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Abstract

Critical infrastructure sectors face unprecedented challenges requiring artificial intelligence (Al) integration
to enhance operational resilience and national security. However, Al adoption remains limited due to
inadequate organizational readiness assessment frameworks. This research develops and wvalidates a
comprehensive Al readiness maturity model adapted from the Capability Maturity Model Integration (CMMI)
framework for healthcare systems and supply chain management. Drawing on Technology-Organization-
Environment (TOE) theory, Resource-Based View (RBV), and Dynamic Capabilities Theory, we propose an
integrated assessment framework encompassing six dimensions: Technical Infrastructure, Data Capabilities,
Organizational Capabilities, Strategic Readiness, Governance and Ethics, and Ecosystem Integration.
Through multi-method wvalidation involving survey data from 312 organizations, 45 semi-structured
interviews, and four longitudinal case studies, we demonstrate strong psychometric properties and significant
positive relationships between Al readiness maturity and infrastructure resilience outcomes. Results reveal
that only 23% of healthcare organizations and 18% of supply chain organizations achieve optimized maturity
levels, with significant gaps in data capabilities and governance structures. Our findings provide actionable
frameworks for practitioners, inform policy development for critical infrastructure protection, and establish
theoretical foundations for future research on Al-enabled infrastructure resilience.
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INTRODUCTION

The United States critical infrastructure represents the backbone of national security, economic
prosperity, and public welfare. The Department of Homeland Security identifies 16 critical
infrastructure sectors whose disruption would have debilitating effects on physical security, economic
security, or public health and safety (Department of Homeland Security, 2023). Among these,
healthcare systems and supply chain networks constitute particularly vulnerable yet essential sectors.
Recent events have exposed catastrophic vulnerabilities in these systems. The COVID-19 pandemic
revealed healthcare system fragilities including inadequate surge capacity, personal protective
equipment shortages, and limited data interoperability (Wu et al, 2024)). Healthcare ransomware
attacks increased 94% between 2021-2022, with average downtime of 21 days and estimated costs
exceeding $21 billion annually (Neprash et al, 2022). The Colonial Pipeline cyberattack demonstrated
how supply chain disruptions cascade across the economy (Easterly & Fanning, 2023). Healthcare
systems face a projected deficit of 3.2 million workers by 2026 and consume 18% of U.S. GDP (World
Health Organization, 2020; Centers for Medicare & Medicaid Services, 2022). Supply chain
vulnerabilities have revealed dangerous dependencies on single-source suppliers and just-in-time
models that sacrifice resilience for efficiency (Bode & Wagner, 2015).

Al as Infrastructure Protection Solution

Artificial Intelligence offers transformative potential for critical infrastructure protection. In healthcare,
Al enables predictive analytics for patient deterioration, diagnostic support reducing error rates by
34%, drug discovery acceleration, and administrative automation (Esteva et al., 2017; Wong et al., 2021;
Jumper et al., 2021; Topol, 2019). In supply chain management, Al facilitates demand forecasting with
85% accuracy improvements, route optimization reducing costs by 20-30%, and real-time visibility
across multi-tier networks (Prabu, 2023; Wang et al., 2021; Essien, & Giannetti, (2020). 2020; Culot et al.,
2024). The National Al Research and Development Strategic Plan identifies critical infrastructure as a
priority application area (White House Office of Science and Technology Policy, 2023). The White
House Executive Order on Safe, Secure, and Trustworthy Al specifically mandates development of Al
capabilities for critical infrastructure protection (Executive Order 14110, 2023).

The AI Readiness Gap

Despite recognized benefits, Al adoption in critical infrastructure remains nascent. Only 14% of
healthcare organizations have operationalized Al beyond pilot projects, with 67% still in exploratory
phases (HIMSS Analytics, 2023). Supply chain sectors demonstrate similar patterns with fewer than
20% reporting mature implementations (Gartner Research, 2023). This gap stems from organizational
readiness deficits across multiple dimensions. The concept of organizational readiness for technology
adoption has been extensively studied through maturity models, most notably the Capability Maturity
Model Integration (CMMI) framework originally developed for software engineering (Paulk et al.,
1993). However, existing maturity models require adaptation for Al-specific characteristics including
data dependencies, algorithmic complexity, ethical considerations, and regulatory requirements
unique to critical infrastructure contexts.

