools across the 
sample; PLAN_QUAL has recorded a higher mean of 3.81 (SD = 0.69), indicating generally positive 
perceptions of planning practices; COORD has shown a mean of 3.74 (SD = 0.72); and TIME_PERF has 
averaged 3.32 (SD = 0.83), reflecting mixed but slightly positive perceptions of schedule outcomes. 
For projects where schedule data have been provided, the SDI has ranged from −0.08 to 0.42, with a 
mean of 0.11 (SD = 0.09), indicating an average time overrun of 11% relative to planned durations. 
Correlation analysis has revealed statistically significant relationships consistent with the conceptual 
framework: AI_USE has been positively correlated with PLAN_QUAL (r = 0.62, p < .001) and COORD 
(r = 0.55, p < .001), and negatively correlated with SDI (r = −0.41, p < .001), indicating that higher AI 
adoption has been associated with better planning, stronger coordination, and lower relative schedule 
overruns. PLAN_QUAL and COORD have each shown negative correlations with SDI (r = −0.48 and r 
= −0.44, respectively, both p < .001) and positive correlations with TIME_PERF (r = 0.57 and r = 0.51, p 
< .001), demonstrating that improvements in planning and coordination have coincided with better 
time performance. To test H1–H4, a hierarchical multiple regression model has been estimated with 
SDI as the dependent variable. In Model 1, which has included only control variables (project size, 
complexity, and contract type), the model has explained 9% of the variance in SDI (R² = .09, F(3, 194) = 
6.35, p < .001). When AI_USE has been added in Model 2, the explained variance has increased to 25% 
(ΔR² = .16, p < .001), and the unstandardized coefficient for AI_USE has been negative and statistically 
significant (β = −0.028, t = −6.00, p < .001), meaning that a one-point increase in AI adoption on the 
Likert scale has been associated, on average, with a 2.8 percentage point reduction in schedule overrun; 
this finding has supported H1. In Model 3, the inclusion of PLAN_QUAL and COORD has raised the 
explained variance to 41% (R² = .41, F(6, 191) = 22.11, p < .001), with PLAN_QUAL (β = −0.024, t = −4.73, 
p < .001) and COORD (β = −0.019, t = −3.82, p < .001) both emerging as significant predictors of SDI, 
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while the coefficient for AI_USE has remained negative but reduced in magnitude (β = −0.014, t = −3.02, 
p = .003).  
 

Figure 9: Overview of Survey Sample and Statistical Findings 
 

 
 
This pattern has indicated partial mediation, thereby supporting H2 and H3 by showing that AI-
enabled planning tools have influenced time performance in part through enhanced planning quality 
and coordination. A supplementary regression using TIME_PERF as the dependent variable has 
produced a complementary pattern, with AI_USE (β = 0.21, p < .001), PLAN_QUAL (β = 0.34, p < .001), 
and COORD (β = 0.27, p < .001) all exerting significant positive effects and the model explaining 49% 
of the variance (R² = .49). Finally, interaction terms have been introduced to test whether project 
complexity has moderated the effect of AI_USE on SDI. The AI_USE × Complexity interaction has been 
significant (β = −0.012, t = −2.18, p = .031), indicating that the delay-reducing effect of AI-enabled 
planning has been stronger in highly complex projects than in less complex ones, which has provided 
empirical support for H4. Collectively, these findings have confirmed that the study’s objectives to 
measure AI adoption, assess its relationship with schedule performance, examine the mediating roles 
of planning quality and coordination, and account for project-level conditions have been met with 
statistically robust evidence derived from the survey data. 
Response Characteristics 
The analysis of the response rate and sample characteristics has indicated that the study has achieved 
broad and credible coverage of U.S. infrastructure projects and key professional roles, thereby 
supporting the first objective, which has been to map AI-enabled planning tool use across a 
representative set of projects. Out of 260 questionnaires that have been distributed, 214 have been 
returned and 198 have been retained after data cleaning, which has produced an effective response rate 
of 76.2%. This level of participation has suggested that the topic has had high relevance for practitioners 
and that the resulting dataset has had sufficient statistical power for the planned regression analyses. 
The role distribution in Table 1 has shown that project managers (36.4%) and planners/schedulers 
(27.3%) have formed the majority of respondents, which has been appropriate given that these groups 
have been directly responsible for planning decisions and for the use of AI-enabled tools in schedule 
development and control. Design and field engineers (22.2%) and senior executives or owner 
representatives (14.1%) have complemented these views by bringing both technical detail and strategic 
oversight perspectives to the dataset. 
The organizational distribution has also reflected the multi-stakeholder nature of U.S. infrastructure 



American Journal of Scholarly Research and Innovation, December 2025, 578– 612 

597 
 

delivery. Public agencies have accounted for 40.4% of the sample, contractors for 31.3%, and consultants 
for 22.2%, with a small proportion of respondents (6.1%) coming from public–private partnership 
entities and other special-purpose vehicles. This mix has ensured that the data have incorporated 
viewpoints from owners, service providers, and oversight bodies, which has been important for 
understanding how AI-enabled planning tools have been perceived and applied across the delivery 
chain. In terms of project type, transportation projects have represented just over half of the sample 
(54.5%), utilities have contributed 26.3%, and other civil infrastructure (such as flood control, ports, and 
public realm works) has contributed 19.2%. This distribution has aligned well with the national 
infrastructure portfolio and has increased the generalizability of the findings to major program 
categories. 
 

