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Abstract 
Critical infrastructure sectors face unprecedented challenges requiring artificial intelligence (AI) integration 
to enhance operational resilience and national security. However, AI adoption remains limited due to 
inadequate organizational readiness assessment frameworks. This research develops and validates a 
comprehensive AI readiness maturity model adapted from the Capability Maturity Model Integration (CMMI) 
framework for healthcare systems and supply chain management. Drawing on Technology-Organization-
Environment (TOE) theory, Resource-Based View (RBV), and Dynamic Capabilities Theory, we propose an 
integrated assessment framework encompassing six dimensions: Technical Infrastructure, Data Capabilities, 
Organizational Capabilities, Strategic Readiness, Governance and Ethics, and Ecosystem Integration. 
Through multi-method validation involving survey data from 312 organizations, 45 semi-structured 
interviews, and four longitudinal case studies, we demonstrate strong psychometric properties and significant 
positive relationships between AI readiness maturity and infrastructure resilience outcomes. Results reveal 
that only 23% of healthcare organizations and 18% of supply chain organizations achieve optimized maturity 
levels, with significant gaps in data capabilities and governance structures. Our findings provide actionable 
frameworks for practitioners, inform policy development for critical infrastructure protection, and establish 
theoretical foundations for future research on AI-enabled infrastructure resilience. 
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INTRODUCTION 
The United States critical infrastructure represents the backbone of national security, economic 
prosperity, and public welfare. The Department of Homeland Security identifies 16 critical 
infrastructure sectors whose disruption would have debilitating effects on physical security, economic 
security, or public health and safety (Department of Homeland Security, 2023). Among these, 
healthcare systems and supply chain networks constitute particularly vulnerable yet essential sectors. 
Recent events have exposed catastrophic vulnerabilities in these systems. The COVID-19 pandemic 
revealed healthcare system fragilities including inadequate surge capacity, personal protective 
equipment shortages, and limited data interoperability (Wu et al, 2024)). Healthcare ransomware 
attacks increased 94% between 2021-2022, with average downtime of 21 days and estimated costs 
exceeding $21 billion annually (Neprash et al, 2022). The Colonial Pipeline cyberattack demonstrated 
how supply chain disruptions cascade across the economy (Easterly & Fanning, 2023). Healthcare 
systems face a projected deficit of 3.2 million workers by 2026 and consume 18% of U.S. GDP (World 
Health Organization, 2020; Centers for Medicare & Medicaid Services, 2022). Supply chain 
vulnerabilities have revealed dangerous dependencies on single-source suppliers and just-in-time 
models that sacrifice resilience for efficiency (Bode & Wagner, 2015). 
AI as Infrastructure Protection Solution 
Artificial Intelligence offers transformative potential for critical infrastructure protection. In healthcare, 
AI enables predictive analytics for patient deterioration, diagnostic support reducing error rates by 
34%, drug discovery acceleration, and administrative automation (Esteva et al., 2017; Wong et al., 2021; 
Jumper et al., 2021; Topol, 2019). In supply chain management, AI facilitates demand forecasting with 
85% accuracy improvements, route optimization reducing costs by 20-30%, and real-time visibility 
across multi-tier networks (Prabu, 2023; Wang et al., 2021; Essien, & Giannetti, (2020). 2020; Culot et al., 
2024). The National AI Research and Development Strategic Plan identifies critical infrastructure as a 
priority application area (White House Office of Science and Technology Policy, 2023). The White 
House Executive Order on Safe, Secure, and Trustworthy AI specifically mandates development of AI 
capabilities for critical infrastructure protection (Executive Order 14110, 2023). 
The AI Readiness Gap 
Despite recognized benefits, AI adoption in critical infrastructure remains nascent. Only 14% of 
healthcare organizations have operationalized AI beyond pilot projects, with 67% still in exploratory 
phases (HIMSS Analytics, 2023). Supply chain sectors demonstrate similar patterns with fewer than 
20% reporting mature implementations (Gartner Research, 2023). This gap stems from organizational 
readiness deficits across multiple dimensions. The concept of organizational readiness for technology 
adoption has been extensively studied through maturity models, most notably the Capability Maturity 
Model Integration (CMMI) framework originally developed for software engineering (Paulk et al., 
1993). However, existing maturity models require adaptation for AI-specific characteristics including 
data dependencies, algorithmic complexity, ethical considerations, and regulatory requirements 
unique to critical infrastructure contexts. 
Research Contribution 
This research addresses critical gaps by adapting and validating established maturity model principles 
for AI readiness assessment in critical infrastructure. Our contributions include: (1) theoretical 
integration of TOE framework, RBV, and Dynamic Capabilities Theory with CMMI principles; (2) 
sector-specific adaptations for healthcare and supply chain contexts; (3) comprehensive six-dimension 
assessment model; (4) rigorous multi-method validation across 312 organizations; (5) empirical 
demonstration of maturity-resilience relationships; (6) actionable implementation guidance; and (7) 
evidence-based policy recommendations. 
THEORETICAL FRAMEWORK AND LITERATURE REVIEW 