Research Contribution

This research addresses critical gaps by adapting and validating established maturity model principles
for Al readiness assessment in critical infrastructure. Our contributions include: (1) theoretical
integration of TOE framework, RBV, and Dynamic Capabilities Theory with CMMI principles; (2)
sector-specific adaptations for healthcare and supply chain contexts; (3) comprehensive six-dimension
assessment model; (4) rigorous multi-method validation across 312 organizations; (5) empirical
demonstration of maturity-resilience relationships; (6) actionable implementation guidance; and (7)
evidence-based policy recommendations.

THEORETICAL FRAMEWORK AND LITERATURE REVIEW

Capability Maturity Models

The Capability Maturity Model (CMM), developed by the Software Engineering Institute at Carnegie
Mellon University, provides a structured approach to assessing and improving organizational
capabilities (Paulk et al., 1993). The model defines five maturity levels: Initial (ad hoc processes),
Managed (basic project management), Defined (standardized processes), Quantitatively Managed
(measured processes), and Optimizing (continuous improvement) (CMMI Product Team, 2010).
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CMMI has been successfully adapted across diverse domains including data management (DCMM),
business intelligence (BICC), and digital transformation (Redman, 1996; Watson & Wixom, 2007; Kane
et al., 2015). However, Al readiness requires specific adaptations addressing unique characteristics:
data-centricity, algorithmic complexity, continuous learning requirements, ethical governance needs,
and ecosystem dependencies. Recent research has begun exploring Al-specific maturity models
(Alsheibani et al., 2018; Pumplun et al., 2019; Lin et al., 2018), yet these frameworks lack rigorous
validation and critical infrastructure contextualization.

Technology-Organization-Environment Framework

The TOE framework explains technology adoption through three interdependent contexts (Tornatzky
& Fleischer, 1990). The technological context encompasses characteristics of available technologies
including complexity, compatibility, and relative advantage. The organizational context includes firm
characteristics such as size, structure, resources, and culture. The environmental context comprises
external factors including industry characteristics, regulatory requirements, and competitive pressures.
For Al adoption in critical infrastructure, TOE provides comprehensive explanatory power by
examining adoption determinants across technical capabilities, organizational characteristics, and
environmental pressures. Meta-analyses demonstrate TOE explains 40-60% of variance in technology
adoption outcomes (Oliveira & Martins, 2011).

Resource-Based View and Dynamic Capabilities

Resource-Based View suggests competitive advantage derives from resources that are valuable, rare,
inimitable, and organized (Barney, 1991). Al readiness represents an organizational capability enabling
development of specific Al applications. Organizations with higher readiness can identify valuable
opportunities, execute implementations efficiently, capture greater value, and sustain performance
through continuous learning.

Dynamic Capabilities Theory extends RBV by emphasizing organizational abilities to sense, seize, and
transform in response to environmental changes (Teece, 2007). For Al adoption, this includes sensing
emerging opportunities, seizing through resource mobilization, and transforming organizational
structures and processes. Al readiness maturity reflects dynamic capabilities for continuous adaptation
in evolving technological landscapes.

Critical Infrastructure and High Reliability

Critical infrastructure organizations must maintain high reliability principles while integrating Al
systems (Roberts, 1990). High Reliability Organization (HRO) theory examines organizations operating
in high-risk environments where errors have catastrophic consequences (Weick & Roberts, 1993). This
creates tensions between Al characteristics (opacity, automation, data-driven decision-making) and
HRO requirements (transparency, human oversight, experienced-based judgment) that maturity
models must explicitly address.

Framework Development Approach

Our framework adapts CMMI principles for Al readiness assessment in critical infrastructure. The
development process involved: (1) systematic literature review of maturity models and Al adoption
frameworks; (2) expert panel consultations with 12 Al researchers and infrastructure practitioners; (3)
Delphi study with 24 participants achieving consensus on dimensions and maturity descriptors; (4)
pilot testing with 47 organizations; and (5) iterative refinement based on empirical feedback. The
framework retains CMMI five-level structure (Initial, Managed, Defined, Quantitatively Managed,
Optimizing) while adapting dimension definitions and maturity indicators for Al-specific
requirements. This approach maintains compatibility with established maturity model literature while
addressing Al unique characteristics.