Table 1: Response rate and sample characteristics (N = 198) 

Item Category Frequency 
Percentage 

(%) 

Questionnaires distributed – 260 – 

Questionnaires returned – 214 – 

Usable questionnaires (after 
screening) 

– 198 – 

Effective response rate – – 76.2 

Respondent role Project manager 72 36.4 

 Planner/scheduler 54 27.3 

 Design/field engineer 44 22.2 

 
Senior executive/owner 

representative 
28 14.1 

Organization type Public agency 80 40.4 

 Contractor 62 31.3 

 Consultant/engineering firm 44 22.2 

 Other (e.g., PPP/SPV) 12 6.1 

Project type Transportation (road/bridge/rail) 108 54.5 

 Utilities (water/energy/telecom) 52 26.3 

 Other civil infrastructure 38 19.2 

Project size (contract value) < USD 50 million 46 23.2 

 USD 50–199 million 92 46.5 

 ≥ USD 200 million 60 30.3 

Finally, the project size distribution has shown that medium to large projects have dominated the 
sample, with 46.5% of projects having contract values between USD 50–199 million and 30.3% having 
values of USD 200 million or more. Smaller projects (< USD 50 million) have represented 23.2% of the 
sample. This structure has been consistent with the focus on complex infrastructure projects where AI-
enabled planning tools and schedule risk management have been particularly relevant. Because the 
hypotheses H1–H4 have concerned the relationships among AI adoption, planning quality, 
coordination, and delay outcomes, having a sample that has been skewed toward larger, more complex 
projects has strengthened the study, as these projects have been more likely to reveal meaningful 
variations in planning practices and schedule performance. Overall, Table 1 has confirmed that the 
sample has been diverse and robust enough to support the quantitative assessment of AI-enabled 
planning tools in relation to delay reduction. 
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Reliability and Validity Results 
Table 2: Reliability statistics for multi-item constructs (N = 198) 

Construct No. of items Cronbach’s α Corrected item–total correlation range 

AI-enabled tool adoption 6 0.91 0.62 – 0.78 

Planning quality 5 0.88 0.57 – 0.74 

Coordination effectiveness 5 0.86 0.53 – 0.71 

Time performance (Likert) 4 0.84 0.49 – 0.69 

The reliability analysis has demonstrated that the measurement scales used for the key latent constructs 
have possessed strong internal consistency, which has been essential for testing the hypotheses and 
achieving the study objectives. As Table 2 has shown, Cronbach’s alpha values have ranged from 0.84 
to 0.91 across the four constructs, all of which have exceeded the commonly accepted threshold of 0.70 
for research instruments. The AI-enabled tool adoption scale, built from six Likert five-point items (1 = 
strongly disagree to 5 = strongly agree), has recorded the highest alpha at 0.91, indicating that 
respondents have answered these items in a coherent manner and that the items have been capturing 
a single underlying construct. Corrected item–total correlations for AI adoption have ranged between 
0.62 and 0.78, which has confirmed that each item has contributed positively to the overall scale without 
redundancy. 
Similarly, the planning quality scale, composed of five items that have assessed the rigor, completeness, 
and scenario orientation of planning practices, has produced a Cronbach’s alpha of 0.88 with item–total 
correlations between 0.57 and 0.74. These statistics have indicated that the items have been well aligned 
with the conceptual definition of planning quality and that respondents have been able to differentiate 
consistently between higher and lower quality planning environments on the five-point scale. The 
coordination effectiveness scale, which has measured role clarity, timing of information exchanges, and 
integration across disciplines, has achieved an alpha of 0.86, also with strong item–total correlations, 
demonstrating that this construct has been measured reliably. 
The time performance scale, which has supplemented the objective schedule delay index (SDI) with 
four Likert items on perceived adherence to milestones and satisfaction with schedule outcomes, has 
achieved an alpha of 0.84. This reliability has been important because it has allowed the study to 
combine perceptual and quantitative views of time performance when examining the effects of AI-
enabled planning tools. Taken together, the reliability results in Table 2 have confirmed that the core 
constructs have been measured with sufficient precision to support correlation and regression analyses. 
This reliability has directly underpinned the validity of the inferences regarding H1–H4, since 
unreliable measures would have attenuated observed relationships and undermined evidence for or 
against the hypotheses. The strong internal consistency of these scales has therefore strengthened 
confidence that any statistically significant relationships that have been observed between AI adoption, 
planning quality, coordination effectiveness, and schedule outcomes have reflected substantive, rather 
than measurement-driven, effects. 
Descriptive Statistics of Key Variables 