Capability Maturity Models 
The Capability Maturity Model (CMM), developed by the Software Engineering Institute at Carnegie 
Mellon University, provides a structured approach to assessing and improving organizational 
capabilities (Paulk et al., 1993). The model defines five maturity levels: Initial (ad hoc processes), 
Managed (basic project management), Defined (standardized processes), Quantitatively Managed 
(measured processes), and Optimizing (continuous improvement) (CMMI Product Team, 2010). 
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CMMI has been successfully adapted across diverse domains including data management (DCMM), 
business intelligence (BICC), and digital transformation (Redman, 1996; Watson & Wixom, 2007; Kane 
et al., 2015). However, AI readiness requires specific adaptations addressing unique characteristics: 
data-centricity, algorithmic complexity, continuous learning requirements, ethical governance needs, 
and ecosystem dependencies. Recent research has begun exploring AI-specific maturity models 
(Alsheibani et al., 2018; Pumplun et al., 2019; Lin et al., 2018), yet these frameworks lack rigorous 
validation and critical infrastructure contextualization. 

Technology-Organization-Environment Framework 
The TOE framework explains technology adoption through three interdependent contexts (Tornatzky 
& Fleischer, 1990). The technological context encompasses characteristics of available technologies 
including complexity, compatibility, and relative advantage. The organizational context includes firm 
characteristics such as size, structure, resources, and culture. The environmental context comprises 
external factors including industry characteristics, regulatory requirements, and competitive pressures. 
For AI adoption in critical infrastructure, TOE provides comprehensive explanatory power by 
examining adoption determinants across technical capabilities, organizational characteristics, and 
environmental pressures. Meta-analyses demonstrate TOE explains 40-60% of variance in technology 
adoption outcomes (Oliveira & Martins, 2011). 

Resource-Based View and Dynamic Capabilities 
Resource-Based View suggests competitive advantage derives from resources that are valuable, rare, 
inimitable, and organized (Barney, 1991). AI readiness represents an organizational capability enabling 
development of specific AI applications. Organizations with higher readiness can identify valuable 
opportunities, execute implementations efficiently, capture greater value, and sustain performance 
through continuous learning. 
Dynamic Capabilities Theory extends RBV by emphasizing organizational abilities to sense, seize, and 
transform in response to environmental changes (Teece, 2007). For AI adoption, this includes sensing 
emerging opportunities, seizing through resource mobilization, and transforming organizational 
structures and processes. AI readiness maturity reflects dynamic capabilities for continuous adaptation 
in evolving technological landscapes. 

Critical Infrastructure and High Reliability 
Critical infrastructure organizations must maintain high reliability principles while integrating AI 
systems (Roberts, 1990). High Reliability Organization (HRO) theory examines organizations operating 
in high-risk environments where errors have catastrophic consequences (Weick & Roberts, 1993). This 
creates tensions between AI characteristics (opacity, automation, data-driven decision-making) and 
HRO requirements (transparency, human oversight, experienced-based judgment) that maturity 
models must explicitly address. 
Framework Development Approach 
Our framework adapts CMMI principles for AI readiness assessment in critical infrastructure. The 
development process involved: (1) systematic literature review of maturity models and AI adoption 
frameworks; (2) expert panel consultations with 12 AI researchers and infrastructure practitioners; (3) 
Delphi study with 24 participants achieving consensus on dimensions and maturity descriptors; (4) 
pilot testing with 47 organizations; and (5) iterative refinement based on empirical feedback. The 
framework retains CMMI five-level structure (Initial, Managed, Defined, Quantitatively Managed, 
Optimizing) while adapting dimension definitions and maturity indicators for AI-specific 
requirements. This approach maintains compatibility with established maturity model literature while 
addressing AI unique characteristics. 
Framework Dimensions 
The framework comprises six interdependent dimensions mapped to TOE contexts. Table I presents 
the complete framework structure with theoretical foundations. 
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Table 1 Framework Dimensions with Theoretical Foundations 

Dimension Description TOE Context 

Technical 
Infrastructure 

Computing capabilities, software 
architecture, integration, and 
cybersecurity supporting AI systems 