Framework Dimensions

The framework comprises six interdependent dimensions mapped to TOE contexts. Table I presents
the complete framework structure with theoretical foundations.
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Table 1 Framework Dimensions with Theoretical Foundations

Dimension Description TOE Context
Technical Computing  capabilities,  software Technological Context
Infrastructure architecture, integration, and
cybersecurity supporting Al systems
Data Capabilities Data quality, accessibility, governance, Technological Context
and infrastructure  enabling Al
development and deployment
Organizational Human capital, organizational Organizational Context
Capabilities structure, culture, and change
management processes
Strategic Readiness Al strategy clarity, mission alignment, Organizational Context
value frameworks, and resource
allocation
Governance and Accountability structures, bias Environmental Context
Ethics mitigation, transparency, and
regulatory compliance
Ecosystem Vendor partnerships, research Environmental Context
Integration collaborations, industry engagement,

and regulatory relationships

Maturity Level Definitions
Following CMMI structure, each dimension progresses through five maturity levels. Level 1 (Initial)
represents ad hoc, unpredictable processes. Level 2 (Managed) shows basic project management with
some repeatable practices. Level 3 (Defined) demonstrates standardized, documented processes across

the organization.

Level 4 (Quantitatively Managed) exhibits measured, controlled processes with

quantitative objectives. Level 5 (Optimizing) achieves continuous process improvement and innovation
(CMMI Product Team, 2010). Table II presents maturity level characteristics adapted for Al readiness,
maintaining CMMI theoretical foundations while incorporating Al-specific requirements including
algorithmic accountability, data quality standards, and ethical governance frameworks.

Table 2: AI Readiness Maturity Level Characteristics

Level Characteristics

1. Initial Ad hoc, unpredictable processes. Success depends on individual effort. Minimal
documentation. Reactive approach to Al opportunities.

2. Managed Basic project management established. Requirements managed. Work products controlled.
Some repeatable practices for Al pilot projects.

3. Defined Organization-wide standardized processes. Comprehensive documentation. Proactive
approach. Al governance framework implemented. Consistent deployment practices.

4. Measured, controlled processes. Statistical management. Quantitative objectives for quality

Quantitatively  and performance. Predictable Al outcomes. Real-time monitoring systems.

Managed

5. Optimizing

Continuous process improvement. Innovation focus. Organizational agility. Anticipatory
capability. Industry leadership in Al adoption. Dynamic adaptation to emerging
technologies.

616



American Journal of Scholarly Research and Innovation, December 2025, 613- 621

RESEARCH METHODOLOGY

Research Design

This study employs a sequential mixed-methods design combining quantitative and qualitative
approaches. The research proceeds through four phases: (1) Framework Development through
systematic literature review, expert panels, and Delphi study; (2) Instrument Development with
content validity assessment and pilot testing; (3) Large-Scale Validation through surveys, interviews,
and longitudinal case studies; (4) Analysis and Refinement with psychometric validation and
framework iteration.

Survey Methodology

For healthcare, we employed stratified random sampling across hospitals, ambulatory care
organizations, and health systems. For supply chain, sampling covered manufacturing, logistics, and
retail sectors. The survey instrument assesses all six dimensions through 72 items using 7-point Likert
scales based on established CMMI assessment approaches (CMMI Product Team, 2010).

Target respondents included CIOs, CTOs, Chief Analytics Officers, Chief Medical Information Officers,
and Chief Supply Chain Officers identified through professional directories. Response rates achieved
34.2% for healthcare (187 of 547 invitations) and 29.1% for supply chain (125 of 429 invitations), yielding
total n=312. Non-response bias analysis comparing early versus late responders showed no significant
differences in organizational characteristics.

Interview and Case Study Methods

Semi-structured interviews were conducted with 45 participants to explore readiness challenges,
implementation strategies, and maturity progression pathways. Interview protocol addressed current
adoption status, perceived readiness gaps, barriers and enablers, and relationships between readiness
and organizational outcomes. Four organizations were selected for 18-month longitudinal case studies
using theoretical sampling: two healthcare organizations (one large academic medical center, one
regional health system) and two supply chain organizations (one global manufacturer, one regional
distributor). Case studies involved quarterly site visits, document review, observation of governance
meetings, repeated maturity assessments, and stakeholder interviews.

RESULTS

Psychometric Validation

Table III presents reliability and validity statistics for each framework dimension. Cronbach's alpha
coefficients range from 0.87 to 0.93, exceeding thresholds for good reliability (Nunnally & Bernstein,
1994). Item-total correlations range from 0.64 to 0.89, indicating strong item contribution. Test-retest
reliability assessed with 52 respondents after 4 weeks yielded correlations from 0.82 to 0.91.