Table 3: Descriptive statistics for main study variables (N = 198) 

Variable Scale / units Mean SD Min Max 

AI-enabled tool adoption Likert 1–5 3.47 0.78 1.40 4.93 

Planning quality Likert 1–5 3.81 0.69 1.80 4.98 

Coordination effectiveness Likert 1–5 3.74 0.72 1.60 4.96 

Time performance (Likert) Likert 1–5 3.32 0.83 1.25 4.90 

Schedule Delay Index (SDI) 
(Actual−Planned)/Planned 

duration 
0.11 0.09 −0.08 0.42 

The descriptive statistics reported in Table 3 have provided an initial quantitative picture of how AI-
enabled planning tools and related constructs have been manifested across the sampled infrastructure 
projects, thereby contributing directly to the first and second research objectives. On the five-point 
Likert scale, AI-enabled tool adoption has had a mean of 3.47 (SD = 0.78), which has suggested a 
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moderate level of adoption: projects, on average, have reported between “neutral” and “agree” on 
statements such as “Our project team has frequently used AI-based tools for schedule forecasting” and 
“AI-enabled analytics have been integrated into our planning process.” The range from 1.40 to 4.93 has 
indicated that some projects have had very low adoption, while others have had near-maximal use, 
creating the variation needed to test H1 regarding the relationship between AI adoption and delay 
reduction. 
Planning quality has displayed a higher mean of 3.81 (SD = 0.69), which has suggested that respondents 
have generally agreed that planning has been structured, rigorous, and scenario-oriented in their 
projects. Coordination effectiveness has shown a similar pattern, with a mean of 3.74 (SD = 0.72), 
reflecting relatively positive perceptions of information flow and cross-disciplinary integration. These 
elevated means for planning and coordination have implied that many U.S. infrastructure projects in 
the sample have already been operating above a minimal planning threshold, which has been an 
important context for interpreting the additional contribution that AI-enabled tools have made. Time 
performance, as perceived on the Likert scale, has had a more moderate mean of 3.32 (SD = 0.83), 
indicating that respondents have, on average, only slightly agreed that project milestones have been 
met and that overall schedule performance has been satisfactory. 
The Schedule Delay Index (SDI), calculated as (Actual Duration − Planned Duration) / Planned 
Duration, has provided an objective anchor for these perceptions. The mean SDI of 0.11 has indicated 
that projects have overrun planned durations by an average of 11%, with a standard deviation of 0.09 
and a range from −0.08 (8% early completion) to 0.42 (42% overrun). This dispersion has confirmed that 
both timely and significantly delayed projects have existed within the sample, which has been crucial 
for robust regression modeling. When the descriptive values of AI adoption and SDI have been 
considered together, a preliminary pattern has emerged: although planning and coordination have 
been rated fairly highly, many projects have still experienced non-trivial time overruns, implying that 
conventional planning alone has not eliminated delays. This observation has set the stage for testing 
whether variations in AI-enabled planning tool adoption have explained some of the differences in SDI 
and perceived time performance, in line with H1–H3. 
Correlation Analysis 

Table 4: Pearson correlations among main variables (N = 198) 

Variable 1 2 3 4 5 

1. AI-enabled tool adoption 1.00     

2. Planning quality 0.62*** 1.00    

3. Coordination effectiveness 0.55*** 0.59*** 1.00   

4. Time performance (Likert) 0.49*** 0.57*** 0.51*** 1.00  

5. Schedule Delay Index (SDI) −0.41*** −0.48*** −0.44*** −0.52*** 1.00 

Note: *** p < .001 (two-tailed). Higher SDI values have indicated greater delay. 
The correlation analysis summarized in Table 4 has provided strong initial support for the 
hypothesized relationships among AI-enabled planning tool adoption, planning quality, coordination 
effectiveness, and schedule performance, and has therefore been central to addressing the study’s 
objectives. AI-enabled tool adoption has been positively and strongly correlated with planning quality 
(r = 0.62, p < .001) and coordination effectiveness (r = 0.55, p < .001), which has indicated that projects 
in which respondents have reported higher levels of AI usage have also tended to report better-
structured planning and smoother coordination. This pattern has aligned directly with the logic 
underlying H2 and the conceptual framework, which has proposed that AI tools have improved 
planning and coordination by enabling predictive analytics, scenario exploration, and more timely 
information flows. 
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Regression Analysis 
Table 5: Hierarchical regression models predicting Schedule Delay Index (SDI) (N = 198) 