Technological Context 

Data Capabilities Data quality, accessibility, governance, 
and infrastructure enabling AI 
development and deployment 

Technological Context 

Organizational 
Capabilities 

Human capital, organizational 
structure, culture, and change 
management processes 

Organizational Context 

Strategic Readiness AI strategy clarity, mission alignment, 
value frameworks, and resource 
allocation 

Organizational Context 

Governance and 
Ethics 

Accountability structures, bias 
mitigation, transparency, and 
regulatory compliance 

Environmental Context 

Ecosystem 
Integration 

Vendor partnerships, research 
collaborations, industry engagement, 
and regulatory relationships 

Environmental Context 

Maturity Level Definitions 
Following CMMI structure, each dimension progresses through five maturity levels. Level 1 (Initial) 
represents ad hoc, unpredictable processes. Level 2 (Managed) shows basic project management with 
some repeatable practices. Level 3 (Defined) demonstrates standardized, documented processes across 
the organization. Level 4 (Quantitatively Managed) exhibits measured, controlled processes with 
quantitative objectives. Level 5 (Optimizing) achieves continuous process improvement and innovation 
(CMMI Product Team, 2010). Table II presents maturity level characteristics adapted for AI readiness, 
maintaining CMMI theoretical foundations while incorporating AI-specific requirements including 
algorithmic accountability, data quality standards, and ethical governance frameworks. 
 

Table 2: AI Readiness Maturity Level Characteristics 
 

Level Characteristics 

1. Initial Ad hoc, unpredictable processes. Success depends on individual effort. Minimal 
documentation. Reactive approach to AI opportunities. 

2. Managed Basic project management established. Requirements managed. Work products controlled. 
Some repeatable practices for AI pilot projects. 

3. Defined Organization-wide standardized processes. Comprehensive documentation. Proactive 
approach. AI governance framework implemented. Consistent deployment practices. 

4. 
Quantitatively 
Managed 

Measured, controlled processes. Statistical management. Quantitative objectives for quality 
and performance. Predictable AI outcomes. Real-time monitoring systems. 

5. Optimizing Continuous process improvement. Innovation focus. Organizational agility. Anticipatory 
capability. Industry leadership in AI adoption. Dynamic adaptation to emerging 
technologies. 
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RESEARCH METHODOLOGY 
Research Design 
This study employs a sequential mixed-methods design combining quantitative and qualitative 
approaches. The research proceeds through four phases: (1) Framework Development through 
systematic literature review, expert panels, and Delphi study; (2) Instrument Development with 
content validity assessment and pilot testing; (3) Large-Scale Validation through surveys, interviews, 
and longitudinal case studies; (4) Analysis and Refinement with psychometric validation and 
framework iteration. 
Survey Methodology 
For healthcare, we employed stratified random sampling across hospitals, ambulatory care 
organizations, and health systems. For supply chain, sampling covered manufacturing, logistics, and 
retail sectors. The survey instrument assesses all six dimensions through 72 items using 7-point Likert 
scales based on established CMMI assessment approaches (CMMI Product Team, 2010). 
Target respondents included CIOs, CTOs, Chief Analytics Officers, Chief Medical Information Officers, 
and Chief Supply Chain Officers identified through professional directories. Response rates achieved 
34.2% for healthcare (187 of 547 invitations) and 29.1% for supply chain (125 of 429 invitations), yielding 
total n=312. Non-response bias analysis comparing early versus late responders showed no significant 
differences in organizational characteristics. 
Interview and Case Study Methods 
Semi-structured interviews were conducted with 45 participants to explore readiness challenges, 
implementation strategies, and maturity progression pathways. Interview protocol addressed current 
adoption status, perceived readiness gaps, barriers and enablers, and relationships between readiness 
and organizational outcomes. Four organizations were selected for 18-month longitudinal case studies 
using theoretical sampling: two healthcare organizations (one large academic medical center, one 
regional health system) and two supply chain organizations (one global manufacturer, one regional 
distributor). Case studies involved quarterly site visits, document review, observation of governance 
meetings, repeated maturity assessments, and stakeholder interviews. 
RESULTS 
Psychometric Validation 
Table III presents reliability and validity statistics for each framework dimension. Cronbach's alpha 
coefficients range from 0.87 to 0.93, exceeding thresholds for good reliability (Nunnally & Bernstein, 
1994). Item-total correlations range from 0.64 to 0.89, indicating strong item contribution. Test-retest 
reliability assessed with 52 respondents after 4 weeks yielded correlations from 0.82 to 0.91. 
 