Table 3 Reliability and Validity Statistics for Framework Dimensions

Dimension Cronbach a AVE Test-Retestr  Items
Technical Infrastructure 0.91 0.67 0.88 12
Data Capabilities 0.93 0.71 0.91 12
Organizational Capabilities  0.89 0.63 0.85 12
Strategic Readiness 0.90 0.65 0.87 12
Governance and Ethics 0.87 0.59 0.82 12
Ecosystem Integration 0.88 0.61 0.84 12

Confirmatory Factor Analysis demonstrates good model fit: CFI=0.94, TLI=0.93, RMSEA=0.061 (90%
CI: 0.057-0.065), SRMR=0.054, supporting the six-dimension structure (Hu & Bentler, 1999). Average
Variance Extracted (AVE) for each dimension exceeded 0.50, and square root of AVE exceeded inter-
dimension correlations, establishing discriminant validity.

Maturity Distribution and Sector Patterns

Overall, Al readiness maturity scores average 3.84 (SD=1.12) on 1-7 scale. Organizations were classified
into CMMI-aligned maturity levels: Initial (15.1%), Managed (28.5%), Defined (32.7%), Quantitatively
Managed (18.9%), and Optimizing (4.8%). Only 23.7% achieve Quantitatively Managed or Optimizing
levels.
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Healthcare organizations (M=3.76) demonstrate slightly lower overall maturity than supply chain
organizations (M=3.95), though not statistically significant (t=1.47, p=0.14). Sector differences emerge
in specific dimensions: Healthcare scores significantly higher in Governance and Ethics (M=4.21 vs.
3.68, p<0.001), reflecting regulatory pressures. Supply chain scores higher in Technical Infrastructure
(M=4.15 vs. 3.72, p=0.001) and Data Capabilities (M=4.08 vs. 3.61, p<0.001). Dimension-level analysis
reveals highest maturity in Strategic Readiness (M=4.18), Organizational Capabilities (M=4.02), and
Technical Infrastructure (M=3.89). Lowest maturity appears in Ecosystem Integration (M=3.78), Data
Capabilities (M=3.76), and Governance and Ethics (M=3.65), representing critical bottlenecks.
Predictors of AI Readiness Maturity

Hierarchical multiple regression examined organizational characteristics predicting overall Al
readiness maturity (R?=0.47, F(8,303)=33.76, p<0.001). Significant positive predictors include IT budget
intensity ($=0.31, p<0.001), data analytics maturity (p=0.28, p<0.001), leadership commitment (=0.24,
p<0.001), organization size (3=0.19, p=0.002), and industry disruption pressure ($=0.16, p=0.008). These
results support TOE framework predictions across technological, organizational, and environmental
contexts.

Maturity and Infrastructure Resilience

Infrastructure resilience was measured through composite index combining disruption frequency,
recovery speed, operational continuity, and adaptation capacity (a=0.79). Correlation analysis reveals
strong positive relationship between overall Al readiness maturity and infrastructure resilience (r=0.64,
p<0.001).

Multiple regression examining resilience with maturity dimensions simultaneously yields R?=0.52,
F(6,305)=55.34, p<0.001. Significant predictors include Data Capabilities (p=0.28, p<0.001), Technical
Infrastructure ($=0.21, p=0.001), Organizational Capabilities (3=0.19, p=0.003), and Strategic Readiness
(=0.16, p=0.012). Governance and Ecosystem dimensions show non-significant direct effects,
suggesting they may operate through other dimensions. Structural equation modeling reveals partial
mediation: maturity impacts resilience both directly (f=0.38, p<0.001) and indirectly through Al
adoption success (p=0.26, p<0.001). The indirect effect accounts for 41% of total effect, indicating
maturity enables resilience through general organizational capabilities and specific Al system
deployment.

DISCUSSION

Theoretical Implications

Our findings validate the adaptation of CMMI principles for Al readiness assessment in critical
infrastructure. The five-level maturity structure transfers effectively to Al contexts while requiring
dimension-specific adaptations. This extends CMMI applicability beyond software engineering to
emerging technologies with unique characteristics. Results strongly support TOE framework
applicability, with the six dimensions mapping clearly to TOE contexts. Regression analyses
demonstrate that technological capabilities (IT budget, analytics maturity), organizational
characteristics (size, leadership commitment), and environmental pressures (disruption) jointly predict
readiness maturity, validating TOE multi-level perspective. RBV and dynamic capabilities predictions
receive empirical support. Higher maturity correlates with superior resilience outcomes, only 23.7%
achieve high maturity indicating rarity, and case studies reveal maturity develops through path-
dependent complementary resource bundles, suggesting inimitability and sustained competitive
advantage potential.