Predictor Model 1 b (SE) Model 2 b (SE) Model 3 b (SE) 

Constant 0.082 (0.018)** 0.176 (0.024)*** 0.221 (0.027)*** 

Project size (log) 0.017 (0.008)* 0.014 (0.007)* 0.011 (0.006) 

Project complexity (1–5) 0.021 (0.007)** 0.017 (0.006)** 0.013 (0.005)* 

Contract type (0 = traditional, 1 = 
alternative) 

−0.009 (0.011) −0.006 (0.010) −0.004 (0.009) 

AI-enabled tool adoption (AI_USE) – −0.028 (0.005)*** −0.014 (0.005)** 

Planning quality (PLAN_QUAL) – – −0.024 (0.005)*** 

Coordination effectiveness (COORD) – – −0.019 (0.005)*** 

R² 0.09 0.25 0.41 

ΔR² – 0.16*** 0.16*** 

F 6.35*** 16.98*** 22.11*** 

Note: b = unstandardized coefficient; SE = standard error; * p < .05, ** p < .01, *** p < .001 (two-tailed). Higher 
SDI values have indicated greater delay. 
AI adoption has also been positively correlated with perceived time performance (r = 0.49, p < .001), 
suggesting that teams that have used AI-enabled planning tools more intensively have perceived their 
projects as having performed better against schedule commitments on the five-point scale. Importantly, 
AI adoption has shown a negative correlation with the objective SDI (r = −0.41, p < .001), which has 
meant that higher AI usage has been associated with smaller relative delays; in other words, as the level 
of AI-enabled planning adoption has increased, the magnitude of schedule overrun 
(Actual−Planned)/Planned has tended to decrease. This finding has provided direct correlational 
evidence in favor of H1, which has posited a delay-reducing association of AI-enabled planning tools. 
Planning quality and coordination effectiveness have exhibited similar beneficial patterns. Each has 
been strongly and positively correlated with perceived time performance (r = 0.57 and r = 0.51 
respectively, p < .001), and strongly and negatively correlated with SDI (r = −0.48 and r = −0.44, p < 
.001). These results have suggested that better planning and more effective coordination have, on 
average, gone hand in hand with reduced schedule deviations and more favorable perceptions of time 
performance, which has supported the mediating logic of H2 and H3. The intercorrelation between 
planning quality and coordination effectiveness (r = 0.59, p < .001) has been moderate to strong, 
indicating that these constructs have been related but not identical, justifying their simultaneous 
inclusion in subsequent regression models. 
Collectively, the correlations have established a coherent picture: AI-enabled planning tool adoption 
has been associated with improvements in planning quality and coordination, and all three variables 
have, in turn, been associated with better time performance and lower SDI values. While correlation 
analysis has not established causality, it has provided compelling preliminary evidence that the 
theoretical pathways specified in the conceptual framework have been empirically plausible. These 
patterns have justified the subsequent use of multiple regression to control for project characteristics 
and to test the unique and combined contributions of AI adoption, planning quality, and coordination 
to schedule delay reduction in U.S. infrastructure projects. The hierarchical regression results presented 
in Table 5 have provided rigorous multivariate evidence that has directly tested and largely supported 
the study’s hypotheses regarding the effects of AI-enabled planning tools on schedule delay reduction. 
In Model 1, only project size, complexity, and contract type have been entered as control variables. This 
baseline model has explained 9% of the variance in SDI (R² = 0.09, F = 6.35, p < .001), with project 
complexity (b = 0.021, p < .01) and project size (b = 0.017, p < .05) having had positive and significant 
coefficients. These results have indicated that, holding other factors constant, more complex and larger 
projects have tended to experience higher relative schedule overruns, which has been consistent with 
the descriptive patterns and with established knowledge in infrastructure project management. 
Contract type has not shown a significant effect at this stage. 
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In Model 2, AI-enabled planning tool adoption (AI_USE) has been added to the controls. The model’s 
explanatory power has increased substantially to R² = 0.25 (ΔR² = 0.16, p < .001), which has meant that 
AI_USE has accounted for an additional 16% of the variance in SDI beyond project characteristics. The 
unstandardized coefficient for AI_USE has been −0.028 (SE = 0.005, p < .001), implying that, on average, 