Table 3 Reliability and Validity Statistics for Framework Dimensions 
 

Dimension Cronbach α AVE Test-Retest r Items 
Technical Infrastructure 0.91 0.67 0.88 12 
Data Capabilities 0.93 0.71 0.91 12 
Organizational Capabilities 0.89 0.63 0.85 12 
Strategic Readiness 0.90 0.65 0.87 12 
Governance and Ethics 0.87 0.59 0.82 12 
Ecosystem Integration 0.88 0.61 0.84 12 

 
Confirmatory Factor Analysis demonstrates good model fit: CFI=0.94, TLI=0.93, RMSEA=0.061 (90% 
CI: 0.057-0.065), SRMR=0.054, supporting the six-dimension structure (Hu & Bentler, 1999). Average 
Variance Extracted (AVE) for each dimension exceeded 0.50, and square root of AVE exceeded inter-
dimension correlations, establishing discriminant validity. 
Maturity Distribution and Sector Patterns 
Overall, AI readiness maturity scores average 3.84 (SD=1.12) on 1-7 scale. Organizations were classified 
into CMMI-aligned maturity levels: Initial (15.1%), Managed (28.5%), Defined (32.7%), Quantitatively 
Managed (18.9%), and Optimizing (4.8%). Only 23.7% achieve Quantitatively Managed or Optimizing 
levels. 
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Healthcare organizations (M=3.76) demonstrate slightly lower overall maturity than supply chain 
organizations (M=3.95), though not statistically significant (t=1.47, p=0.14). Sector differences emerge 
in specific dimensions: Healthcare scores significantly higher in Governance and Ethics (M=4.21 vs. 
3.68, p<0.001), reflecting regulatory pressures. Supply chain scores higher in Technical Infrastructure 
(M=4.15 vs. 3.72, p=0.001) and Data Capabilities (M=4.08 vs. 3.61, p<0.001). Dimension-level analysis 
reveals highest maturity in Strategic Readiness (M=4.18), Organizational Capabilities (M=4.02), and 
Technical Infrastructure (M=3.89). Lowest maturity appears in Ecosystem Integration (M=3.78), Data 
Capabilities (M=3.76), and Governance and Ethics (M=3.65), representing critical bottlenecks. 
Predictors of AI Readiness Maturity 
Hierarchical multiple regression examined organizational characteristics predicting overall AI 
readiness maturity (R²=0.47, F(8,303)=33.76, p<0.001). Significant positive predictors include IT budget 
intensity (β=0.31, p<0.001), data analytics maturity (β=0.28, p<0.001), leadership commitment (β=0.24, 
p<0.001), organization size (β=0.19, p=0.002), and industry disruption pressure (β=0.16, p=0.008). These 
results support TOE framework predictions across technological, organizational, and environmental 
contexts. 
Maturity and Infrastructure Resilience 
Infrastructure resilience was measured through composite index combining disruption frequency, 
recovery speed, operational continuity, and adaptation capacity (α=0.79). Correlation analysis reveals 
strong positive relationship between overall AI readiness maturity and infrastructure resilience (r=0.64, 
p<0.001). 
Multiple regression examining resilience with maturity dimensions simultaneously yields R²=0.52, 
F(6,305)=55.34, p<0.001. Significant predictors include Data Capabilities (β=0.28, p<0.001), Technical 
Infrastructure (β=0.21, p=0.001), Organizational Capabilities (β=0.19, p=0.003), and Strategic Readiness 
(β=0.16, p=0.012). Governance and Ecosystem dimensions show non-significant direct effects, 
suggesting they may operate through other dimensions. Structural equation modeling reveals partial 
mediation: maturity impacts resilience both directly (β=0.38, p<0.001) and indirectly through AI 
adoption success (β=0.26, p<0.001). The indirect effect accounts for 41% of total effect, indicating 
maturity enables resilience through general organizational capabilities and specific AI system 
deployment. 
DISCUSSION 

Theoretical Implications 
Our findings validate the adaptation of CMMI principles for AI readiness assessment in critical 
infrastructure. The five-level maturity structure transfers effectively to AI contexts while requiring 
dimension-specific adaptations. This extends CMMI applicability beyond software engineering to 
emerging technologies with unique characteristics. Results strongly support TOE framework 
applicability, with the six dimensions mapping clearly to TOE contexts. Regression analyses 
demonstrate that technological capabilities (IT budget, analytics maturity), organizational 
characteristics (size, leadership commitment), and environmental pressures (disruption) jointly predict 
readiness maturity, validating TOE multi-level perspective. RBV and dynamic capabilities predictions 
receive empirical support. Higher maturity correlates with superior resilience outcomes, only 23.7% 
achieve high maturity indicating rarity, and case studies reveal maturity develops through path-
dependent complementary resource bundles, suggesting inimitability and sustained competitive 
advantage potential. 