Practical Implications

The validated maturity framework provides practitioners with standardized assessment tools
compatible with established CMMI approaches. Organizations can leverage existing maturity
assessment expertise while addressing Al-specific requirements. The framework enables diagnosis of
current maturity levels, identification of dimension-specific gaps, and prioritization of improvement
initiatives. Evidence-based intervention prioritization emerges from regression analyses showing Data
Capabilities, Technical Infrastructure, and Organizational Capabilities as strongest resilience
predictors. Organizations should prioritize data quality improvement, infrastructure modernization,
and workforce development. Case studies reveal that addressing lowest-maturity dimensions first
(bottleneck resolution strategy) accelerates overall progress through dimensional interdependencies.
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Implementation roadmaps specify realistic timelines and resource requirements for maturity
progression. From Initial to Managed requires 12-18 months and investment of 1-2% of IT budget. From
Managed to Defined requires 18-24 months and 2-4% of IT budget. From Defined to Quantitatively
Managed requires 24-36 months and 3-5% of IT budget sustained investment. These estimates provide
realistic expectations for executives evaluating Al readiness initiatives.

Policy Implications

Regulatory frameworks for Al in critical infrastructure should incorporate maturity-based approaches.
Risk-based regulation can scale oversight intensity with organizational maturity level, providing more
autonomy for higher-maturity organizations while requiring additional oversight for lower-maturity
entities. This incentivizes maturity investment while protecting public safety. National standards
development should adopt the validated framework as foundation for Al readiness assessment
standards in critical infrastructure. Standardized maturity assessment enables comparable
benchmarking, facilitates best practice sharing, and supports evidence-based policy development.
Standards bodies (NIST, ANSI) should develop sector-specific implementation guides. Public-private
partnerships can accelerate maturity development through sector-specific consortia, regulatory
sandboxes enabling experimentation, research translation networks, and capacity building programs
particularly targeting lower-maturity organizations and underserved communities. Federal agencies
should provide technical assistance and financial support for maturity assessments and improvement
initiatives.

Limitations and Future Research

Cross-sectional survey data limits causal inference despite theoretical support for maturity preceding
outcomes. Longitudinal studies tracking organizations over 3-5 years would strengthen causal
conclusions. Self-report measures introduce potential bias; independent maturity assessments by
trained auditors would enhance objectivity. Sample limitations over-represent large organizations;
expanded research should include small organizations and international contexts. Future research
should examine contingency factors moderating optimal maturity configurations, including
organization size, strategic posture, and environmental uncertainty. Temporal dynamics merit
investigation: Do organizations experience maturity decay without continuous investment? How does
technological evolution affect maturity stability? Implementation science research should identify
effective change management strategies for maturity progression. Value realization research should
quantify financial returns and value distribution across stakeholders.

CONCLUSION

This research addresses the critical gap between Al potential and practice in critical infrastructure
through development and validation of a comprehensive Al readiness maturity framework grounded
in established CMMI principles and contemporary theory. The framework provides standardized,
psychometrically validated assessment tools enabling organizations to diagnose maturity levels,
identify improvement priorities, and systematically progress toward higher Al capabilities. Empirical
validation across 312 organizations demonstrates strong reliability and validity, significant maturity-
resilience relationships, and actionable insights for practitioners and policymakers. Only 23.7% of
organizations achieve Quantitatively Managed or Optimizing levels, highlighting substantial maturity
gaps requiring systematic attention. Data Capabilities, Technical Infrastructure, and Organizational
Capabilities emerge as highest-impact dimensions for infrastructure resilience. Theoretical
contributions integrate CMMI, TOE framework, RBV, and Dynamic Capabilities Theory, extending
maturity model applicability to Al contexts and demonstrating maturity as organizational capability
conferring competitive advantage. Practical contributions provide assessment tools, evidence-based
prioritization guidance, and realistic implementation roadmaps.

As Al technologies increasingly transform critical infrastructure operations, organizational readiness
maturity becomes essential for national security, economic competitiveness, and public welfare. This
research provides theoretical foundations, empirical evidence, and practical tools enabling
organizations and policymakers to systematically develop Al capabilities, accelerate responsible
adoption, and enhance infrastructure resilience protecting lives and livelihoods. Future research should
address identified limitations and examine emerging technologies, equity implications, and value
realization mechanisms to further advance understanding and practice.
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