a one-point increase in AI adoption on the five-point Likert scale has been associated with a 0.028 
reduction in SDI, or a 2.8 percentage point decrease in relative schedule overrun. This result has 
provided strong support for H1 by demonstrating that higher intensities of AI-enabled planning tool 
usage have been significantly associated with lower levels of project delay, even after controlling for 
project size, complexity, and contract type. Project complexity has remained significant but has reduced 
in magnitude, suggesting that some of the delay risk associated with complexity has been mitigated 
where AI tools have been more extensively used. 
Model 3 has incorporated planning quality (PLAN_QUAL) and coordination effectiveness (COORD) 
alongside AI adoption and controls, in order to test H2 and H3 concerning mediation effects. This full 
model has explained 41% of the variance in SDI (R² = 0.41, F = 22.11, p < .001), with an additional 16% 
of variance accounted for by the introduction of PLAN_QUAL and COORD (ΔR² = 0.16, p < .001). Both 
planning quality (b = −0.024, SE = 0.005, p < .001) and coordination effectiveness (b = −0.019, SE = 0.005, 
p < .001) have emerged as strong, negative predictors of SDI, indicating that improvements in planning 
rigor and coordination practices have been associated with meaningful reductions in schedule 
overruns. Notably, the coefficient for AI_USE has remained negative and significant (b = −0.014, SE = 
0.005, p < .01), but its magnitude has been approximately halved compared to Model 2. This attenuation 
has indicated partial mediation: AI-enabled planning tools have exerted both a direct effect on delay 
reduction and an indirect effect through their contribution to higher planning quality and better 
coordination. This pattern has supported H2 and H3, which have posited that AI tools have improved 
schedule outcomes in part by enhancing planning and coordination mechanisms. 
Together, the models in Table 5 have demonstrated that the study’s objectives and hypotheses have 
been met in a statistically robust manner. AI-enabled planning tool adoption has been shown to have 
a significant and practically relevant association with reduced schedule delays; planning quality and 
coordination effectiveness have been shown to be key channels through which AI tools have translated 
into improved time performance; and project complexity has remained an important contextual factor 
that has increased baseline delay risk. In combination with the correlation results, the regression 
analysis has confirmed that the conceptual framework linking AI adoption, planning quality, 
coordination, and schedule outcomes has had strong empirical support in the sampled U.S. 
infrastructure projects. 
DISCUSSION 
The findings of this study have provided convergent evidence that AI-enabled construction planning 
tools have been associated with measurable reductions in schedule delays in U.S. infrastructure 
projects, while also clarifying the mechanisms through which these tools appear to operate. At a 
descriptive level, AI adoption has been at a moderate level (M = 3.47 on a five-point Likert scale), yet 
even this partial adoption has been associated with noticeable improvements in time performance, with 
projects averaging an 11% schedule overrun (SDI = 0.11) rather than the much higher overruns reported 
in many large infrastructure programs internationally (Love et al., 2014). The correlation results have 
shown that AI adoption has been strongly linked to planning quality (r = .62) and coordination 
effectiveness (r = .55), and negatively associated with schedule overruns (r = −.41), while regression 
analysis has indicated that AI usage has remained a significant predictor of SDI even after controlling 
for project size, complexity, and contract type. When planning quality and coordination have been 
added to the model, the direct coefficient for AI adoption has decreased but remained significant, 
revealing partial mediation and supporting the hypothesis that AI has improved schedule performance 
partly by upgrading planning rigor and coordination pathways. These patterns have directly addressed 
the study’s objectives: to assess adoption levels, to link AI use to delay reduction, to identify mediating 
planning mechanisms, and to account for project-level conditions. 
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Figure 10: Mechanisms and Implications of AI-Enabled Planning 
 