Practical Implications 
The validated maturity framework provides practitioners with standardized assessment tools 
compatible with established CMMI approaches. Organizations can leverage existing maturity 
assessment expertise while addressing AI-specific requirements. The framework enables diagnosis of 
current maturity levels, identification of dimension-specific gaps, and prioritization of improvement 
initiatives. Evidence-based intervention prioritization emerges from regression analyses showing Data 
Capabilities, Technical Infrastructure, and Organizational Capabilities as strongest resilience 
predictors. Organizations should prioritize data quality improvement, infrastructure modernization, 
and workforce development. Case studies reveal that addressing lowest-maturity dimensions first 
(bottleneck resolution strategy) accelerates overall progress through dimensional interdependencies. 
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Implementation roadmaps specify realistic timelines and resource requirements for maturity 
progression. From Initial to Managed requires 12-18 months and investment of 1-2% of IT budget. From 
Managed to Defined requires 18-24 months and 2-4% of IT budget. From Defined to Quantitatively 
Managed requires 24-36 months and 3-5% of IT budget sustained investment. These estimates provide 
realistic expectations for executives evaluating AI readiness initiatives. 

Policy Implications 
Regulatory frameworks for AI in critical infrastructure should incorporate maturity-based approaches. 
Risk-based regulation can scale oversight intensity with organizational maturity level, providing more 
autonomy for higher-maturity organizations while requiring additional oversight for lower-maturity 
entities. This incentivizes maturity investment while protecting public safety. National standards 
development should adopt the validated framework as foundation for AI readiness assessment 
standards in critical infrastructure. Standardized maturity assessment enables comparable 
benchmarking, facilitates best practice sharing, and supports evidence-based policy development. 
Standards bodies (NIST, ANSI) should develop sector-specific implementation guides. Public-private 
partnerships can accelerate maturity development through sector-specific consortia, regulatory 
sandboxes enabling experimentation, research translation networks, and capacity building programs 
particularly targeting lower-maturity organizations and underserved communities. Federal agencies 
should provide technical assistance and financial support for maturity assessments and improvement 
initiatives. 

Limitations and Future Research 
Cross-sectional survey data limits causal inference despite theoretical support for maturity preceding 
outcomes. Longitudinal studies tracking organizations over 3-5 years would strengthen causal 
conclusions. Self-report measures introduce potential bias; independent maturity assessments by 
trained auditors would enhance objectivity. Sample limitations over-represent large organizations; 
expanded research should include small organizations and international contexts. Future research 
should examine contingency factors moderating optimal maturity configurations, including 
organization size, strategic posture, and environmental uncertainty. Temporal dynamics merit 
investigation: Do organizations experience maturity decay without continuous investment? How does 
technological evolution affect maturity stability? Implementation science research should identify 
effective change management strategies for maturity progression. Value realization research should 
quantify financial returns and value distribution across stakeholders. 
CONCLUSION 
This research addresses the critical gap between AI potential and practice in critical infrastructure 
through development and validation of a comprehensive AI readiness maturity framework grounded 
in established CMMI principles and contemporary theory. The framework provides standardized, 
psychometrically validated assessment tools enabling organizations to diagnose maturity levels, 
identify improvement priorities, and systematically progress toward higher AI capabilities. Empirical 
validation across 312 organizations demonstrates strong reliability and validity, significant maturity-
resilience relationships, and actionable insights for practitioners and policymakers. Only 23.7% of 
organizations achieve Quantitatively Managed or Optimizing levels, highlighting substantial maturity 
gaps requiring systematic attention. Data Capabilities, Technical Infrastructure, and Organizational 
Capabilities emerge as highest-impact dimensions for infrastructure resilience. Theoretical 
contributions integrate CMMI, TOE framework, RBV, and Dynamic Capabilities Theory, extending 
maturity model applicability to AI contexts and demonstrating maturity as organizational capability 
conferring competitive advantage. Practical contributions provide assessment tools, evidence-based 
prioritization guidance, and realistic implementation roadmaps.  
As AI technologies increasingly transform critical infrastructure operations, organizational readiness 
maturity becomes essential for national security, economic competitiveness, and public welfare. This 
research provides theoretical foundations, empirical evidence, and practical tools enabling 
organizations and policymakers to systematically develop AI capabilities, accelerate responsible 
adoption, and enhance infrastructure resilience protecting lives and livelihoods. Future research should 
address identified limitations and examine emerging technologies, equity implications, and value 
realization mechanisms to further advance understanding and practice. 
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