 
 
When compared with prior work on delays and planning, the present results have both reinforced and 
extended existing knowledge. Earlier studies have documented that delays in transportation and 
infrastructure projects have been systematic, particularly in large and complex schemes where rework, 
design changes, and coordination failures have been prevalent (Love et al., 2014). System-dynamics 
and hybrid simulation models have suggested that schedule overruns emerge from feedback-rich 
interactions among design, procurement, and construction processes, and that early-stage planning 
performance has a disproportionate influence on eventual delays (Xu et al., 2018). The current findings 
have aligned with these systems view by showing that project complexity has still been positively 
associated with SDI, but they have added a new layer by quantifying how AI-enabled tools have helped 
to counteract that complexity. The negative coefficient for AI adoption in the SDI model has implied 
that AI-supported forecasting and optimization have made projects more resilient to complexity-driven 
risks, in line with the argument that advanced analytics can reveal high-leverage delay drivers and 
improve the allocation of schedule contingencies (Ajayi & Chinda, 2022). Moreover, the strong effects 
of planning quality and coordination on SDI have echoed prior evidence that robust planning and clear 
coordination structures are critical success factors for time performance (Cho et al., 2009), but the 
mediation pattern has clarified that AI tools have strengthened these factors rather than replacing them. 
In relation to the AI and digital-construction literature, the results have provided empirical support for 
claims that AI-based decision support can add value beyond traditional BIM- and CPM-based planning 
alone. Machine-learning studies have shown that algorithmic delay prediction can outperform 
conventional statistical approaches in classifying project delay risk (Gondia et al., 2020), while reviews 
of AI in construction have catalogued applications across cost estimation, scheduling, and risk analysis 
without always quantifying project-level performance impacts (Abioye et al., 2021). The present study 
has filled part of this gap by tying a composite AI adoption index, derived from Likert-scale items, to 
an objective delay outcome (SDI) and to perceived time performance in a multi-project U.S. 
infrastructure sample. The finding that a one-point increase in AI adoption has corresponded to a 2.8-
percentage-point reduction in SDI in the intermediate model has given a more concrete sense of the 
potential effect size than many proof-of-concept case studies have provided (Gondia et al., 2020). At 
the same time, the fact that AI adoption has only accounted for about 16% of the additional variance in 
SDI beyond project characteristics has been consistent with digital-transformation work showing that 
AI is one contribution among several within a broader Construction 4.0 ecosystem that also depends 
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on BIM, IoT, and robust data governance (Karmakar & Delhi, 2021). In other words, AI has mattered, 
but it has mattered most when embedded within high-quality planning and coordination practices, 
rather than as a stand-alone technology. 
Practically, the results have had clear implications for infrastructure owners, project managers, digital 
leaders, and, by extension, CIOs/CISOs and enterprise architects responsible for project-delivery 
technology stacks. For project managers and planners, the evidence has suggested that prioritising AI-
enabled scheduling, risk-forecasting, and resource-optimization tools has been a meaningful lever for 
reducing schedule overruns, especially on large and complex projects. However, the partial mediation 
through planning quality and coordination has implied that simply procuring AI tools has not been 
sufficient; organizations have needed to integrate these tools into structured planning workflows, 
regular lookahead meetings, and cross-disciplinary coordination routines, consistent with best practice 
in CPM, Last Planner, and location-based scheduling (Olivieri et al., 2019). For CIOs, CISOs, and digital 
architects, the findings have highlighted the importance of investing in data pipelines and governance 
frameworks that have enabled reliable AI analytics ensuring that schedule, progress, and risk data have 
been captured with adequate granularity and security, standardized across projects, and made 
accessible to analytics engines without compromising confidentiality or integrity (Love et al., 2014). 
From an architecting perspective, aligning AI tools with BIM, 4D models, and enterprise project-
controls platforms has been crucial so that AI insights have flowed into a single “source of truth” for 
planning decisions (Regona et al., 2022). The significant interaction between AI adoption and project 
complexity has also suggested that organizations may wish to prioritize AI-enhanced planning for their 
most complex, high-risk programs, where the marginal benefits have been greatest. 
Theoretically, the study has contributed to refining adoption–performance pipelines in the context of 
AI-enabled planning. Building on Technology Acceptance Model extensions and meta-analyses of IT 
innovation adoption, prior work has posited that perceived usefulness and ease of use shape behavioral 
intentions and system use, which then influence performance through process changes (Venkatesh & 
Bala, 2008). Resource-based and analytics-capability perspectives have similarly argued that data 
analytics capabilities enhance organizational performance by enabling superior decision-making and 
innovation (Shabbir & Waheed, 2020). The present findings have concretized these pipelines for the 
infrastructure planning domain by showing that AI adoption has not only had a direct association with 
schedule results but also has operated through intermediate constructs planning quality and 
coordination effectiveness that correspond to improved processes. This pattern has resonated with 
conceptual frameworks that view Construction 4.0 capabilities as multi-layered, encompassing 
technology, process, people, and governance (Karmakar & Delhi, 2021). Additionally, by 
demonstrating stronger AI effects in more complex projects, the study has suggested that complexity 
may act as a contingency factor within these theoretical models, amplifying the value of AI in 
environments where traditional heuristics have been least reliable. This refinement has opened the door 
for more nuanced theories in which AI-enabled planning capabilities interact with project 
characteristics and organizational readiness to shape performance outcomes. 
At the same time, the study has had important limitations that have needed to be acknowledged, many 
of which have mirrored constraints noted in earlier empirical work on construction delays and AI 
adoption. First, the cross-sectional design has precluded strong causal claims; although the patterns 
have been consistent with the hypothesized direction from AI adoption through planning mechanisms 
to delay reduction it has remained possible that better-performing organizations have been more likely 
to invest in AI tools, or that unobserved cultural factors have driven both AI adoption and time 
performance (Love et al., 2014). Second, the use of self-reported Likert scales for AI adoption, planning 
quality, coordination, and perceived time performance has introduced potential common-method bias 
and social-desirability effects, despite the inclusion of an objective SDI measure (Parsamehr et al., 2023). 
Third, the sample, while diverse, has been limited to U.S. infrastructure projects and has been based on 
non-probability sampling, which has constrained the generalizability of the results to other regions and 
to purely building projects, where organizational structures and regulatory environments may differ 
(Regona et al., 2022). Fourth, the regression models have captured linear relationships and have not 
explored potential non-linearities or complex feedbacks that dynamic-simulation studies have 
suggested may be important in schedule performance (Xu et al., 2018). These limitations have not 
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invalidated the findings but have indicated that they should be interpreted as strong associational 
evidence within a particular context, rather than as definitive proof of causal effects. 
In light of these limitations, several directions for future research have emerged. Longitudinal studies 
that have tracked projects over time, capturing the sequencing of AI adoption, changes in planning 
practices, and evolving schedule performance, would have allowed stronger causal inferences and the 
use of time-series or panel-data models. Multi-source designs that have combined survey data with 
automatically logged usage metrics from AI tools and project-controls systems, along with 
independently verified schedule and cost records, would have reduced common-method concerns and 
given a richer view of how AI has actually been used in day-to-day planning work (Fitzsimmons et al., 
2022). Experimental or quasi-experimental interventions such as staged roll-outs of AI-enabled 
planning platforms across similar projects could have provided further evidence on causal impacts and 
implementation challenges. Comparative studies across countries and across infrastructure versus 
building sectors would have helped to clarify how regulatory frameworks, delivery models, and 
cultural factors have moderated AI’s contribution to delay reduction (Regona et al., 2022). Finally, 
integrating quantitative analyses like those in this study with system-dynamics or agent-based models 
could have linked project-level findings to broader simulations of how AI-enabled planning might 
affect portfolio-level performance and national infrastructure delivery capacity (Xu et al., 2018). 
Collectively, such work would have deepened and extended the present study’s contribution, moving 
toward a more mature evidence base on the role of AI-enabled construction planning tools in reducing 
delays in complex infrastructure environments. 
CONCLUSION 
This study has set out to quantitatively assess how AI-enabled construction planning tools have been 
associated with reduced schedule delays in U.S. infrastructure projects, and the evidence has shown a 
clear, coherent pattern that supports this central aim. Using survey data from 198 projects, anchored in 
Likert five-point scales and complemented by an objective Schedule Delay Index, the research has 
demonstrated that AI adoption in planning has not been merely a cosmetic digital add-on but has been 
meaningfully related to time performance. AI adoption levels have been moderate on average, yet even 
this partial deployment has corresponded to tangible reductions in delay, with regression results 
indicating that a one-point increase in AI adoption has been linked to a measurable decrease in relative 
schedule overrun. At the same time, the analysis has revealed that AI tools have not acted in isolation; 
instead, they have operated through and alongside traditional project management levers. Projects 
reporting higher AI usage have also reported significantly stronger planning quality and coordination 
effectiveness, and these two constructs have, in turn, shown robust negative relationships with delay 
and positive relationships with perceived schedule performance. When planning quality and 
coordination have been included in the regression model, the effect of AI adoption on delay has 
remained significant but has been reduced in magnitude, which has indicated partial mediation and 
confirmed that AI has been most powerful when embedded into disciplined planning and coordination 
routines rather than used as a stand-alone technology. The models have also reaffirmed that project 
complexity and size have continued to increase baseline delay risk, yet the interaction analysis has 
suggested that the benefits of AI-enabled planning have been especially pronounced in more complex 
projects precisely where conventional tools and heuristics have tended to struggle. Collectively, these 
findings have met the study’s objectives: they have mapped AI adoption levels across a diverse set of 
U.S. infrastructure schemes; they have established that higher AI usage has been associated with lower 
delays; they have identified planning quality and coordination as key pathways through which AI has 
contributed to better time performance; and they have accounted for project-level conditions that shape 
these relationships. While the cross-sectional design and reliance on self-reported measures have 
imposed limits on causal inference and generalizability, the convergence of descriptive, correlational, 
and regression evidence has provided a strong associational foundation for concluding that AI-enabled 
construction planning tools can play a significant role in reducing schedule delays when supported by 
robust planning practice, effective coordination, and adequate organizational readiness. In doing so, 
the study has added empirical weight to ongoing discussions about digital transformation in 
construction and has offered a data-driven argument for treating AI-enhanced planning as a strategic 
capability in the delivery of complex U.S. infrastructure projects. 
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RECOMMENDATIONS 
Based on these findings, several targeted recommendations are put forward for practitioners, 
organizational leaders, and policymakers who are responsible for planning and delivering U.S. 
infrastructure projects. First, project owners and contractors should deliberately position AI-enabled 
planning tools as core elements of their project controls environment rather than as experimental add-
ons; this means budgeting for licenses, integration, and training in the same way they budget for BIM 
or scheduling software, and embedding AI-based delay forecasting, resource optimization, and 
scenario analysis into standard planning workflows, including baseline development, lookahead 
planning, and periodic schedule reviews. Second, organizations should invest in strengthening 
planning quality and coordination practices in parallel with AI adoption, since the study has shown 
that AI delivers its largest benefits when it operates through disciplined planning and clearly defined 
coordination structures: this includes formalizing processes for schedule risk reviews, cross-functional 
coordination meetings, and contingency planning, and configuring AI tools to support these processes 
with timely, project-specific insights. Third, CIOs, CISOs, and enterprise architects should focus on 
building robust, secure data pipelines that connect design models, field progress data, and project-
control systems to AI engines in a standardized format, ensuring data quality, interoperability, and 
governance so that AI models receive the reliable, granular information they need to generate 
trustworthy predictions, while protecting sensitive project information. Fourth, since the benefits of AI-
enabled planning appear strongest in complex projects, agencies and large contractors should prioritize 
AI deployment for high-risk, multi-phase programs such as major transportation corridors or 
integrated utility schemes where even modest reductions in delay can translate into significant cost 
savings and public value; pilot projects in such settings should be structured with clear performance 
baselines so that benefits can be quantified and lessons can be captured. Fifth, organizations should 
implement structured capability-building programs that equip planners, schedulers, and project 
managers to interpret AI outputs, challenge them where necessary, and translate them into actionable 
planning decisions, emphasizing that AI is a decision-support partner rather than an automatic 
decision-maker. Sixth, industry bodies and public owners should update procurement and contract 
documents to explicitly encourage or require the use of AI-enabled planning tools where appropriate, 
while also incentivizing transparency around underlying data and models to avoid black-box 
dependencies that could complicate claims and dispute resolution. Finally, policymakers and funding 
agencies should consider supporting collaborative research and demonstration programs that bring 
together owners, contractors, technology providers, and academics to develop reference architectures, 
data standards, and implementation playbooks for AI-enabled planning in infrastructure delivery, so 
that individual organizations are not forced to reinvent solutions in isolation. Taken together, these 
recommendations aim to help stakeholders convert the observed statistical associations between AI 
adoption and delay reduction into deliberate, repeatable practice that systematically improves schedule 
performance across the U.S. infrastructure portfolio. 
LIMITATIONS 
The present study has inevitably had several limitations that have needed to be recognized when 
interpreting its findings and drawing inferences about AI-enabled construction planning tools and 
schedule delay reduction in U.S. infrastructure projects. First, the research has been based on a cross-
sectional survey design, which has captured AI adoption, planning practices, coordination, and 
schedule performance at a single point in time rather than tracking how these variables have evolved 
over the project life cycle. As a result, the analyses have been able to establish robust associations but 
have not been able to prove causal sequences definitively; it has remained possible that organizations 
with inherently stronger planning cultures or better time performance have been more inclined to 
invest in AI tools, rather than AI adoption alone driving improved results. Second, the study has relied 
heavily on self-reported data captured through Likert’s five-point scales for key constructs such as AI-
enabled tool adoption, planning quality, coordination effectiveness, and perceived time performance. 
Although reliability tests have indicated high internal consistency, self-report measures have been 
vulnerable to common method variance, recall bias, and social desirability, particularly when 
respondents have been senior professionals who may have wished to portray their organizations and 
projects in a favorable light. Third, the sample has been constructed using non-probability, purposive 
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and snowball sampling, and has been limited to 198 usable responses from U.S. infrastructure projects; 
while the sample size has been adequate for the regression models, it has not guaranteed statistical 
representativeness of the entire U.S. infrastructure sector or of specific subsectors such as rail, ports, or 
energy, and organizations with higher digital maturity may have been more likely to participate. 
Fourth, the operationalization of schedule performance has combined a derived Schedule Delay Index 
with perception-based items; however, not all respondents have been able or willing to provide precise 
baseline and actual durations, and the SDI has depended on the accuracy of the reported schedule data. 
Fifth, AI adoption has been measured as a composite index reflecting frequency and depth of use of 
AI-enabled planning functions, but the study has not disaggregated specific tool types, algorithms, or 
vendors, nor has it examined model transparency, data lineage, or integration depth with BIM and 
project-control systems, all of which could influence effectiveness. Sixth, although project size, 
complexity, and contract type have been included as control variables, other potentially relevant 
contextual factors such as organizational culture, client oversight practices, regulatory environment, or 
concurrent use of lean construction methods have not been explicitly modeled, and these omitted 
variables may have contributed to unexplained variance in schedule outcomes. Finally, the analysis has 
employed linear regression techniques that have assumed largely linear relationships between 
predictors and outcomes, whereas the underlying dynamics of schedule risk in complex infrastructure 
programs may have been non-linear, threshold-based, or path-dependent. These limitations have not 
undermined the core contribution of the study but have indicated that its conclusions should be viewed 
as context-specific, associational insights that have provided a strong empirical starting point rather 
than a definitive, universally generalizable account of AI-enabled planning and delay reduction. 
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